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Images play a pivotal role in documenting real-life events. With the rapid evolution of 

digital technology, there has been a significant increase in both the creation and 

dissemination of photographs. The accessibility of picture editing software has simplified 

the process of altering images, thereby reducing the time, costs, and expertise needed to 

create and manage visually manipulated content. Unfortunately, digitally altered 

photographs have become a primary medium for disseminating misinformation, which 

affects individuals and society at large. Consequently, the need for effective methods to 

detect and identify forgeries is more pressing than ever. One prevalent form of picture 

fraud, image splicing, has been thoroughly examined. In this study, we present a Depth-

Wise Convolutional Neural Network (DWCNN) model specifically designed to accurately 

detect spliced forged images. By converting input RGB images to the HSV color space, 

known for its ability to withstand color and lighting variations, our model achieves high 

accuracy in identifying manipulated images. Furthermore, our proposed model is 

lightweight, based on the MobileNet architecture with seven bottleneck blocks, making it 

suitable for a wide range of scenarios with constrained resources. To evaluate the model's 

performance, we tested it on the CASIA v1.0 and CASIA v2.0 datasets. Our model 

accurately identified forgeries with 99.23% accuracy on the CASIA v1.0 dataset and 

achieved a remarkable accuracy of 99.37% on the CASIA v2.0 dataset. 
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1. INTRODUCTION

Every day, millions of digital files, including photos, 

movies, and audio recordings, are published to social networks. 

This highlights the significant role that digital media plays in 

modern communication. However, as image editing 

technologies continue to advance, the ease of image 

manipulation has increased, enabling the creation of 

sophisticated and convincing forgeries. Unfortunately, with 

the widespread availability of advanced image-editing 

software, it has become increasingly challenging for users to 

manually detect modified photos [1]. A new field of image 

processing called 'digital image forensics' seeks to verify the 

authenticity and source of a digital image. One of the most 

crucial obligations in picture forensics is figuring out photo 

alteration. Digital tampering calls for expertise of image 

homes in addition to expertise in picture enhancing.  

Image tampering occurs for diverse reasons, including the 

introduction of bogus evidence or the delight of digital works 

[2]. Detecting such manipulations normally entails two 

principal processes referred to as passive and lively methods. 

Passive strategies involve studying intrinsic features of the 

photograph, along with visual artifacts and inconsistencies, 

without changing the picture. These features consist of 

versions in brightness, texture discontinuities, and 

irregularities in excellent information, which can suggest 

regions of the image which have been spliced. Active 

techniques, alternatively, contain embedding markers or 

auxiliary statistics into the photograph at some stage in its 

creation or transmission. These markers can be virtual 

signatures, QR codes, invisible watermarks, or other statistics 

that identifies the photograph's foundation or manipulation. 

During next evaluation, those markers may be detected to 

confirm the image's authenticity and become aware of any 

spliced areas [3]. Figure 1 illustrates the 2 categories of digital 

photo forensics. 

Figure 1. Image forgery techniques [2] 
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In this study, we explicitly address the detection of splicing 

forgery in images. Splicing occurs when a section of one 

image is copied and placed onto another. Therefore, creating a 

spliced image involves using at least two images. If the merged 

images have contrasting backgrounds, it becomes very 

difficult to make the borders and boundaries seamless. Digital 

photomontages are often created by merging two images 

together using software such like Adobe Photoshop and others. 

Figure 2 illustrates an example of an image splicing operation 

[3]. 

 

 
 

Figure 2. Image splicing example, (a) host image, (b) forgery 

image, (c) ground-truth 

 

Image splicing is a critical issue because it facilitates the 

creation of misleading and deceptive visuals that can spread 

misinformation, erode public trust, manipulate opinion, and 

damage reputations. It poses significant ethical, legal, and 

privacy challenges, with spliced images being used for 

propaganda, defamation, and fraud. The manipulation of 

images can distort reality, influencing political outcomes, and 

public perceptions, and can compromise the integrity of legal 

evidence. As detection techniques struggle to keep up with 

sophisticated manipulations, the potential for harm in sectors 

like media, law, and personal privacy continues to grow. 

Many approaches have been proposed to address the 

splicing forgery problem. These approaches can be 

categorized into two main categories: Deep Learning (DL) and 

hand-crafted techniques. Hand-crafted algorithms, based on 

classical Machine Learning (ML), aim to differentiate between 

genuine and spliced photos by relying on specific 

characteristics that highlight differences between unaltered 

portions and tampered areas. However, the gesture has 

limitations and is not always representative. Because of its 

ability to efficiently extract image features, Deep Learning 

algorithms analyze images end-to-end, producing better 

results in image fusion recognition [4] especially Convolution 

Neural Networks (CNNs) a based on local and semantic 

invariance in computer vision processing such as semantic 

segmentation and object classification]. This has been very 

successful and has led to the development of many CNN-based 

splicing detection methods that outperform more established 

methods [5]. One of CNN’s most popular models is MobileNet. 

The main idea of MobileNetV1 is to replace conventional 

diffraction with depth-wise (DW) separable diffraction [6]. 

This is achieved by dividing regular diffraction into two types, 

depthwise and pointwise diffraction used for filtering and 

linear combinations, respectively MobileNetV1 consists of 

two layers: a depth-wise (DW) convolution layer for light 

filtering, a a convolution filter is applied for each input channel 

of a 1×1 convolution (or point-wise) layer input channel 

construction [6]. However, MobileNetV2 consists of two 

blocks: a residual block with stride 1, and another block 

without residual connections and strides 2 on a depth-wise 3×3 

convolutional layer [7]. Each of these blocks is made up of 

three layers: 1×1 convolution layer with a rectified linear unit 

(ReLU6), a depth-wise convolution layer with ReLU6, and 

another 1×1 convolution layer with no non-linearity. Figure 3 

depicts the architectures of MobileNet V1 and V2. 

In this work, we propose a new pattern recognition 

algorithm for image interpolation. Our contributions in this 

area include developing a custom architecture model 

specifically designed to detect and detect image splicing 

forgeries, using the power of DWCNN To ensure the 

robustness and accuracy of our model we use two datasets 

largely uses CASIA v1.0 and CASIA v2.0 [8] and available. 

We use these two, which enables a thorough and accurate test 

under different circumstances Furthermore, we evaluate the 

performance of our proposed model using several alternative 

methods, and show how effective and superior in merged 

image recognition. 

 

 
 

Figure 3. MobileNet architecture [7] 

 

This paper is organized as follows: Section 2 provides a 

detailed description of the methods used to analyze images. 

and presents the methods for rendering image grids. In Section 

3 we provide an overview of previous related work. Section 4 

presents our proposed image splicing detection scheme. The 

experimental results and discussion are presented in Section 5. 

Finally, Section 6 presents the conclusion of this work.  

 

 

2. TECHNIQUES FOR ANALYSING And 

IDENTIFYING IMAGE FORGERY 
 

Digital picture forensics can be categorized into two main 

categories [3-5]:  

A) Authentication and integrity analysis:  

This class focuses on verifying the authenticity and 

authenticity of digital images. The methods under this 

category aim to determine if an image has been altered, 

processed, or updated. The most common methods used in this 

regard are as follows: 

• Metadata analytics: widely used to provide valuable 

information about the origin and history of an image, including 

information such as the recording device, time stamp and 

location information. 

• Error level analysis: typically used to identify potential 

areas of variation by analysing compression artefacts and 

changes in error rates in an image. 

• Pixel-based analysis: A commonly used method that 

involves analysing individual pixels or groups of pixels to 

detect irregular changes, allowing detailed analysis of the 

image at the pixel level. 

• Watermark Identification: Usually used to identify visible 

or hidden watermarks to trace the source of the image, 
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especially in cases where the authenticity of the image needs 

to be determined. 

B) Content analysis and source identification:  

This phase involves analyzing features in digital images and 

identifying their sources in order to extract information from 

them. The methods under this category aim to reveal details 

about the image itself, such as the objects, people, or events 

depicted, and the context in which they were taken, and they 

are methods commonly used in this case: 

• Feature recognition: The use of computer vision 

techniques and Machine Learning algorithms to identify 

features, faces, or features that stand out in an image. 

• Contextual analysis: analyzing environmental, visual, and 

other contextual factors to gather information about the 

originality and authenticity of the image. 

• Image retrieval: searching and comparing images between 

databases or the Internet to identify similar or similar images, 

thus providing insight into their source and authenticity. 

The courses described cover a wide range of approaches 

used in digital image forensics to address various aspects of 

image analysis, verification and source identification. 

Below we describe the main techniques that have been used 

in identifying image forgery: 

 

2.1 Cloning forgery 

 

Cloning forgery involves copying parts of one image and 

pasting them into the same or another image to create a 

deceptive or altered visual. This manipulation is done to 

mislead or create false representations, often making it 

difficult to distinguish between the original and edited content. 

In the context of digital media, cloning forgery frequently 

involves manipulating or changing photos, motion pictures, or 

other multimedia content to create misleading or false 

representations. Techniques utilized in cloning forgery can 

include copying and pasting elements from one image to 

another, altering the appearance of individuals or gadgets, or 

developing absolutely fabricated content material. Cloning 

forgery is often associated with photograph manipulation 

software program and superior modifying strategies, making 

it an increasing number of tough to stumble on and prevent. 

Cloning forgery will have extreme results, ranging from 

misinformation and propaganda to identity robbery and 

economic fraud. To fight cloning forgery, efforts involve the 

improvement of superior virtual forensics equipment and 

techniques for detecting and authenticating virtual content. 

Additionally, raising consciousness about the impact of 

cloning forgery can help higher defend towards such 

fraudulent activities [2]. 

 

2.2 Image splicing 

 

Image fusion is the use of digital images in which pieces of 

multiple images are combined to create a new composite 

image. This technique is often used in image editing and 

graphics to combine the best features of multiple images. But 

image integration is especially important in digital forensics 

because it can be used to create fraudulent or deceptive images, 

raising concerns of authenticity and integrity in contexts 

ranging from news reports to legal evidence If discovering 

splicing can be challenging, especially as repair tools become 

more sophisticated. Digital forensics researchers develop 

algorithms to detect errors in image metadata, lighting, 

shadows, or edge artifacts that can suggest exploitation. 

Advanced techniques include analyzing noise patterns, pixel-

level irregularities, and pattern recognition through Machine 

Learning models [4]. 

 

2.3 Image retouching 

 

Image retouching is a widely used process in digital 

photography and graphic design to enhance and enhance the 

quality of images. This involves adjusting various features of 

the image, from simple corrections to complex adjustments, to 

correct deficiencies. This approach is especially common in 

advertising and graphic design, where the demand for high-

quality, high-quality images is important but too much 

creativity can lead to fake images. Thus, restraint and 

disclosure have been required, especially in advertising when 

images change dramatically [9]. 

 

2.4 Image colorization 

 

Image coloring is a digital technique for adding color to 

black and white photographs, making them visually appealing 

and realistic. This approach uses a variety of methods from 

manual methods such as Adobe Photoshop that rely on 

historical knowledge and design interpretation to fully 

automated methods using artificial intelligence Machine 

Learning models with color generation actual work indicates 

the appropriate color for grayscale painting. With 

advancements in technology, particularly in AI, automated 

colorization has become increasingly sophisticated. It enables 

high-quality colorizations of historical footage, classic films, 

and archival photographs. However, these tools carry 

responsibilities concerning historical accuracy and cultural 

sensitivity, balancing between enhancing visual information 

and preserving integrity [2]. 

 

 

3. RELATED WORKS 

 

The related work for image splicing detection using 

standard ML-based models and DL-based models is described 

in this part. Starting with conventional ML models, He et al. 

[10] proposed an effective method for image splicing detection 

based on Markov characteristics in the DCT and DWT domain. 

The superior performance of their technique in comparison to 

other approaches is supported by experimental data. A method 

for splicing images that relies on inter-color channel data has 

been developed in the study [11]. This method, which seeks to 

identify the best suitable chroma-like channel, is 

computationally challenging.  

Su et al. [12] propose an enhanced approach of Markov state 

selection, which matches coefficients to Markov states base on 

well-performed function model.  Experiments and analysis 

show that the improved Markov model can employ more 

useful underlying information in transformed coefficients and 

can achieve a higher recognition rate as results compared to 

the previous version [13, 14]. Moghaddasi et al. [15] 

introduced an improved version for Image Splicing Forgery 

Detection (ISFD) using principal component analysis (PCA) 

and kernel PCA. PCA and Support Vector Machine (SVM) 

were employed to demonstrate the effectiveness of the prior 

merging, as indicated by El-Alfy et al. [16]. Li et al. [17] 

proposed an effective method for color ISFD. To perform the 

quaternion discrete cosine transform (QDCT), the authors 

utilized Markov features and then exploited SVM for 
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classification of the Markov feature vector. Zeng et al. [18] 

presented an efficient method based on PCA algorithm and K-

means technique. The analysis of the study, compared to the 

original blocks and spliced blocks, showed that ISFD had 

better results. 

In the same context several DL-based methods have been 

proposed to handle the image interpolation recognition task. 

Salloum and so on. Salloum et al. [19] provided a successful 

method for ISFD based entirely on convolutional networks 

(FCN). The authors initially introduced a single FCN (SFCN), 

and then implemented a multifunctional FSN (MFSN). Xiao 

et al. [20] presented a different ISFD method. The proposed 

method is based on diluted adaptive clustering and coarse-to-

fine constrained neural networks (C2RNet). Experimental data 

have shown that the proposed method is significantly superior 

to current alternatives. However, the proposed detection 

method, which is an effective blind ISFD method, focuses on 

one modified part of the image due to the limitations of the 

postprocessing method and fails do not detect other distorted 

paths. They also used the ResNet-Conv Deep Learning 

algorithm recommended by Ahmed et al. [21]. A 

computerized dataset for image splicing was used to train and 

test the recommended model, which was found to be more 

effective than the previous model Besides, Nath and Naskar 

[22] used blind ISFD method was proposed, using a fully 

coupled classifier network and a residual convolutional neural 

network (R-CNN). When the method was tested with the 

CASIA v2.0 database, good results were obtained. 

Using the dual-channel U-Net, or DCU-Net, Ding et al. [23] 

proposed an effective ISFD. The resilience of the suggested 

approach is demonstrated by experimental findings. 

Additionally, Kadam et al. [24] presented several ISFD 

methods, employing the Mask R-CNN with MobileNet VI as 

the backbone architecture. The suggested technique was 

evaluated using a variety of cutting-edge datasets, including 

CASIA, Wild Web, MISD, and Columbia Gray. The outcomes 

demonstrated significant superiority. However, the suggested 

model is not put to the test against more attacks and assessment 

results, with and without these challenges, is not contrasted. 

Hosny et al. [25] presented a simple architecture based on 

CNN for copy-move forgery detection. When compared to 

other previously published approaches, the given 

methodology demonstrates advantages in terms of speed and 

accuracy. When it comes to image splicing fraud, it is not 

particularly effective. 

Another study for Hosny et al. [26] proposed a 

convolutional neural network (CNN) model for detecting 

splicing forged images in real-time, with a small number of 

parameters. The model presented is lightweight, comprising 

only four convolutional layers and four max-pooling layers, 

making it suitable for environments with resource constraints. 

The sensitivity and specificity of the proposed model across 

CASIA v1.0, CASIA v2.0, and CUISDE datasets were 

evaluated. The model achieved an accuracy of 99.1% in 

detecting forgery on the CASIA v1.0 dataset, 99.3% on the 

CASIA v2.0 dataset, and 100% on the CUISDE dataset. 

Al-Shamasneh and Ibrahim [27] proposed a method that 

uses a new feature extraction model based on deep features 

combined with Sonine functions convex features. The 

proposed CNN was used to automatically generate the deep 

features from the color image, while Sonine functions convex 

was used to extract the texture features from the input images. 

Finally, the Support Vector Machine (SVM) technique was 

utilized for classification. The proposed model achieved an 

accuracy of 98.93% when tested with the CASIA v2.0 dataset. 

Nguyen et al. [28] proposed a new Deep Learning model for 

splicing image detection by implementing residual network in 

modified VGG-16 architecture to accommodate the limited 

resources of constraint machines. Compared to ResNet-50, the 

proposed model performs superior performance on computers 

with low memory and using a smaller batch size Experimental 

results show that the proposed model achieves higher accuracy 

and lower loss across ResNet-50 at the training, validation and 

test sets. The test accuracy of the revised model is 92.5%, 

while the ResNet-50 gives 85.6% after 20 epochs of training 

9319 images from the CASIA v2.0 dataset.  

 

 

4. PROPOSED APPROACH 

 

Our system's primary objective is to enhance the accuracy 

of the image splicing detection model. To achieve this goal, 

the system is divided into two steps. The first stage involves 

pre-processing, which reduces the number of parameters 

needed to describe the input image. This is achieved by 

converting RGB images to HSV and resizing input images to 

[128×128×3].In the second step, we suggested using a 

Depthwise Separable (DWS) Convolution Neural Network 

based on MobileNet V2 to address the issue of image splicing 

detection. Instead of using 2D convolution layers, the 

suggested network utilizes of depth-wise separable 

convolution layers (DWCNN). Hence, using a network 

architecture, DWS-based MobileNetV2 reduces the number of 

trainable parameters while improving learning performance. 

 

4.1 Preprocessing stage 

 

As the HSV color space is more sensitive to color changes 

and more resistant to changes in illumination, RGB images are 

initially converted to HSV in the pre-processing step. The 

HSV color model, which comprises hue, saturation, and value 

components, closely mimics human perception of color. For 

this reason, it is common to request users to select colors.  

The significance of the three components is explained as 

follows [19]: 

·Hue (H): Represents the intrinsic property of color, 

indicating red, green, etc.  

·Saturation (S): Indicates the degree of white added to the 

color. Saturation is low when a color contains more white.  

·Value (V): Reflects a color's brightness. 

The transformation from RGB to HSV space is described 

by a system of three equations, as follows: 

 

𝑉 = max(𝑅, 𝐺, 𝐵) (1) 

 

𝑆 = {
max(𝑅,𝐺,𝐵)−min(𝑅,𝐺,𝐵)

max(𝑅,𝐺,𝐵)
if max(𝑅, 𝐺, 𝐵) ≠ 0 

0 otherwise
  (2) 

 
𝐻 = 

{
 
 
 

 
 
 

undefined if 𝑆 = 0
𝐺 − 𝐵

max(𝑅, 𝐺, 𝐵) −min(𝑅, 𝐺, 𝐵)
if 𝑅 = max(𝑅, 𝐺, 𝐵)

2 +
𝐵 − 𝑅

max(𝑅, 𝐺, 𝐵) − min(𝑅, 𝐺, 𝐵)

4 +
𝑅 − 𝐺

max(𝑅, 𝐺, 𝐵) − min(𝑅, 𝐺, 𝐵)

if 𝐺 = max(𝑅, 𝐺, 𝐵)

if 𝐵 = max(𝑅, 𝐺, 𝐵)

  
(3) 

 

As depicted in Figure 4, it's easy to distinguish between 
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sections that resemble each other and those that appear distinct 

in an image produced in HSV; however, this distinction is 

challenging to make in an RGB image. To reduce the number 

of parameters needed to represent the input image, it's resized 

to 128×128×3. 

 

 
 

Figure 4. Image splicing, (a) RGB, (b) HSV, (c) ground-truth 

 

4.2 Custom DWCNN model 

 

Depth-wise Convolutional Neural Networks are a 

specialized form of convolutional neural networks designed 

for computational efficient, making them well-suited for 

mobile and embedded vision applications. Unlike standard 

convolutions that apply filters across all input channels 

simultaneously, depth-wise convolutions operate separately 

on each channel, and significantly reducing the number of 

computations and parameters. This technique, central to 

architectures like MobileNets, splits the convolution into a 

depth-wise layer that performs lightweight filtering by 

applying a single filter per channel, followed by a point-wise 

convolution (1×1 convolution) that combines these outputs to 

produce new features. This approach not only enhances 

computational efficiency and model execution speed but also 

reduces the risk of overfitting, making depth-wise CNNs 

particularly suitable for devices with limited processing 

capabilities such as smartphones and IoT devices, without 

significantly compromising the model's performance. 

In Figure 5, we depict the suggested model architecture. 

After pre-processing, a custom CNNs model is fed image data 

with a size of 128×128×3 for classification. Our concept 

consists of seven interconnected bottleneck blocks. Each block 

consists of three convolution layers, batch normalization, and 

ReLU6 activation. A description of each layer is provided in 

Table 1. The rectified linear unit, also known as ReLU6, 

allows a maximum of six activation values. This results in 

improved robustness when employing low-precision 

calculations. 

The DWCNN model comprises a residual block with a 

stride of 1 and a block without a residual link with a stride of 

2. Following these blocks, ReLU6 and a global average 

pooling layer are attached to the network, followed by a fully 

connected (FC) layer with 2 neurons.  The final layer consists 

of two neurons: one for spliced prediction and the other for 

real prediction. Predicted probabilities are generated using the 

softmax function. All these layers contribute to the formation 

of the categorization layer, which is responsible for producing 

the final result. 

 

 
 

Figure 5. The proposed DWCNN model architecture 

 

Table 1. Structure of the proposed model 

 

Block Name 
Conv DW Conv 

Size Filter Stride Size Filter Stride Size Filter Stride 

Bottleneck1 1×1 96 1 3×3 96 2 1×1 24 1 

Bottleneck2 1×1 144 1 3×3 144 1 1×1 24 1 

Bottleneck3 1×1 144 1 3×3 144 2 1×1 32 1 

Bottleneck4 1×1 192 1 3×3 192 1 1×1 32 1 

Bottleneck5 1×1 192 1 3×3 192 1 1×1 32 1 

Bottleneck6 1×1 192 1 3×3 192 2 1×1 64 1 

Bottleneck7 1×1 384 1 3×3 384 1 1×1 64 1 

 

 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

 

The experiment utilized a PC equipped with an Intel Core 

i7 CPU, 8 GB of RAM, and running Windows 10. MATLAB 

R2022b was employed for conducting the experiment. 

Additionally, two datasets were used: CASIA v1.0, which 

consists of 800 real photographs and 921 color images spliced 

together in JPEG format, each with dimensions of 384×256 

pixels; and CASIA v2.0, containing 7491 real images and 

5123 altered images in JPEG, BMP, and TIFF formats, with 

dimensions ranging from 240×160 to 900×600 pixels, as 

shown in Table 2. In this work, we divided the datasets to 60% 

for training, 10% for validation and 30% for testing. 

Our suggested model for identifying spliced images was 

trained using stochastic gradient descent with momentum 

(SGDM) with an initial learning rate of 0.01. A minimum 

batch size of 128 and a maximum of 30 epochs were chosen 

for executing the training phase. Figures 6 and 7 show the 

training/ validation model results using CASIA v1.0 and v2.0 

dataset respectively. The systems' performance was assessed 

using multiple metrics such as accuracy, recall, precision, and 

F1 score. These metric values were calculated from the 

confusion matrix produced by the systems. The confusion 

matrix offers valuable insights into classification results, 

differentiating between true positives (TP), which are 

correctly identified manipulated images; true negatives (TN), 

which are correctly identified non-manipulated images; false 

positives (FP), where authentic images are incorrectly 

classified as manipulated; and false negatives (FN), where 

manipulated images are incorrectly classified as non-
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manipulated. Accuracy was computed to evaluate the 

performance of the proposed image splicing detection model. 

It can be calculated through the following equations [3]: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 (5) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) (7) 

Table 2. Components of the CASIA v1.0 and v2.0 dataset 

 
Dataset Authentic Tampered Total Image Type Image Size 

CASIA v1.0 800 921 1721 JPEG 384×256 

CASIA v2.0 7491 5123 12614 JPEG, BMP, TIFF 240×160 to 900×600 

 

 
 

Figure 6. Accuracy and loss curve vs. iterations using 

CASIA v1.0 

 

 
 

Figure 7. Accuracy and loss curve vs. iterations using 

CASIA v2 

 

The impact of employing the HSV color space instead of 

RGB has been examined to assess the performance of the 

suggested model with both options. The comparison results, 

utilizing the CASIA v1.0 and v2.0 datasets, are depicted in 

Figure 8. The findings indicate that our suggested model 

achieves higher accuracy when the input images are converted 

to the HSV color space compared to RGB.  

Figures 6 and 7 show plots of the evaluation metrics for our 

DWCNN architecture, which achieved accuracies of 99.23% 

and 99.37% using CASIA v1 and CASIA v2 respectively. 

These figures offer insights into the model's performance 

during training and validation. Typically, metrics such as 

validation accuracy, validation loss, and the confusion matrix 

(Figures 9 and 10) are plotted alongside accuracy. Table 3 

displays the performance evaluation metrics for the proposed 

model in both datasets. 

 

 
 

Figure 8. Accuracy comparison between RGB and HSV 

color spaces models 

 

Table 3. Performance metrics of the proposed system 

 

 

Figure 9 and 10 present the confusion matrices generated 

for the image slicing detection task using CASIA v1.0 and 

CASIA v2.0 respectively. 

 

 
 

Figure 9. Confusion matrices using CASIA v1.0 
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Metrics CASIA v1.0 CASIA v2.0 

Accuracy 99.23% 99.37% 

Recall 99.64% 99.78% 

Precision 98.92% 99.15% 

F1-Score 99.28% 99.46% 
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Figure 10. Confusion matrices using CASIA v2.0 

 

Furthermore, given the importance of time as a crucial 

metric for assessing a model's efficacy, we compared the 

runtime of our model with that reported in recently published 

articles. Table 4 shows that the suggested model's reduced 

testing time, which is related to the number of parameters, 

making it an excellent option for high-volume picture 

classification as it doesn't call for a high-performance device. 

 

Table 4. Image splicing detection time (in seconds) 

 
Methods CASIA v1.0 CASIA v2.0 

Alahmadi et al. [13] 156 326 

Kadam et al. [24] 280 - 

Hosny et al. [25] 15.7 220 

Proposed method 10 189 

 

Experimental comparisons were conducted between our 

suggested model and cutting-edge techniques for classification 

accuracy. Table 5 presents all testing findings and 

demonstrates that, when evaluated on benchmark datasets, our 

method surpassed the current state of the art. The accuracy of 

our suggested model is significantly higher than that of all 

other proposed methods and previous works, whether they rely 

on manual processes or Deep Learning [13, 24-26]. 

 

Table 5. Accuracy comparison with state-of-the-art models 

 

Methods 
Accuracy 

CASIA v1.0 CASIA v2.0 

Alahmadi et al. [13] 97% 97.77% 

Hosny et al. [26] 98.25% 96.66% 

Kadam et al. [24] 64% - 

Hosny et al. [25] 99.1% 99.3% 

Proposed method 99.23% 99.37% 

 

 

6. CONCLUSIONS 

 

This work introduces a novel image splicing detection 

approach employing the DWCNN model architecture. Two 

distinct color spaces, RGB and HSV, were utilized to assess 

the impact of different color spaces on model performance. 

HSV color space demonstrates superior sensitivity to color 

changes and robustness to lighting variations. Based on these 

observations, it yielded better results compared to the RGB 

color space. For future work, we propose evaluating other 

types of CNN structures, which are more advanced such as 

YOLO for addressing real-time image splicing detection tasks. 
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