
  

  

Adaptive Rendezvous Based Congestion Control Using Optimized Bio-Inspired Algorithm 

for Clustered WSN 

 

 

R. Anto Pravin1* , X. S. Asha Shiny2 , V. Baby Vennila3 , S. Ramasamy4 , R. Uma Mageswari1 ,  

S. Satish Kumar5  

 

 

1Department of Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and 

Technology, Chennai 600062, India 
2 Department of Information Technology, CMR Engineering College, Hyderabad 501401, India 
3 Department of Information Technology, SSM College of Engineering, Namakkal 637209, India 
4 Department of Computer Science and Engineering, Hindusthan Institute of Technology, Coimbatore 641032, India 
5 Department of Electrical and Electronics Engineering, AMET University, Chennai 603112, India 

 

Corresponding Author Email: antovpravin@gmail.com 

 

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

 

https://doi.org/10.18280/isi.290626 

  

ABSTRACT 

   

Received: 29 December 2022 

Revised: 9 February 2023 

Accepted: 30 May 2024 

Available online: 25 December 2024 

 In Wireless Sensor Networks (WSNs), congestion control is essential for ensuring effective 

data transfer and extending the network's lifetime. When combining Reinforcement learning 

with Ant Colony Optimization (ACO) for congestion control in clustered WSNs, the 

strategy usually makes use of both methods' advantages to improve data routing and control 

traffic load. This research presents a novel approach named Adaptive Rendezvous based 

Congestion Control (ARCC) for congestion control by selecting the rendezvous nodes as 

Cluster Head (CH) using ACO integrated with Reinforcement learning model. By 

optimizing energy consumption, lowering congestion, and enhancing data transmission 

dependability overall, the proposed strategy aims to improve network performance. 
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1. INTRODUCTION 

 

Wireless sensor networks are self-managed infrastructure 

which is comprised with multi-distributed sensor nodes that 

autonomously monitor environmental parameters like 

temperature and humidity or it also helps in identifying the 

motion of movable targets alike wildlife or the expansion of 

wild fire [1, 2]. Nodes in these networks are defined by their 

intrinsic constraints with respect to energy availability, 

processing capacity, and communication capabilities. 

Consequently, as energy efficiency has a direct impact on 

communication performance and the network's total lifespan, 

it is an essential component of routing algorithms in WSNs. 

The optimization of these algorithms remains a focus of active 

research in order to guarantee reliable and sustainable network 

operation in various applications. 

Inspired by swarm intelligence, the Ant Colony Optimizer 

(ACO) [3] simulates the efficient, self-organized, and 

decentralized path-finding behavior of ant colonies. Using 

these features to find the best routes from source to destination 

nodes is the fundamental idea behind the ACO routing 

protocol [4]. ACO is especially useful for complicated routing 

problems in distributed environments because it allows 

dynamic adaptation to changing network conditions by 

emulating the pheromone trails that ants naturally use to 

communicate. This method improves route optimization while 

also improving the network's resilience and scalability [5]. 

Based on historical and real-time data, machine learning 

models can be integrated into the ACO framework to forecast 

network circumstances, such as traffic congestion, node 

failures, or energy depletion. Because of these forecasts, ACO 

can more quickly adapt its routing strategies to changing 

network conditions. 

Objectives: To implement a congestion control strategy that 

focuses on the strategic selection of rendezvous nodes as CHs 

using ACO, enhanced by machine learning for better decision-

making. The rendezvous nodes, selected based on their 

potential to balance traffic load and energy efficiency, play a 

crucial role in reducing congestion and improving network 

performance. 

 

 

2. RELATED WORKS 

 

Recent years have brought about the implementation of a 

number of bio-inspired based routing optimization algorithms 

to address the main issues with energy supply, computational 

capacity, and wireless connectivity that plague WSNs. Below 

is a discussion of a few of them for reference purposes. This 

method uses an optimized routing algorithm on ant colonies 

with neighborhood queries to find the optimal paths. The ACO 

technique was introduced for data aggregation-based optimal 

route discovery [6]. Here once the network topology was 

defined, the sink nodes utilize ACO to determine the optimal 

path, which the sensors then use to communicate with one 

another. However, this approach requires one to have a prior 
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awareness of the entire network topology. ACO was used to 

build a multicast data routing system to generate transmission 

channels for nodes located in different places. Using a load 

dispersal technique, many paths sub-trees were initially 

established in order to stop growing load intensity. 

Subsequently, the appropriate pheromone update technique 

was employed to preserve the previously effective paths, and 

eventually, the heuristic factor was employed to transfer traffic 

load to paths with reduced traffic loads in order to remove the 

unsuccessful paths. 

An additional heuristic function which provides optimal 

solution for the problem was taken into consideration for the 

improved ACO routing algorithm [7]. The range of 

communication and the leftover energy are considered for 

identifying the optimal data transmission mode [8]. A 

technique for WSN routing was implemented that can be more 

efficient based on the needs of path length, latency, and 

remaining node energy. Based on the mobile sink model, a 

Robust Reinforcement Q-Learning Approach (RRQLA) was 

proposed as a dynamic routing strategy for effective data 

collecting. Here, the Q-Learning technique was used to create 

an autonomous learning process for relay node selection based 

on shortest path. The learning algorithms effectively maintain 

the network system's stability while simultaneously enhancing 

its performance and producing optimal benefits [9]. 

An RL-based routing technique for WSNs was introduced. 

This algorithm builds routes dynamically by considering the 

network's real-time status. Through the careful selection of 

reward functions, this approach facilitates the development of 

optimal routes with the goal of minimizing transmission delay 

and improving dependability [10]. Recognizing the essential 

function of reward functions, this research proposes three 

consistent reward functions to efficiently calculate the Q-

value.  

In WSNs, mobility was introduced for mobile information 

gathering [11] and it can be called as tour management 

technique. Here, the data collection tour is periodically 

launched by the M-collector from the dynamic data sink. It 

then queries each sensor, gathering data automatically and 

sending it to the static sink. The mobile sink traverses the 

networks' divided, size-regular segments to collect data in an 

energy-balanced way [12]. In order to minimize the time 

required for both sink shifting and sensor data uploading, the 

Multi-hop Weighted Revenue (MWR) approach [13] was 

proposed. On the other hand, MWR has a large computational 

complexity of O (n4). 

Division and Rule agreeing ACO (DRACO) as a 

rendezvous fortitude method was proposed for the collection 

of information for dispersed WSNs with dynamic edge nodes. 

The goals of this protocol are to minimize the path length and 

achieve a full communication system [14]. It is specifically 

designed for partitioned networks, which are significantly 

more complex than standard circumstances. Path generation 

technologies are used for streamlining the data transfer 

procedure. 

The Energy efficient load Balancing Ant-based Routing 

method (EBAR) was developed for WSNs. EBAR 

incorporates a pseudo-random route discovery process and an 

enhanced pheromone trail update mechanism to distribute 

energy consumption more evenly across sensor nodes. It 

improves the efficiency of heuristic update approach that 

optimizes route creation using a greedy expected energy cost 

metric. Additionally, to minimize the energy expenditure due 

to control overhead, EBAR implements an energy-based 

opportunistic broadcast strategy [15]. 

The Transmission with Multiple Load Balancing Scheme 

(TMLBS) uses ant colony optimization to build transmission 

paths for nodes in various locations. It features three key load 

balancing strategies such as load decentralization, which 

creates multiple sub-trees to distribute traffic and prevent 

overload; load maintenance, which retains optimal paths 

through pheromone updates; and load diversion, which 

redirects traffic to less congested paths using heuristic factors 

for improved performance [16]. 

Multiple sink Load Balancing Mechanism (MLBM) for 

WSN was proposed which adaptively distributes network 

traffic across multiple sinks based on their real-time load. By 

preventing any sink from becoming overloaded, this 

mechanism reduces the risk of early battery depletion and 

unexpected network shutdowns [17]. Energy Efficient 

Secured CH Clustered Routing (E2SCR) was proposed for 

WSN based Smart Dust tactic. A smart dust node is selected 

as the cluster head when it has excess energy, a superior 

communication range, and low mobility. The Energy 

Responsive (ER) selection method and the Maximal Nodal 

Superfluous Energy assessment method are integrated with 

this approach to optimize energy efficiency during routing. 

[18]. Power consumption and network longevity are two issues 

that Underwater Wireless Sensor Networks (UWSNs) must 

deal with. Cooperative protocols named Co-operative Energy 

Efficient Routing (CEER) and co-UWSN have been offered as 

solutions to this method [19]. 

Cluster Energy Hop-based Dynamic Route Selection (CEH-

DRS), a dynamic route selection protocol for mobile wireless 

sensor networks was introduced. CEH-DRS optimize route 

selection based on production zones, improving cluster 

selection and overall network performance. Soft computing 

approaches are found to be more effective in accurately 

detecting and selecting optimal paths [20]. Connection Quality 

based Energy Efficient Routing (CQE2R) protocol enhances 

connection reliability by estimating link quality and utilizes 

energy and link data for route planning and node selection. 

This approach effectively reduces packet loss, improves 

packet delivery ratio, and minimizes delay in packet 

transmission [21]. 

Most of the previously mentioned algorithms primarily 

emphasize path length and residual energy, often overlooking 

other critical aspects of energy management, such as average 

energy, minimum energy thresholds, network lifetime, and 

task scheduling overheads. This neglect can lead to an 

imbalance in the network's overall energy depletion. 

The relevance of this study is rooted in the identified 

limitation of existing research, where energy efficiency has 

been a primary concern, potentially neglecting other vital 

aspects of wireless sensor networks. The proposed Adaptive 

Rendezvous based Congestion Control (ARCC) mechanism 

explicitly addresses this gap by prioritizing network structural 

design elements such as rendezvous locations and route 

segmentation. This emphasis on congestion awareness 

becomes crucial for applications demanding not only energy 

efficiency but also reduced delays and effective congestion 

control. 

 

 

3. CONGESTION AWARE CLUSTERING MODEL 
 

In this proposed work, Adaptive Rendezvous based 

Congestion Control method is proposed based on ACO which is 
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integrated with machine learning model. This mechanism 

includes the selection of Cluster Leads (Ls) using rendezvous 

points within each cluster, with a strong emphasis on reducing 

congestion during data transmission. It also involves 

identifying the optimal route by utilizing an ACO integrated 

with a Reinforcement Learning (RL) model, followed by 

efficient data transmission. ACO algorithm integrated with 

machine learning is proposed to predict potential congestion 

points and energy depletion.  

In addition, the machine learning part supports in 

dynamically modifying the exploration-exploitation balance 

and pheromone evaporation rates of the ACO, maintaining the 

algorithm's efficacy in a range of network settings. The system 

model for the proposed ARCC mechanism is shown in Figure 

1. The WSN is divided into clusters, with each cluster 

containing multiple sensor nodes and one CL. The selection of 

CLs is crucial since CL handles most of the data aggregation 

and transmission tasks. 

 

 
 

Figure 1. ARCC system model 

 

The ACO algorithm is typically used to identify the shortest 

path between the sender (source node) and the sink 

(destination node). The source node (nest) broadcasts route 

request (RRq) control packets, representing pheromone 

intensity, to find the most efficient available path towards the 

destination node (food). The pheromones left by the ants 

(indicating signal strength) evaporate over time based on their 

intensity level, which correlates with the path availability time. 

Each node maintains a routing table, and when a node requires 

data, it sends RRq packets containing node IDs, relay node 

count, energy levels, and link availability time. This 

information is crucial for selecting the best and most optimal 

route for future transmission requests toward the receiving 

node. The intermediate nodes or count of intermediate hops is 

used to determine path length in a WSN. Suppose ‘x’ is the 

source node within a cluster, and ‘y’ is the receiving node, 

specifically the Rendezvous Mobile Node (RMN). In that case, 

the probability of finding an optimal path is calculated based 

on the factors like Received signal strength (RSS), intermediate 

relay count and leftover energy levels of the node. 

Through the mechanism of RL integrated ACO algorithm 

the path is constructed between source and destination points, 

which generate ‘n’ possible solutions through an iterative 

process. Among these, the most efficient solution is selected 

as the optimal route. Further, reinforcement learning is 

integrated with ACO. 

The RL model evaluates the routes discovered by the ACO 

based on criteria like energy consumption, latency, and data 

packet delivery success. Successful paths are reinforced with 

positive rewards, encouraging their selection in the future, 

while less efficient paths are neglected. Therefore, the 

combined approach allows the network to dynamically adjust 

routing strategies in response to real-time changes, such as 

node failures or fluctuating energy levels. The connectivity 

between the nodes is determined for successful 

communication. The nodes initiate the communication by 

using Route Request (RRq) and Route Reply (RRp) messages. 

Eq. (1) is used for calculating the maximum available link 

duration of the discarded RRq. 

The channel link quality (LA) that exists between source (Si) 

and destination (Di) points is determined through the Eq. (1), 

 

(𝐿𝐴) =  ∑{𝜑𝑆𝑖,𝐷𝑖   +  (2𝜋𝑟𝑞 . 𝐼𝑜
2)} (1) 

 

Here the term ‘2πrq(Io)’ indicates the received power signal. 

Eq. (2) is therefore used to calculate the communication 

quality probability for accessible linkage with the optimal 

route length. 

 

𝑃𝑆𝑖,𝐷𝑖   =  
𝜙𝑆𝑖𝐷𝑖

𝛼𝑖 ·  𝜇𝑆𝑖𝐷𝑖
𝛽𝑖

∑𝐶𝑄(𝐿𝐴)
 (2) 

 

where, μij→ successive RRq; φSi,Di→(1/route length(Si, Di))→ 

route length(Si, Di) denotes the path length among source and 

destination nodes Si and Di; αi and βi → analytical aspects to 

determine the time period of link availability. 

 

3.1 Determining rendezvous cluster points 

 

To reduce the consumption of energy through the network, 

data transfer is carried out using the most effective cluster lead 

node among the clustered nodes. Cluster lead nodes are those 

that have greater residual energy and a stronger RSS compared 

to the rendezvous node. As a result, determining each group 

node's energy level and selecting the one with the highest RSS 

comprises the CL selection procedure. To make sure the best 

CL node is chosen, the cluster's nodes' current energy levels 

are frequently evaluated. 

High leftover energy (LE) nodes are chosen by considering 

how much energy they used in earlier transmissions. Selection 

of higher LE nodes is essential to maintaining dependable 

network connectivity. Low-energy nodes are essentially kept 

out of the routing process by setting and upholding a threshold 

that gives priority to higher-energy nodes throughout the 

network. As stated in Eq. (3), the energy spent rate (ESpent), 

which determines nodes with high residual energy, is 

determined by taking the difference between the previous 

energy level (EP) and the current energy level (Ec) at the 

current time. Hence this strategy not only improves the 

network's overall efficiency but also its stability and 

performance. 

 

𝐸𝑆𝑝𝑒𝑛𝑡   =    (
𝐸𝑃   −  E𝐶

Ctime 
) (3) 

 

The average of the total energy that comprises each node 
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"n" at any given moment is used to determine the threshold 

energy level, or "ET." Consequently, Eq. (4) is used to 

calculate the average energy present rate in order to estimate 

ET. 

 

𝐸𝑇 = 𝐴𝑣𝑔(𝐸𝑆𝑝𝑒𝑛𝑡) ∀𝑛 (4) 

 

The term RSS refers to the range of frequencies at which the 

signal can propagate between nodes. An effective 

communication range, also known as a propagation range, is 

the range at which nodes may interact with one another. 

Communication quality is determined using this RSS. 

The transmission power of a node is determined by its 

distance from another node and by using RSS. By calculating 

the RSS, the nodes' communication quality can be evaluated. In 

order to choose the highest RSS (n), the average RSS (Avg_RSS) 

is determined. As a result, high energy leftover and high RSS 

(n) are selected as CLnode. Eq. (5) is used to calculate the 

average RSS (Avg_(RSS)) for each node in the cluster.  

 

𝐴𝑣𝑔_𝑅𝑆𝑆 = 𝜋𝑟2𝑆  =  
∑ 𝑅𝑆𝑆

𝑛
𝑖=1

𝑛
(𝑅𝑅𝑞(𝑛)) (5) 

 

The average ThRSS is used to calculate the RSS threshold 

point. The distance between the nodes determines the variation 

in transmission power between them. The "Si" node transmits 

RRq up to its determined range of communication, and the 

calculated point of threshold is used to measure the RSS of the 

RRq that are received. The received RRq is processed if the 

RRq from 'Si' is superior to the Avg_RSS; else, the received 

RRq is dropped. In order to choose the rendezvous CL node 

which moves towards the BS, the maximum range of RS2 is 

computed. The proposed ARCC scheme's flow diagram is 

displayed in Figure 2. 

 

3.2 Data routing 

 

To prevent congestion during data transmission in a WSN, 

the transmission path is divided into two segments: from the 

CL node to the rendezvous node, and from the rendezvous 

node to the BS. CL nodes are selected based on those with the 

maximum Receiving Signal Strength (max_RSS), ensuring that 

the transmission power of overall network is minimized for 

each communication request. The routing process involves 

selecting the path with the minimum number of hop-counts by 

sequencing CL nodes until the nearest rendezvous node is 

identified and connected to the BS. The average of the 

maximum RSS values is evaluated for locating the nearest 

rendezvous node relative to the cluster holding the data for 

transmission to the BS, as described in Eq. (6). 

The average of the maximum RSS is considered to identify 

the nearest rendezvous node within the cluster that holds the 

data to be transmitted to the BS. 

 

𝐴𝑣𝑔{𝑀𝑎𝑥(𝑅𝑆𝑆)}  =  
∑ 𝑀𝑥

𝑀𝑥(𝑛)
𝑖=1

(𝐴𝑔_𝑅𝑆2𝑖)

𝑛
 (6) 

 

 

 
 

Figure 2. Flow diagram of ARCC 
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The pheromone concentration along the travelled route is 

updated in relation to the minimal hop count (MHC) once the 

ant completes its journey from the Source node (Si), to 

destination point (Di) the data transmission process is done 

through rendezvous cluster lead node, as described in Eq. (7). 

 

𝑃𝑆𝑖,𝐷𝑖(𝑡 + 1)  =  {(1 − 𝜌)𝑃𝑆𝑖,𝐷𝑖(𝑡 + 1)}  

+ 𝛥𝑃𝑆𝑖,𝐷𝑖(𝑡) 
(7) 

 

The value of pheromone intensity is eventually updated 

after each and every data transmission from the Si to the BS. 

The transmission path is divided into segments: from the 

source node within a cluster to a nearby rendezvous cluster 

lead node, and from rendezvous cluster lead node to the BS. 

This segmentation helps in managing the routing process more 

efficiently. 

 

Table 1. Algorithm for SRCC 

 
Begin 

Create the network 

Form clusters by grouping the nodes; 

For each nn (current_ node) do { 

        Broadcast RRq to its nn 

        Estimate CL metrics ESpent & RSS 

If  

ESpent<ET; RSS>Avg_RSS(n) 

          Elect CL node 

Then 

Pick Min_Hop_count 

Process data transmission 

If  

BS is far from CL then do 

        Segment the Path 

Compute Mx (Avg_RSS) CL  

Choose nearest rendezvous CL node moves towards BS 

Identify the best path & proceed data transmission (Si, Di) 

End 

 

As the pheromone values are updated, RL models 

dynamically adjust the parameters based on real-time network 

conditions and past experiences. This allows the system to 

adaptively select the best Cluster Lead (CL) nodes and the 

nearest rendezvous nodes that provide the lowest MHc 

(minimum hop count) towards the BS, ensuring energy-

efficient and reliable data transmission. Table 1 gives the 

algorithm of proposed ARCC model. 

Finally, from the ‘n’ number of received RRp, the path with 

the highest pheromone concentration and the most favourable 

RL-predicted performance metrics is chosen. This combined 

approach of ACO with reinforcement learning not only 

ensures the selection of the optimal path but also continuously 

improves the decision-making process, enhancing the 

network's overall performance and adaptability to changing 

conditions. 

 

 

4. RESULT ANALYSIS 

 

The effectiveness of the proposed mechanism ARCC and 

the considered existing schemes MLBM, DRACO, and 

CQE2R are evaluated using the simulation tool called 

Network Simulator-2 (NS-2). NS-2 is an open-source 

simulation tool that uses Object oriented tool command 

Interface (OTcl) along with C++ for coding and simulation, 

making it highly versatile for network performance evaluation. 

The network consisting of 200 nodes distributed within a 

1200m×1500m area was simulated to assess both the proposed 

ARCC and the existing techniques. The simulation analysis 

was conducted using the metrics such as, data delivery rate, 

transmission delay, control overhead, energy consumption rate 

and network lifetime. These metrics provide a comprehensive 

view of the network's performance, highlighting the strengths 

and weaknesses of each technique. The simulation results are 

used to determine how well the ARCC method improves 

network efficiency, reduces energy consumption, and 

enhances overall data transmission reliability compared to the 

other methods. Table 2 gives simulation parameters. 

 

Table 2. Simulation parameters 

 
Parameter Value 

Type of channel Wireless medium 

Simulation period 600 ms 

Node count 200 

Nodes placement Random 

MAC layer IEEE 802.11 

Traffic model Constant Bit Rate 

Transmission range 250m 

Interface type WirelessPhy 

Radio propagation model TwoRayGround 

 

4.1 Packet Delivery Rate 

 

The Data or Packet Delivery Rate (PDR) is a metric that 

measures the rate at which data packets are successfully 

delivered to their intended destination, as determined by the 

Constant Bit Rate (CBR) sources. This metric is crucial in 

evaluating the efficiency of a network, and reflects the 

efficiency of system’s data transmission.  

In order to calculate the PDR, the total number of correctly 

transmitted data packets is measured over a given period (T), 

and this value is analyzed in relation to the number of network 

nodes (n). The PDR is typically expressed as a percentage, 

where a higher PDR indicates better network performance and 

reliability. The formula used to compute the PDR is provided 

in Eq. (8), which takes into account the time and the number 

of nodes in the network. 

 

𝑃𝐷𝑅 =
  ∑ 𝑃𝑘𝑡𝑠_𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑𝑛

0

𝑇
 (8) 

 

The data packets that are successfully delivered to the 

receiver for both the proposed ARCC and the conventional 

schemes such as MLBM, DRACO and CQE2R are illustrated 

in Figure 3. 

 

 
 

Figure 3. Packet Delivery Rate 
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From the analysis it is proved that the proposed ARCC 

achieves higher delivery rates of packets when compared to 

conventional schemas MLBM, DRACO, and CQE2R which 

can also lead to improve the performance of the network. 

 

4.2 Data transmission delay  

 

Transmission delay refers to the total time it takes for a data 

packet to travel from one node to another in a network, 

including any queuing delay that occurs at intermediate nodes. 

This metric is crucial for assessing the efficiency and 

effectiveness of the proposed system's routing strategy, as it 

directly impacts the speed and reliability of data transmission 

within the network.  

 

 
 

Figure 4. Average transmission delay 

 

A lower transmission delay indicates a more efficient 

routing process, as data packets are delivered more quickly 

and with fewer interruptions. Eq. (9) is used to describe the 

delays during data transmission, with "n" representing the 

number of nodes in the network. This equation helps quantify 

the delay, providing a clear measure of the system's ability to 

handle data packets promptly. 

 

𝐷𝑒𝑙𝑎𝑦 =
∑ 𝑃𝑘𝑡 𝑟𝑒𝑐𝑣𝑑 𝑡𝑖𝑚𝑒 − 𝑃𝑘𝑡 𝑠𝑒𝑛𝑑 𝑡𝑖𝑚𝑒𝑛

0

𝑛
 (9) 

 

The average data transfer time for the proposed ARCC and 

conventional schemes are shown in Figure 4 according to the 

node density (number of nodes). When the proposed technique 

is compared to traditional methods like MLBM, DRACO, and 

CQE2R, it results in a decreased transmission delay for data 

transit time. 

 

4.3 Control overhead 

 

Minimizing the transmission of unnecessary control 

messages can significantly reduce data congestion and energy 

consumption within the network. By implementing a route 

segmentation strategy combined with rendezvous CL mobile 

nodes, cluster heads can transmit data more efficiently, 

effectively reducing congestion during the transmission of 

control packets. Consequently, the proposed method lowers 

route scheduling costs when an increasing number of active 

nodes participate in the routing process. 

The control overheads during transmission are illustrated in 

Figure 5 for the proposed ARCC method in comparison with 

existing schemes such as MLBM, DRACO, and CQE2R. The 

proposed ARCC scheme demonstrates lower control packet 

overheads compared to these existing methods. This reduction 

in overhead is largely due to the ARCC's ability to effectively 

minimize the congestion rate within the network. 

 

 
 

Figure 5. Control packet overheads 

 

4.4 Network lifespan 

 

The network lifespan can be defined from various 

perspectives, such as the number of nodes that remain 

operational, the percentage of active nodes, the time until the 

network can no longer maintain a functional backbone, or the 

percentage of nodes which is connected to the rendezvous 

cluster, among others. However, the most commonly used 

definition refers to the time until the first node in the network 

depletes its energy. This measure is often represented by the 

optimal number of network communication rounds completed 

before any node runs out of energy.  

The network lifespan analysis for the proposed ARCC 

method in comparison to conventional schemes such as 

MLBM, DRACO, and CQE2R is shown in Figure 6. The 

proposed ARCC scheme demonstrates a significantly 

improved overall system lifetime compared to the existing 

methods. This enhancement is attributed to ARCC's efficient 

energy management and optimized routing strategies, which 

help to prolong the operational duration of the network by 

delaying the exhaustion of node energy. 

 

 
 

Figure 6.  Lifespan of network 

 

4.5 Energy consumption 

 

Residual energy refers to the remaining energy in a node at 

a given time. The energy consumption of a node is computed 

by comparing the energy it has used to the total energy it 

originally had. This calculation helps in assessing the 
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efficiency and longevity of the node within the network. 

Essentially, residual energy represents the difference between 

the initial energy level of the node and the energy expended 

during network operations. This metric is crucial for assessing 

the node's remaining operational capacity and for making 

decisions about routing and energy management within the 

network. 

 

 
 

Figure 7. Consumption of energy 

 

Figure 7 compares the average energy consumption of the 

proposed ARCC method with traditional methods such as 

MLBM, DRACO, and CQE2R. The results indicate that the 

proposed ARCC scheme consumes significantly less energy 

throughout the entire process compared to the existing 

schemes. This reduction in energy consumption is a key 

advantage of the ARCC method, as it enhances overall 

network efficiency and prolongs the network's operational 

lifetime. 

 

 

5. CONCLUSIONS 

 

The proposed ARCC mechanism is designed with a strong 

focus on optimizing the network's structural design by 

strategically locating the active rendezvous cluster lead nodes. 

It also implements route segmentation to control congestion 

and reduce unnecessary delays. The ARCC mechanism mainly 

operates in two key steps like it identifies the optimal route by 

leveraging an ACO integrated with a RL algorithm, ensuring 

effective data transmission through the rendezvous points 

within each cluster. This approach is particularly effective in 

minimizing congestion during data transmission. When 

comparing the efficiency of the ARCC scheme with the 

existing CQE2R approach, simulation results demonstrate a 

significant improvement, with the ARCC method achieving 

28.4% increase in terms of PDR. This notable enhancement 

underscores the effectiveness of the ARCC mechanism in 

providing more reliable and efficient data transmission within 

complex network environments. 
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