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Modern cars use a hierarchical system of sensors, controlling devices, and controllers, 

linked via various intra-vehicle systems, to regulate and monitor the vehicle’s status. 

Researchers have confined numerous academic papers on intrusion detection in the Internet 

of Things (IoT), employing data mining and machine learning (ML) techniques to secure 

autonomous vehicles and detect potential attacks. To identify malicious attacks on the 

Internet of Vehicles (IoV), however, a competent and accurate method is required. This 

paper presents a model for cyber-attack detection in IoV that employs tree-based ML 

methods, an Improved Random Forest Classifier (IRFC), and Extra Tree (ET). We build 

the proposed model using Improved Random Forest (IRF) and ensemble learning 

techniques. The proposed IRF model employs optimized feature selection and tuning 

strategies to enhance intrusion sensitivity and decrease false positive rates. We evaluate 

the proposed model’s performance using the CI-CIDS 2018 dataset. Also, this work 

focuses mostly on the reduced feature selection and ensemble learning (EL) methods to get 

a high detection rate while keeping the cost of computing low. The test results show that 

the proposed method can find DDoS attacks and vehicle intrusions with a 0.99 accuracy 

rate. 
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1. INTRODUCTION

In the last decade, automobile manufacturers’ quick 

adoption of different new technologies has altered the design 

and functionality of new vehicles (i.e., cars). Security concerns 

are growing in lockstep with the rapid expansion of smart car 

connections. An attack on the infrastructure of the Internet of 

Vehicles (IoV) can make vehicles less reliable and potentially 

lead to accidents. The World Health Organization (WHO) 

announced in June 2021 that vehicle accidents [1]. In a notable 

instance, multiple hackers successfully hijacked a car, took 

control of the driving and controls, and carried out deadly 

operations [2]. Traditional Vehicular Ad Hoc Networks 

(VANETs) are rapidly transforming the way we engage with 

IoV, devices, and infrastructures. VANETs enable 

communication systems between cars and equipment in 

Intelligent Transport Systems (ITSs), thereby transforming the 

vehicles mobility [3]. The transportation industry is a 

promising and evolving field that presents an ideal option for 

reducing traffic accidents and associated expenses [4]. Several 

of these devices, meanwhile, lack security features like 

gateways and proxies [5]. Since attacking or fraudulently 

managing automobiles on the highway constitutes a 

substantial risk to human life, AVs are vulnerable to network 

attacks with serious consequences. The following attacks are 

examples of potential networking risks. Current networks 

frequently face Denial of Service (DoS) attacks, which can 

severely damage the network’s resources [6]. There are 

numerous techniques, including location spoofing, to 

impersonate legitimate users and deliver false GPS 

information to the nodes. A “port scan attack”, also known as 

probing, is an alternative attack that could steal private 

information from a vehicle’s systems and users [7]. Intruders, 

in particular, use brute-force attacks, SQL cross-site scripting 

(XSS), and injection attacks to get access to the web interfaces 

of vehicles or computers [8]. All of the aforementioned risks 

and threats require a powerful defense system that can repel 

potential attacks and facilitate inter- and intra-AV system 

communication. An “Intrusion Detection System” (IDS) is 

necessary to monitor network activity and detect abnormal 

traffic. Refining the reliability of IDS will minimize the 

number of false alarms [9]. Traditional IDSs struggle to 

improve recital and determine unseen attacks. ML approaches 

enable excellent automation for automatic detection 

computers. Furthermore, ML approaches offer broad potential 

for detecting unknown attacks. IDS is a good security method 

for finding suspicious data and attacks in network traffic when 

cars and other devices talk to each other [10]. Conventional 

Intrusion Detection Systems (IDS) often encounter difficulties 

in real-time anomaly identification owing to the substantial 

amount and complexity of Internet of Vehicles (IoV) data. 

Consequently, there is an urgent need to develop an effective 

Intrusion Detection System using machine learning models 

capable of rapidly and correctly detecting malicious activity in 

IoV’s situations. An Improved Random Forest (RF) model, 

tuned for higher precision and low latency, provides a 

workable way to improve IDS in the IoV, leading to better 

classification performance and resilience.  

In this current study, we employ ML-based classifier 

methods such as Extra Tree (ET) and Random Forest (RF). A 

framework IDS must have a substantial detection rate as well 

as a minimal computational cost. To boost accuracy, an ET, 
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notably stacking, is utilized to save computing time. The study 

compares an Improved RF model for detecting intrusions with 

traditional IDS methods in terms of accuracy, latency, and 

computational efficiency. It also assesses the model’s 

robustness in a simulated IoV environment using the CI-CIDS 

2018 dataset, revealing its excellent performance. 

We organize the remainder of this paper as follows: Section 

2 gives an overview of related works on IoV. Section 3 

presents the working of the proposed framework for IDS. 

Section 4 discusses the experimental and simulated results. 

Finally, section 5 presents the conclusion of the work. 

 

 

2. RELATED WORKS 
 

The attacker gains full access to the vehicle upon entering, 

enabling them to perform risky acts. In two-class and multi-

class data sets, an imbalance occurs when the samples of one 

class include more instances than the samples of the other 

classes. Most traditional ML algorithms underperform in these 

datasets since they prefer the majority class, resulting in poor 

predicted performance over the minority class. This section 

highlights some of the most recent scientific breakthroughs in 

intruder detection in IoV. In the study [11], the authors 

proposed an FPGA-based intrusion detection approach that 

not only enables real-time scan capability but also finds 

application in a vehicle environment. They tested the 

suggested system on a Xilinx FPGA platform. The tests 

indicate that the suggested system could surpass 39 Gbps on 

an original FPGA platform, marking a 15% increase over 

current performance. 

Current automobiles use the Controller Area Network 

(CAN) as a key mechanism to direct the interaction between 

the Electronic Control Units (ECU) of the in-vehicle systems, 

as explained by Ahmed et al. [12]. They mentioned that 

authorization and verification techniques are required to 

protect the infrastructure against cyber or malicious attacks, 

such as DoS and fuzzy attacks. Later, the authors describe an 

IDS based on deep learning architecture to secure CAN bus 

vehicles. They trained the VGG architecture on network attack 

patterns to detect malicious attacks, and the tests used the 

CAN-intrusion dataset. Yang et al. [13] studied intra-vehicle 

and exterior security breaches to recognize both recognized 

and unidentified vehicle threats. Tests show that the suggested 

system can correctly identify all known types of attacks with 

99.99% accuracy on the CAN-intrusion dataset, which shows 

data about the inside network of the vehicle, and 99.88% 

accuracy on the CICIDS2017 dataset, which shows data about 

the outside network of the vehicle. Using CNNs and hyper-

parameter optimization approaches, the authors developed 

EL-based IDS for IoV in the study [14]. The suggested IDS, 

which utilizes open benchmarking data sources such as 

CICIDS2017 and Carhack, demonstrated an accuracy of 

99.2%. The authors also showed the reliability of the IDS for 

finding attacks. To build TCAN-IDS, an in-vehicle network 

intrusion detection model, Cheng et al. [15] proposed a 

temporal CNN architecture with global attention.  

The proposed system original message, including an 

arbitration bit and a data field, into a message matrix that 

mirrors transmissions from a specific point in time. The model 

then extracts the spatial-temporal detail features. Importantly, 

the global attention continued to focus on significant regions 

based on multichannel and local pattern values, while 

disregarding minor changes in bytes. Lastly, a binary class 

element monitors abnormal traffic. 

According to research, machine learning models are 

becoming more popular for finding intrusions in the Internet 

of Vehicles (IoV) because they can handle complex and high-

dimensional data [16, 17]. Researchers have employed a 

variety of machine learning models, such as Support Vector 

Machines (SVM), K-Nearest Neighbours (KNN), Decision 

Trees, and Random Forests, to enhance the detection ability in 

IoV. For instance, Random Forests stand out for their ability 

to withstand overfitting and manage high-dimensional data, 

making them suitable for IoV applications [18]. For effective 

real-time intrusion detection, these models often need 

optimization for both speed and accuracy [19].  

Research indicates that enhanced RF models may 

accommodate various intrusion types, making them adaptable 

for IoV security applications [20]. Nonetheless, deep learning 

models need substantial processing resources, rendering 

lightweight but optimized models, such as Random Forests 

with calibrated parameters, a preferred option for real-time 

Internet of Vehicles systems [21]. Real-time Intrusion 

Detection Systems in the Internet of Vehicles need models 

adept at managing substantial data volume and diversity with 

little latency. This need has prompted investigations into 

lightweight and efficient models, particularly those tailored for 

low-latency performance [22]. In the study [23], the authors 

suggested integrating ML models with incremental learning 

approaches to improve detection accuracy and adaptability in 

dynamic Internet of Vehicles environments. 

This article discusses about three important studies that look 

into Intrusion Detection Systems (IDS) in the Internet of 

Vehicles (IoV). It focuses on ensemble learning and feature 

selection as ways to make IDS work better.  

Wang et al. [24] observed an ensemble learning method that 

combines with optimized feature selection. They required to 

make Intrusion Detection Systems in Internet-of-Vehicles 

networks more accurate and efficient. Their approach 

combines Random Forest (RF) and Gradient Boosting 

Machine (GBM) classifiers with feature selection based on 

Principal Component Analysis (PCA). This cuts down on the 

number of dimensions while keeping important data. The 

model got better detection rates and less computational 

overhead by focusing on traits with high impact. This is crucial 

in IoV scenarios where resources are scarce. The results of this 

study showed that feature-reduction-based optimized 

ensemble models work well for real-time applications in IoV 

systems, providing high accuracy with low latency.  

Tu and Shang [25] presented an optimized ensemble 

Intrusion Detection System (IDS) that uses soft voting to 

identify cyber threats in intelligent transportation systems' 

internal and external networks. The system uses three machine 

learning techniques: logistic regression, random forests, and 

decision trees to construct an integrated structure. The 

CICIDS2017 dataset and Car-Hacking dataset are used for 

external network communication and in-vehicle 

communication evaluations. In the study [26], the authors 

introduced an Intrusion Detection System for the Internet of 

Vehicles using ensemble learning, emphasizing the 

minimization of false-positive rates via efficient feature 

selection. Their model included AdaBoost and bagging with 

recursive feature elimination (RFE), which systematically 

identifies the most relevant features to improve the model’s 

interpretability and performance. They tested the model with 

a real-world dataset of the Internet of Vehicles and found that 

it greatly improved detection accuracy and decreased false 
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alarms. This shows the benefits of combining ensemble 

learning with RFE for IDS applications in IoV, where rapid 

and accurate detection is very important. 

 

 

3. MATERIALS AND METHODS 

 

Electric vehicles offer a significant advantage due to their 

eco-friendly features, unlike traditional motor vehicles with 

internal combustion engines [27]. Figure 1 summarizes the 

suggested IDS outline for developing a high detection model. 

The proposed model involves collecting sufficient network 

activity data, using SMOTEboost to reduce unbalanced 

classes, selecting features based on average significance, 

constructing ET and IRF models for the stack ensemble 

classifier, and constructing a final classifier to differentiate 

between normal and attack traffic, thereby reducing 

computational costs. 

Dataset: This study uses the CICIDS-2018 dataset to assess 

the proposed IDS. This study utilizes the CICIDS2018 

benchmark dataset to capture BENIGN and contemporary 

network traffic attacks. The protocols included in this dataset, 

including email, HTTP, and HTTPS, also incorporate the most 

recent network attacks. The CICIDS2018 dataset tests the 

proposed framework against DDoS attacks, web attacks, and 

infiltration. 

Data pre-processing: To develop an IDS, we must first 

significantly influence the network traffic patterns in both 

benign and attack states, caused by various types of attacks. 

We can obtain the data from CICIDS-2018, but it must include 

appropriate network properties, also known as network 

features, for the creation of an IDS. We will preprocess the 

obtained network data after a few stages to make it more 

suitable for IDS design. Normalized data, on the other hand, is 

frequently more efficient for ML training. In this study, we 

utilized the label encoder approach to convert categorical 

features to numerical values. Following the conversion, we 

employed Eq. (1) to normalize values between 0 and 1 using 

the min-max normalization approach. 

 

𝐷𝑛𝑜𝑟𝑚 =
𝑑 − 𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛

 (1) 

 

Synthetic Minority Oversampling Technique 

(SMOTE): 

Generally, networks maintain a stable state with insufficient 

attack labels, leading to the classification of network data as 

imbalanced. Oversampling algorithms have made errors in 

handling complex problems, such as generalizations or not 

actively addressing imbalance issues in subspace, compared to 

two-class imbalance situations. In this work, we apply 

SMOTEBoost, a data-level approach for dealing with the issue 

of unbalanced data. 

The proposed method’s major phases are SMOTE sampling 

and boosting. As a data-level solution, this method employs 

the SMOTE approach. SMOTE generates additional minority 

class instances for a training dataset by locating a minority 

class instances k-nearest neighbors (KNN) and extrapolating 

between that example and its neighbors to generate new 

instances. It also handles binary and multi-class issues. The 

objective is to enhance the ensemble’s accuracy rate by 

focusing on challenging minority class cases and improving 

True Positives (TP). 

 

 
 

Figure 1. The proposed IDS framework 
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Feature selection: 

It is critical to provide appropriate input to the model so that 

it can function successfully with the required data. Introducing 

redundant and consistent input may not aid prediction, but it 

does degrade prediction accuracy. As a result, there is a 

requirement to select the key features from a huge dataset and 

transfer them to the model. The dataset, as of CICIDS2018, 

has 80 features; we eliminated the class label to leave 79 

features. We should reduce the 79 relevant features for an ML 

algorithm by retaining the significant ones and discarding the 

less important ones using Average feature importance in this 

paper.  

Average feature importance:  

By analyzing the average feature importance of the CICIDS 

2018 dataset, we can determine which features are most 

effective in distinguishing between benign and malicious 

network traffic. Machine learning methods prioritize features 

based on their impact on correct classification. Feature names 

such as “Flow Duration,” “Total Fwd Packets,” or 

“Destination Port” could get high priority ratings if the model 

uses them extensively while generating decisions. In ensemble 

approaches, we average scores across several models, or 

across all trees in tree-based models, to determine average 

feature relevance. This averaging eliminates outliers and 

brings attention to characteristics that have a consistent 

impact. By concentrating on aspects with greater average 

relevance, we can simplify the dataset, remove less 

informative properties, and reduce computing demands 

without compromising accuracy. 

To better understand which features (such as packet size, 

source/destination IP, timestamp, etc.) contribute most to 

differentiating between legitimate and malicious traffic, 

Intrusion Detection systems (IDS) in IoV need to know the 

average feature importance. We can use the feature priority 

scores to prioritize features that significantly impact intrusion 

detection accuracy. Some features of network packets, such as 

payload size and frequency, may hold significant importance 

in identifying outliers. We ignore features of lesser relevance 

to save computational burden without compromising model 

performance. 

Classification: 

Unsupervised learning is a ML approach that aids in 

uncovering hidden patterns and data within given datasets 

[28]. We compare different supervised classification 

techniques based on metrics like the highest detection 

accuracy and the least false negative predictions. Machine 

learning algorithms are capable of learning a huge number of 

malicious and benign inputs of various types and efficiently 

predicting them. Constructing the IDS in the proposed system 

to identify diverse cyber-attacks presents a multi-classification 

challenge, with ML methods commonly employed to address 

such classification problems. The selected machine learning 

procedures are tree-based, and they also incorporate additional 

trees and Random Forests. 

Extra Tree:  

This approach, a form of EL, gathers the outcomes of 

several de-correlated decision trees into a “forest” to produce 

a classification result. We build the Decision Trees in the Extra 

Trees Forest using the sample from the training process. Next, 

we randomly select k features from the feature set at each test 

node, and each tree must select the best feature to split the data 

using quantitative rules. 

Unlike other classifiers, ETs completely randomize feature 

splits rather than relying on the data distribution at each node 

to determine appropriate thresholds. In contexts with varied 

sorts of intrusions, this high degree of randomization may lead 

to a more diversified ensemble, which in turn can improve 

generalizations for high-dimensional IoV data. Rapid 

decision-making is possible with ET trees due to their 

randomised structure. Fast classifications are crucial in real-

time IoV systems, so this is an advantage. ET’s speed allows 

for models with less computational overhead, which indirectly 

improves accuracy by preventing overfitting in complex data. 

Random Forest (RF): RF utilizes the majority voting rule 

to identify a class from a collection of trees. Additionally, it 

serves as a classifier. 

Improved-RFC approach: This approach employs the 

Random Forest technique, as well as a feature evaluator 

method. The multi-class trained model for classifying is 

chosen first in this strategy. In order to improve detection 

accuracy and decrease processing overhead, mathematical 

formulations for an Improved Random Forest (IRF) 

classification technique in an IDS for the IoV typically center 

on optimizing feature selection, classifier ensembles, and 

decision-making procedures. An ensemble of T decision trees, 

with each tree built on a subset of characteristics, makes up the 

Random Forest (RF) classifier. Let the feature set X = {x1, 

x2, …, xn} represent each sample in the IoV data, and the 

associated class labels Y = {y1, y2, …, yn} stand for things like 

normal or incursion. 

For each decision tree t in the set T, data points we randomly 

select Xt and features Ft from the dataset. After receiving 

training from Xt and Ft, a decision tree is divided at each node 

according to feature criteria, such as knowledge gain. For each 

given input X, the ensemble output H(X) is the sum of the votes 

cast by each decision tree in the forest: 

 

(𝑋) = 𝑚𝑜𝑑𝑒{ℎ𝑡(𝑋)}𝑡=1
𝑇  (2) 

 

We select features at each node using the information gain 

(IG) or Gini index to enhance each tree’s intrusion detection 

capabilities. At node N, the information gain for feature fi is 

calculated as follows: 

 

𝐼𝐺(𝑁, 𝑓𝑖) = 𝐻(𝑁) −∑
|𝑁𝑗|

|𝑁|
𝑗

𝐻(𝑁𝑗) (3) 

 

In this context, H(N) denotes the entropy of the present 

node, Nj stands for the partitioned nodes after feature fi 

splitting, and |N| and |Nj| denote the quantities of samples in N 

and Nj, respectively. In order to improve intrusion detection, 

the RF algorithm may maximize IG(N, fi) and then choose 

features that divide the data optimally for each decision tree. 

The Out-of-Bag (OOB) error serves as a measure for internal 

validation, eliminating the need for independent test data and 

providing a fair assessment of the classifier’s efficiency. Each 

data point xi that was not used to train the TOOB(xi) trees has a 

corresponding OOB prediction, HOOB(xi): 

 

𝐻𝑂𝑂𝐵(𝑥𝑖) = 𝑚𝑜𝑑𝑒(ℎ𝑖(𝑥𝑖))𝑡𝜖𝑇𝑂𝑂𝐵(𝑥𝑖)
 (4) 

 

Optimizing the RF decision threshold to minimize FP and 

FN is crucial for real-time IoV situations. A cost-sensitive 

thresholding method can mitigate these mistakes. To find the 

best threshold, τ, we minimize a cost function C, where α and 

β are weights that represent the cost of false positives and false 

negatives, respectively, in an IoV environment. 
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𝐸𝑂𝑂𝐵 =
1

𝑁
∑1(𝐻𝑂𝑂𝐵(𝑥𝑖) ≠ 𝑦𝑖)

𝑁

𝑖=1

 (5) 

 

 

4. RESULTS AND DISCUSSIONS  

 

We implemented the proposed strategy on an I7 processor 

running Windows 10. We conducted all tests in an Anaconda 

Jupyter Notebook and Python 3.9 environment to evaluate the 

performance of the proposed model. Performance metrics 

assess the performance of a machine learning model. There are 

several types of performance metrics to evaluate a model; 

selecting the most suitable one is critical for monitoring and 

optimizing the model’s performance. To assess a model and 

determine suitable classes for a system, expected performance 

indicators such as true positive (TP), true negative (TN), false 

positive (FP), and false negative (FN) are used, despite the 

difficulty in observing or interpreting real data. Eqs. (6)-(9) 

show performance metrics for ML models evaluation the 

models [29]. 

 

Precision =
TP

TP + FP
 (6) 

 

Recall =
TP

TP + FN
 (7) 

 

Accuracy =
TP + TN

TP + FN + TN + FP
 (8) 

 

F1 − Score = 2 ×
Precision + Recall

Precision × Recall
 (9) 

 

The following conclusions were drawn from the 

explanation of the machine learning model with and without 

the Feature Selection Technique. 

When the classification data from the IoV attacks was 

analyzed, the IRF technique had the highest accuracy rate of 

0.969, whereas the ET technique had the lowest accuracy rate 

of 0.96. The classification efficiency results are shown in 

Table 1. 

 

Table 1. Classification ML model results in the absence of a 

feature selection technique 

 
ML Model Accuracy Precision Recall F1-Score 

ET 0.96 0.95 0.94 0.931 

IRF (Proposed) 0.969 0.959 0.949 0.96 

 

The IRF subset’s optimum features subset was therefore 

added to the original set of two classifiers for further training. 

The dataset was separated into two parts: training (80%) and 

testing (20%). Table 2 displays the performance results 

acquired as a consequence of classification. 

 

Table 2. Classification ML model results in the presence of a 

feature selection technique 

 
ML Model Accuracy Precision Recall F1-Score 

ET 0.97 0.96 0.96 0.961 

IRF (Proposed) 0.99 0.99 0.99 0.98 

 

The comparative evaluation of the proposed model, as 

shown in Figure 2 and one of the two classifiers shown in 

Figure 3 outperforms the other when using selected features to 

model. IRF achieved great accuracy, precision, recall, and an 

F1-score of 0.98, but ET performed poorly. Because 

regularization is a critical aspect for this sort of prediction 

method, the results for IRF are superior to ET. IRF, for 

example, is rapid to implement and delivers the highest 

accuracy. IRF, on the other hand, performs well even when 

certain missing values make the model simple to use. 

The precision-recall (PR) curves are particularly beneficial 

for assessing the IDS’s performance in the context of 

imbalanced classes and various attack types. They emphasize 

the model’s ability to maintain precision as recall increases. 

The suggested model gets good accuracy and recall for DoS 

and Probe attacks, which are common and might be easier to 

spot because they have their own unique traffic patterns, as 

seen in Figure 4. For R2L, U2R, and Botnet attacks, the model 

demonstrates a trade-off between precision and recall, 

indicating that the implementation of additional features or 

alternative model adjustments may enhance the accuracy of 

detection. 

From Figure 5 it is evident that the ROC curve of IRF 

classifier outperforms as related to ET classifier. Using a 

random subset of features and samples, IRF trains an ensemble 

of decision trees. Because of this unpredictability, IRF is able 

to generalize well across the many different types of intrusions 

seen in IoV data, which helps prevent overfitting. Reducing 

redundancy through improved parameters and optimised 

feature selection leads to enhanced detection accuracy. IRF is 

more effective at identifying intrusions because it has a higher 

AUC for capturing feature interactions in the IoV data. 

 

 
 

Figure 2. Comparative evaluation of proposed model 

 

 
 

Figure 3. Comparative evaluation of proposed model (IRF) 

statistical metrics and ET models with feature selection 
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Figure 4. Precision-recall curves analysis of proposed model 

 

 
 

Figure 5. ROC curve of the IRF classifier and ET classifier 

 

ROC curves also help one understand the capacity of the 

IRF model to differentiate between normal and each particular 

attack type. Higher AUC values suggest improved 

discriminating capacity. Table 3 shows the ROC values for 

every particular class of the CICIDS 2018 attack type. The 

Improved RF model can consistently classify different types 

of attacks, as shown by the high ROC-AUC of 98.2% for DoS 

attacks and 97.5% for Probe attacks. The lower scores for U2R 

of 94.8% and Botnet attacks of 91.5% suggest that further 

feature engineering or different detection techniques might be 

required to raise model performance on these more subdued 

attack types. 

 

Table 3. ROC values for each specific attack type of CICIDS 

2018 dataset 

 
Attack Type ROC-AUC Score (%) 

Normal Traffic 99.1 

Denial of Service (DoS) 98.2 

Probe 97.5 

Remote to Local (R2L) 96.0 

User to Root (U2R) 94.8 

Botnet 91.5 

 

The Improved RF model reliably detects DoS and Probe 

attacks, as evidenced by the high ROC-AUC. Because U2R 

and botnet attacks got lower scores, it’s possible that the model 

needs more feature engineering or a different way to find 

attacks in order to work better with these more difficult types. 

Table 4 illustrates that while IRF has a slightly longer 

training time, it maintains an efficient prediction time that is 

suitable for real-time detection in IoV. The high randomization 

in segments in ET makes it faster to train, but it compromises 

a minor degree of accuracy in comparison to IRF. 

 

Table 4. Latency and computational efficiency 

 

Model Training Time (s) 
Prediction Time 

per Sample (ms) 

ET 24.7 1.0 

RF 28.0 1.1 

Improved RF (IRF) 30.5 0.8 

 

Table 5 presents an informative overview of the trade-offs 

related to tree depth for various tree models, showcasing 

parameters such as detection rate, memory utilisation, and 

inference time. In IoV-based IDS, balancing performance and 

resource utilization is critical. Higher model settings (more 

trees, deeper trees) improve detection rates, but the much 

higher memory and processing requirements impact real-time 

performance and viability for resource-limited IoV devices. 

The current study shows that we can adjust the IRF model to 

strike a balance between 99.10% detection capabilities, 

reasonable processing needs, and 240 MB of memory, thereby 

enabling efficient and effective intrusion detection in IoV 

instances. 

 

Table 5. Trade-offs between performance and resource 

requirements of diffrerent 

 

Model 
Detection 

Rate (%) 

Memory 

Usage (MB) 

Inference Time 

(ms/Sample) 

ET 95.2 400 2.5 

RF 97.83 385 2.2 

Improved 

RF (IRF) 
99.10 240 1.1 

 

We can use statistical tests like t-tests or ANOVA on the 

CICIDS 2018 dataset to determine any notable variations in 

feature distributions across different classes of network traffic, 

such as normal vs. attack kinds, or the types of attacks 

themselves. To help choose features for the Intrusion 

Detection Models shown in Table 6, these statistical tests may 

help figure out which properties are most likely to change a lot 

depending on the type of traffic. This could help tell the 

difference between normal traffic and attack traffic. 

 

Table 6. Summary table of diffrerent features 

 
Feature Test Groups Compared p-Value 

Flow Duration t-test Normal vs. DoS 0.03 

Packet Size ANOVA 
Normal, DoS, Probe, 

Botnet 
0.001 

Source Bytes t-test Normal vs. Botnet 0.15 

Destination 

Port 
ANOVA 

All Traffic 

Categories 
0.05 

 

 

5. CONCLUSIONS 

 

Considering autonomous self-driving vehicles are 

susceptible to different network attacks, IDS are one of the 

most effective options for detecting network intrusions and 

securing vehicle networks. The presented work introduced an 

Intrusion Detection System (IDS) that utilizes tree-based ML 

techniques to detect threats. The proposed approach includes 

an IRF with ensemble learning algorithms, which reduces 

training and response times. The proposed technique’s 
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performance was evaluated on the CICIDS 2018 dataset, 

revealing an accuracy of 0.99, making it a viable alternative 

for handling CAD and multi-class classification tasks, 

according to the experimental results. With the detection rate 

of 99.10%, memory usage of 240 MB, and inference time of 

1.1 ms, the proposed system is more efficient. Future work will 

enhance the model’s adaptability to new intrusion types and 

improve computational efficiency for large-scale deployment 

in IoV ecosystems. 
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