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Autism Spectrum Disorder (ASD) represents a multifaceted neuro-developmental state that 

presents significant difficulties in its early identification and intervention. This survey 

explores the recent advancements and methodologies in ASD detection leveraging Machine 

learning (ML), Deep Learning (DL), and Neuroimaging techniques. An extensive survey of 

literature between 2018 and 2023 reveals a paradigm shift in diagnostic approaches, 

emphasizing the integration of ML algorithms, like Convolutional Neural Networks 

(CNNs), Support Vector Machines (SVMs), and decision-making models, in conjunction 

with various neuro-imaging modalities like Magnetic Resonance Imaging (MRI), 

Electroencephalography (EEG), and Functional Near-Infrared Spectroscopy (fNIRS). 

These modalities facilitate the identification of distinctive biomarkers, behavioral patterns, 

and neural correlates associated with ASD. The survey also looks at potential ethical issues, 

the importance of early detection using ML-driven methodologies, and the changing 

diagnostic tool landscape that aims to offer timely and individualized interventions for 

people with ASD. The combination of these data demonstrates the revolutionary effect of 

ML, DL, and neuro-imaging in improving the accuracy of ASD detection, allowing access 

to additional potent intervention methods and a more thorough understanding of the 

neurobiology underlying the condition. 
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1. INTRODUCTION

ASD is a complex and multifaceted neuro-developmental 

disorder that impacts the way individuals perceive, and 

interact with the world around them. Since every individual 

with autism has a unique experience, autism is classified as a 

spectrum disorder. While some autistic individuals can live 

well in the community without ongoing supervision or 

assistance, others have significant difficulties. The term 

"autism" is derived from the Greek word "autos", signifying 

"self". ASD presents a wide spectrum concerning severity, risk 

levels, and responses to treatment. It typically begins in early 

childhood and extends into adulthood. ASD is not just a 

personal or familial concern; it has significant societal 

implications due to the considerable support and resources 

required for individuals across the spectrum. Research 

indicates that identifying and addressing ASD during the early 

developmental stages is advantageous, as it minimizes 

treatment costs and duration [1]. 

A child or individual with autism receives a diagnosis 

primarily due to challenges in social interaction, 

communication (both verbal and non-verbal), and repetitive 

behaviors. ASD is increasingly common in the world we live 

in. The World Health Organization (WHO) approximates 

those one out of 68 children is affected by ASD. As a result, 

over 68 million individuals worldwide, including over 2 

million in the US alone affected with ASD. The rising 

prevalence underscores the urgent need for effective 

diagnostic and intervention strategies. For children with 

autism, the better the outcome, the earlier treatment starts. 

Early intervention can significantly enhance developmental 

trajectories, reduce the severity of symptoms, and improve 

overall quality of life. Analysis of autism has been done 

through the exploration of ML. Employing ML algorithms, the 

researchers classified the data of individuals with autism and 

those without it, considering significant features and data 

gathered from the parents' questionnaires [2]. 

The co-occurring conditions that ASD sufferers deal with 

are another interesting aspect that urges further investigation. 

Among the main life issues that an ASD manages are 

depression, anxiety, and sensory issues. Disorganization, 

forgetfulness, trouble finishing tasks, and a lack of focus and 

attention are some of the symptoms associated with ASD. 

ASD sufferers also struggle with poor decision-making 

abilities and a lack of emotional control, which has a 

detrimental impact on a variety of areas of life, such as 

relationships, work, and education. These comorbid 

conditions complicate the diagnosis and treatment of ASD, 

making it even more crucial to develop accurate and 

comprehensive diagnostic tools. Among the signs and traits 

that set an individual with ASD apart from someone without 

being language impairment, hyperactivity, and brain 

functioning [3]. 

Early on, ASD symptoms appear when a child shows 
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warning signs in meeting age milestones, the parents are the 

ones who first notice these symptoms. Identifying children 

with autism can be challenging for doctors because of the age 

factor. The onset of symptoms may occur in infancy, 

adolescence, or adulthood. The rate of autism is currently 

rising quickly on a global scale. Millions of dollars are spent 

annually on ASD treatment. This growing financial burden 

highlights the economic importance of early and accurate 

diagnosis and intervention. Boys were four times as likely as 

girls to receive an ASD diagnosis, as evidenced by the data, 

which shows that autism is more commonly observed in boys 

than in girls [4]. 

Various methods for discovering patterns in data and 

optimizing parameters rely on advanced technologies and 

clever reasoning. This comprises an organized approach to 

dissect the problem, identify the hidden patterns, eliminate 

extra information, and devise a solution. This causes us to 

refocus on the advantages of AI, ML, and DL which are 

collections of techniques and algorithms that enable a model 

to learn independently from available data [5]. ML and DL 

techniques offer a transformative potential for ASD diagnosis 

by providing tools that can handle large volumes of data and 

identify subtle patterns that might be missed by traditional 

methods. 

ML techniques can learn high-level relationships among 

different features by using multiple voxels as input, thanks to 

univariate techniques. These approaches can identify the 

distinctions between a disease and a control group, indicating 

a different approach to analysis. Several mental health 

disorders, such as schizophrenia and ADHD, can be accurately 

classified using ML techniques. There are four types of ML: 

semi-supervised, supervised, reinforcement learning, and 

unsupervised. Making sure the model's capacity to predict 

unseen data, utilizing the labelled dataset employed for 

training is the goal of the supervised method. Unlabelled data 

was exposed to an unsupervised learning model with minimal 

supervision [6]. By leveraging these techniques, researchers 

aim to develop models that can reliably predict ASD, 

facilitating early intervention and personalized treatment plans. 

 

1.1 Rationale for the timeframe: 2018-2023 

 

The decision to limit this review that the studies published 

between 2018 and 2023 was based on several critical factors. 

This period marks a significant phase in the development and 

application of ML and DL techniques, particularly in the field 

of ASD detection. Key advancements during this time have 

substantially influenced the accuracy, efficiency, and 

applicability of these technologies in diagnosing ASD. 

 

1.1.1 Key developments and shifts in ML/DL techniques 

(2018-2023) 

Advancements in ML/DL Techniques: Between 2018 and 

2023, there have been substantial improvements in ML and 

DL algorithms, including the development of more 

sophisticated neural network architectures, optimization 

techniques, and training methodologies. These advancements 

have enhanced the capability of models to process complex 

datasets, leading to more accurate and reliable ASD detection. 

• Increased Availability of Data: The past few years have 

seen a significant increase in the availability of large, 

high-quality datasets for ASD research. These datasets 

have enabled the training of more robust ML/DL 

models, improving their generalizability and 

performance in real-world scenarios. 

• Integration of Multi-Modal Data: Recent studies have 

increasingly utilized multi-modal data (e.g., text, 

images, videos) to improve the accuracy of ASD 

detection. This integration of diverse data types has 

been made possible by advances in ML/DL techniques 

that can handle and analyze multi-modal inputs more 

effectively. 

• Focus on Early Detection: The period from 2018 to 

2023 has seen a heightened focus on early detection of 

ASD, driven by the recognition of the significant 

benefits of early intervention. ML/DL models 

developed during this period have been specifically 

designed to identify early signs of ASD, contributing to 

more timely and effective interventions. 

• Interdisciplinary Collaboration: There has been an 

increase in interdisciplinary collaboration between 

computer scientists, clinicians, and researchers, leading 

to more comprehensive and impactful studies. This 

collaboration has facilitated the development of 

ML/DL models that are better aligned with clinical 

needs and practices. 

 

1.2 Motivation 

 

Exploring ASD using advanced technologies like ML and 

DL excites and motivates us to start our research. We'll use 

these technologies to study various data types such as text, 

images (like brain MRI scans, facial expressions, gestures), 

and videos. This new approach will help us gain valuable 

insights into ASD, making our research more comprehensive 

and innovative. Our excitement lies in the potential of these 

advanced techniques to revolutionize ASD analysis, 

enhancing our capacity to make a positive impact in this field 

and potentially transform the way ASD is understood and 

managed. 

 

1.2.1 Research questions and hypotheses 

To guide this review, the following specific research 

questions and hypotheses are addressed regarding the 

application of ML/DL for ASD detection: 

 

• Research Question 1: How effective are ML and DL 

algorithms in accurately diagnosing ASD compared to 

traditional diagnostic methods? 

▪ Hypothesis 1: ML and DL algorithms can achieve 

higher accuracy in diagnosing ASD by identifying 

subtle patterns and features that are often missed by 

traditional diagnostic methods. 

• Research Question 2: What are the most significant 

features and data types (e.g., text, images, videos) used 

by ML and DL models in detecting ASD? 

▪ Hypothesis 2: Combining multiple data types enhances 

ML and DL models in ASD detection by providing a 

comprehensive view. Key features include language 

and communication patterns, behavioral assessments, 

and clinical notes for text data; facial recognition, 

neuroimaging, and handwriting analysis for image data; 

and activity recognition, social interaction assessment, 

and speech patterns for video data. 

• Research Question 3: How do different ML and DL 

models compare in terms of performance metrics (e.g., 

accuracy, sensitivity, specificity) for ASD detection? 

▪ Hypothesis 3: Advanced DL models, such as CNN and 
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Recurrent Neural Networks (RNNs), outperform 

traditional ML models in detecting ASD due to their 

ability to capture complex patterns and temporal 

dependencies. 

• Research Question 4: What are the current limitations 

and challenges in applying ML and DL techniques to 

ASD detection, and how can they be addressed? 

▪ Hypothesis 4: Current limitations, such as data scarcity, 

variability in data quality, and model interpretability, 

can be mitigated through techniques like data 

augmentation, transfer learning, and explainable AI. 

 

This study primary goal is to examine different ML and DL 

methods for patient identification of ASD in addition to how 

previous studies incorporated them into model building. As a 

result, we are better able to understand how ML affects 

healthcare and how it can assist medical professionals by 

producing accurate predictions. Our primary contributions to 

this study are as follows: 

 

• An understanding of how ASD can be identified using 

ML and DL. 

• The thorough examination of ASD leveraging ML and 

DL models. 

• Discussed ASD-ML in addition to DL-based research 

conducted from 2018 to 2023 to stimulate more 

research in the previously mentioned field. 

• Comparison using various risk metrics, such as datasets, 

DL models, and ML models. 

 

This paper follows the structure outlined below. Basic 

information about ASD and its symptoms is provided in 

Section 2. This section also includes the presentation of the 

ML and DL along with their evaluation metrics. It shows the 

criteria used to select the information from different research 

studies. In Section 3, A variety of ML and DL algorithms have 

been employed to analyze ASD detection using a text dataset 

along with the table. Section 4 presents a thorough 

examination of ASD detection based on Image datasets using 

a variety of ML and DL algorithms combined with a tabular 

comparison. An analysis of the video dataset for ASD 

detection is covered in Section 5. Section 6 encompasses the 

DL and ML-based ASD Identification and its workflow. The 

conclusions from our examination of text, image, and video 

datasets about ASD disorders are presented in Section 7. 

 

 

2. ASD AND ML 

 

2.1 ASD signs and indicators 

 

People with ASD may struggle with having enjoyable 

distractions, dullness, as well as social situations. They may 

also struggle to focus in class or obey instructions. These 

characteristics could make daily tasks challenging. It is 

significant to remember that some people may display 

comparable symptoms even in the absence of an autism 

spectrum condition. 

Interaction and Social Communication Skills: 

• Does not recognize their name by the age of nine 

months. 

• Refuses to make eye contact. 

• Does not exhibit emotional expressions (happy, sad, 

enraged, etc.) by the age of nine months. 

• By the time they are 12 months old, they seldom ever 

make gestures (like waving goodbye). 

• By the time they are 15 months old, do not play well 

with others (for instance, display to you something they 

find enjoyable). 

• Shows no signs of emotional sensitivity at 24 months 

old. 

• By 36 months of age, neither initiates play nor engages 

in interactions with other kids. 

• Cannot complete the task in 60 months. 

 

Limited or Continual Interests or Behaviors: People across 

the spectrum could exhibit odd hobbies or behaviours. These 

differentiate ASD from conditions characterized solely by 

problems through social interaction and communication as 

shown in Figure 1. The following are some examples of 

pastimes and pursuits that may be limited or repetitive as a 

result of the autism spectrum condition: 

 

• Overreacts to little variations in the way his or her toys 

or other belongings are arranged. 

• Concentrates on specific portions of objects (wheels, 

for example). 

• Uses the same words or phrases repeatedly (Echolalia). 

• Animated by little changes. 

• Has peculiar sensory responses to sounds, tastes, scents, 

and touches in their environment. 

 

 
 

Figure 1. ASD symptoms 

 

There are other symptoms as well, such as irregular sleep 

and eating schedules, digestive issues including delayed 

language development, delayed motor development, delayed 

cognitive or learning development, constipation, anxiety, 

stress, excessive or lack of fear, etc. [7]. 

 

2.2 Reasons and potential hazards 

 

Although the precise causes of ASD are unknown, research 

has demonstrated that a person's development can be 

significantly influenced by both genetic and environmental 

factors, which may lead to the disorder. ASD has been 

connected to several circumstances, including having an older 

parent, a sibling with the illness, a particular genetic disorder 

(e.g., Down syndrome, fragile X syndrome), or extremely low 
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birth weight. 

 

2.3 Diagnosis approaches of ASD 

 

Healthcare providers can evaluate a patient's likelihood of 

having ASD by keeping an eye on their growth and behavior. 

By the time a child is two years old, an accurate diagnosis of 

ASD can usually be made. It's critical to receive a diagnosis as 

soon as possible [8]. 

Diagnoses in Early Childhood: There are two stages in the 

diagnosis process for young children: 

During healthy-child visits, general development screening: 

A paediatrician or other early childhood health care provider 

should examine every child. At the ages of nine, eighteen, 

twenty-four, or thirty months, all children should have a 

developmental delay screening. Additional screening may be 

done on a child if they are highly susceptible to developmental 

problems or ASD. Children with aging parents, ASD-related 

behavior, an ASD family member, Low birth weight, and 

genetic disorders are regarded as high-risk factors [9]. 

The physician may combine inquiries regarding the child's 

conduct with the results of an ASD assessment, and clinical 

findings of the child to assess the child. 

Further Diagnostic Assessment: Children with ASD must 

receive an early and precise diagnosis because it will highlight 

their unique skills and challenges. Using this information, 

parents can then choose the educational and behavioral 

therapy programs and services that will best support their 

child's success. 

The diagnostic evaluation will most likely consist of 

neurological and medical testing, a cognitive skills assessment, 

a language skills assessment, observation of the child's 

behavior, and other methods. 

Diagnosis of adolescents and older children: Parents and 

teachers of school-age children and adolescents frequently 

notice the first indications of ASD. Following an initial 

evaluation, the student may be recommended for further 

testing by the department of special education at the school, 

their regular physician, or an expert in ASD. 

Using subtleties in language can make it challenging to read 

silent signs like facial expressions, body language, and voice 

tone. Witter, humour, and metaphor may be difficult for older 

children and teenagers. They might also have trouble 

connecting with kids their age. 

Adult diagnosis: Adults with ASD have far more diagnostic 

challenges than children do. Among the indications and 

manifestations in adults is ADHD, ASD may also be present 

in people with anxiety disorders or ADHD. 

Adults who exhibit symptoms that align with ASD should 

consult a doctor to receive a diagnosis. As part of the 

examination, other family members or caregivers could be 

questioned to find out additional details regarding the person's 

early stages of development. This would subsequently enable 

a precise diagnosis. 

Therapeutic measures: Treatment for ASD should start as 

soon as it is practical after diagnosis. It's critical to start ASD 

treatment early due to appropriate resources and assistance, 

people may decrease their difficulties and learn new skills 

while making the most of their strengths. Working closely 

with a healthcare provider can help to find the ideal mixture of 

services and treatments. 

Pharmaceutical: A Pharmaceutical may be prescribed by a 

doctor to address particular symptoms. An individual with 

ASD may experience a reduction in various issues such as 

irritability, aggression, hyperactivity, repetitive behavior, 

anxiety, and sadness when taking medication [10]. 

Interventions in behavior, psychology, and education for a 

child with ASD may benefit from the recommendation of a 

medical professional who focuses on offering therapeutic 

services that are behavioral, psychological, educational, or 

skill-building. Siblings and other family members are often 

involved in these programs as well as caregivers. These 

programs may be helpful for individuals with ASD who wish 

to: Create social, language, and interpersonal relations and 

build on their advantages. 

 

2.4 Both DL and ML 

 

ML: ML is a sub-field of AI that mimics human decision-

making in machines, through the use of intricate 

computational algorithms, which seek to "train" machines to 

analyze big datasets in a fast, accurate, and effective manner. 

ML is typically divided into three major categories [11]. The 

subject of this paper is ML algorithms, both supervised and 

unsupervised. 

Supervised learning: Another name for this is predictive 

learning. In this instance, a labelled dataset is used to train an 

ML algorithm containing the required inputs as well as outputs. 

During training, the algorithm picks up notes that will aid in 

its prediction-making. 

Unsupervised learning: Unsupervised learning algorithms 

aren't trained on labelled datasets. Without human assistance, 

they must extract insights and hidden patterns from the data 

that has been provided. 

Reinforcement learning: Another name for reinforcement 

learning is reward-based learning. Here, the algorithm picks 

up new skills by interacting with the outside world, acting in 

certain ways, and observing the outcomes. Every right move 

will earn the algorithm a reward, and every wrong move will 

cost it a penalty [12]. 

DL: Natural language processing relies on Artificial Neural 

Networks (ANNs). DL techniques outperform ML algorithms 

and data analysis techniques in numerous situations. By 

including more neurons and layers, DL evolved from the 

application of neural networks. The middle layers take in data, 

process it through various functions, and then output the 

results to the layers below. The middle layers are referred to 

as hidden layers, while the first and last layers are called input 

and output layers, respectively. The layers in the DL 

architecture include input, convolutional, activation, fully 

connected, sequence, normalization, drop-out, pooling, 

combination, and output layers [13]. 

Metrics for evaluating the performance of models: 

Numerous metrics are available for evaluating the model's 

performance. It is important to select metrics carefully when 

evaluating the model's performance because: 

 

• All model comparisons and measurements are 

determined by metrics. 

• Ultimately, the selected metric will greatly influence 

the relative importance of various attributes. 

 

Confusion matrix, recall, F1-score, AUC, specificity, 

accuracy, and precision were the most often utilized metrics 

for assessing model performance [14].
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2.5 Determining data inclusion parameters 

 

This study thoroughly examined how ML techniques aid in 

the prediction of ASD. We created a keyword that is closely 

associated with ASD detection by employing the phrases 

below to widen the search parameters: (Text-based analysis 

OR Image analysis (Brain MRI OR Facial Expressions OR 

Gesture and Postures) OR Video analysis) AND (autism 

identification OR intervention OR detection OR diagnosis 

classification) AND (ML OR AI OR DL). We have compiled 

data from articles published by IEEE, Google Scholar, 

Springer, Scopus, and Elsevier between 2018 to 2023. 

As part of this survey, we examine the effectiveness of 

various ML and DL algorithms for diagnosing ASD disease by 

examining prior research conducted by researchers. An ML 

model is assessed by employing multiple metrics, including 

sensitivity, specificity, accuracy, and f1-score. The dataset and 

the ML model influenced the model's overall performance, 

regardless of the metric that was used. 

 
2.6 Taxonomy 

 

This research has shown that the current methods for 

detecting ASD have been thoroughly studied. 

Our main contributions to this survey: 
 

• A thorough analysis of the ML and DL models 

utilized in ASD is listed in this survey. 

• In this survey, the main performance evaluation 

metrics for ASD are examined, and the 

effectiveness of well-known ASD algorithms in DL 

and ML models is examined. 

• The ASD detection techniques used in recent years 

are detailed in this survey. 

• This is the first comprehensive analysis that we are 

aware of ML techniques for ASD. 

 

This breakdown represents the distribution of various 

methods or data types used in autism-related research as 

shown in Figure 2. Brain MRI comprises the largest 

percentage, representing approximately 49% of the 

methodologies utilized. Following that, text-based analysis 

makes up around 21%. Facial expression data accounts for 

roughly 19% of the methodologies. Gesture and posture 

recognition constitute a smaller portion, approximately 2%, 

while video analysis represents about 9%. 

 

 
 

Figure 2. Analysis of ASD dataset 

 

 
 

Figure 3. Taxonomy of this review
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The percentages illustrate the relative prominence or 

utilization of different data types or techniques in studies 

related to autism. Brain MRI holds the most significant share 

among the listed methods, while Gesture and Posture 

Recognition have the smallest share in the overall analysis of 

autism-related information or research. 

It encompasses a comprehensive framework categorizing 

crucial elements into four main divisions. As shown in Figure 

3 firstly, it partitions datasets into three primary categories: 

text, image, and video data. Under image data, further outlines 

involve brain MRI, facial expressions, and gesture/posture 

data. Secondly, the taxonomy includes the source of data 

divided into two groups: vision-based (mobile, web, and 

device cameras) and source-based (motion sensors and RF 

sensors). Thirdly, it outlines feature extraction, categorizing it 

into specific behavioral traits and brain activity patterns. 

Lastly, the taxonomy encompasses learning models, 

classifying them into ML models (SVM, RF, KNN, LR, RL, 

clustering analysis) and DL models (CNN, RNN, LSTM). This 

taxonomy provides a structured and comprehensive 

framework for understanding the diverse components 

involved in autism detection methodologies, facilitating a 

systematic analysis of the field's research landscape. 
 

 

3. ASD IDENTIFICATION USING ML AND DL 
 

ML and DL techniques find prominent applications in the 

present day for various ASD detection. In this section, a 

detailed analysis is given for Text-based autism disease 

datasets using various ML and DL algorithms. 
 

3.1 The function of ML and DL in text-based analysis 
 

Shin et al. [15] present an innovative DL-based method for 

the early identification of children's ADHD, as shown in Table 

1 particularly those with coexisting ASD. They employ fNIR 

data recorded during handwriting tasks performed by both 

ADHD children with ASD and TD children. Their hybrid 

model, combining Bidirectional LSTM and CNN, achieves 

remarkable results, with an Area Under the receiver operating 

characteristic Curve (AUC) of 0.938, sensitivity of 89.7%, 

specificity of 97.8%, F1-Score of 93.3%, and classification 

accuracy of 94.0%. These findings underscore the model's 

potential as an easy-to-use, non-intrusive, and automated 

method for diagnosing ADHD in kids, even in cases where it 

coexists with ASD, addressing a critical need in 

neurodevelopmental disorder diagnosis and intervention. 

Raj and Masood [16] proposed the growing application of 

ML in medical research, this paper delves into the potential of 

Naïve Bayes, SVM, LR, KNN, Neural Networks, and CNN 

for anticipating and analyzing ASD across different age 

groups. Researchers evaluate these techniques on three 

different non-clinical datasets for ASD: one connected to 

children (292 instances, 21 attributes), another associated with 

adult subjects (704 instances, 21 attributes), and a third 

focusing on adolescents (104 instances, 21 attributes). After 

implementing a range of ML techniques and addressing absent 

data, the findings suggest that prediction models based on 

CNN exhibit superior performance across these datasets, 

achieving remarkable accuracies of 99.53% Screening for 

ASD in Adults, 98.30% for Children, and 96.88% for 

Adolescents, thus holding promise for enhancing Screening 

and diagnosis of ASD. 

Akter et al. [17] suggested to advance our understanding of 

ASD and its early detection, we collected datasets 

encompassing individuals across various age ranges, including 

young children, teens, adults, and toddlers. Employing several 

feature transformation techniques, including sine, Z-score, and 

logarithmic functions, we processed those datasets. 

Subsequently, we applied a range of classification techniques 

to these altered ASD datasets and assessed how well they 

performed. Our findings indicated that the SVM exhibited the 

most promising results regarding the toddler dataset, and 

Adaboost proved the most effective regarding the kids' dataset. 

In contrast, Generalized Linear Model Boosting (Glmboost) 

performed best regarding the teenager dataset, and Adaboost 

was most successful in the case of an adult dataset. Notably, 

the changes to the features that yielded the most accurate 

groups were the sine function about toddlers and the Z-score 

for kids and adolescents. Following Several feature selection 

methods in these analyses were applied to the datasets 

transformed with Z-score, aiming to determine the key risk 

elements associated with ASD regarding individuals of 

different age groups. The outcomes of these analytical 

methods suggest the fact that with appropriate optimization, 

ML techniques may offer reliable estimations of the status of 

ASD, paving the way for the possible use of these models for 

ASD early detection. 

Hasan et al. [18] address the challenge of the early 

identification of ASD, emphasizing its significant impact on 

patient's daily lives. They propose a comprehensive 

framework for evaluating various ML techniques in ASD 

detection, employing four distinct Feature Scaling (FS) 

strategies and eight ML algorithms on four standard ASD 

datasets covering different age groups. Through extensive 

experimentation and statistical evaluation measures, 

researchers identify the most effective FS strategies and 

classification algorithms for every dataset, achieving notably 

high accuracies, such as 99.25% for Toddlers using Ada Boost 

(AB) with normalizer FS. Additionally, the researchers 

conduct a thorough feature importance analysis using various 

Feature Selection Techniques (FSTs) and argue that their 

framework provides valuable insights for healthcare 

practitioners in ASD screening. Overall, the proposed 

framework exhibits promising results for early ASD detection, 

suggesting its potential utility in clinical settings. 

Vignesh et al. [19] have revealed language and social 

deficits in individuals with ASD, while proficiency 

development remains an underexplored area. The significance 

of comprehensive support mechanisms, including information 

provision, advocacy, early interventions, school support, 

behavioral assistance, and individualized care, is underscored. 

Moreover, through its Pledges program, the National Autistic 

Society provides practical strategies for neurotypical 

individuals across the spectrum of autism. To advance the 

understanding as well as the management of ASD, 

computational techniques have been employed. Notably, the 

use of classification algorithms and Neural Networks has 

yielded promising results, with accuracy scores for different 

algorithms as follows: Naive Bayes at 97.27%, SVM and C4.5 

both at 100%, and Multi-Layer Perceptron at 100%. These 

findings highlight the potential of advanced computational 

methods in enhancing our comprehension of and support for 

ASD. 

Vakadkar et al. [20] studied genetic and environmental 

factors, Early intervention and detection are essential for 

enhancing the conditional results. Currently, clinical 

standardized tests are the primary means of diagnosing ASD, 
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but they are associated with lengthy diagnostic timelines and 

increased medical expenses. To enhance diagnostic precision 

and efficiency, ML techniques have been integrated alongside 

conventional methods. Models like SVM, RFC, NB, LR, and 

KNN have been utilized for datasets, culminating in models of 

prediction designed to identify the susceptibility of children to 

ASD during their early developmental stages. Notably, the 

study reports that Logistic Regression yields the highest 

accuracy among the applied models, offering a potential 

avenue for streamlining the diagnostic process for ASD. 

Shin et al. [21] concentrate on the utilization of ML-based 

analysis of handwriting patterns for the detection of ADHD in 

kids, particularly those concurrently identified as having ASD. 

The researchers highlight the concerning rise in ADHD 

prevalence among children and the complexities introduced by 

some conditions like ASD within the children and adolescents. 

The previous research efforts have explored computational 

tools for ADHD detection, researchers stand out for their 

innovative approach of using handwriting patterns as 

language-independent diagnostic markers. gathered samples 

of handwriting from 29 kids in Japan, including 14 with 

ADHD and coexisting ASD with 15 healthy kids, who were 

asked to draw lines on a pen tablet that are periodic (PL) and 

zigzag (ZL), with each pattern three times over. From the raw 

datasets, 30 statistical features were extracted and examined 

through the use of sequential forward floating search (SFFS) 

to identify the optimal feature combinations. Subsequently, 

these particular attributes were input into seven algorithms 

based on ML to detect ADHD in children with ASD. Therefore, 

the results demonstrated the Random Forest (RF)-based 

classifier's outstanding performance in predicting ADHD in 

kids with ASD according to periodic lines (PL) handwriting 

patterns, achieving an accuracy level of 93.10%, recall level 

of 90.48%, precision level of 95.00%, f1-score of 92.68%, and 

an AUC of 0.930. These conclusions underscore the potential 

to utilize handwriting analysis in the context of a powerful tool 

for preliminary ADHD detection, particularly in the cases of 

comorbid conditions, thereby enhancing diagnostic 

capabilities within children and adolescents. 

Jaiswal et al. [22] have focused on utilizing large medical 

datasets and employing dimensionality reduction techniques 

such as chi-square tests, mutual information, and light gum to 

identify relevant features associated with ASD. Various ML 

algorithms, including Naïve Bayesian, K Nearest Neighbour, 

and Decision Trees, have been explored for classification, with 

Decision Trees consistently demonstrating high performance, 

achieving a score of 97.47%. However, future research should 

prioritize comprehensive model evaluation, ethical 

considerations in medical data usage, clinical validation, and 

the interpretability of ML methods to ensure their utility and 

reliability in aiding healthcare professionals in early ASD 

diagnosis. 

Zhao et al. [23] studied that the existing diagnostic methods 

for ASD rely a lot on time-consuming and labor-intensive 

informant evaluations of patient behavior. To expedite the 

diagnostic process and enhance Accuracy, ML techniques 

have been put forth to investigate the viability of diagnosing 

ASD using a small collection of characteristics taken from 

kinematic, behavioral, and neuroimaging data. While 

restricted and repetitive behavior (RRB) is a fundamental 

characteristic of ASD, limited research has explored the 

potential of using restricted kinematic features (RKF) to 

determine the disorder. This paper addressed this gap by 

recruiting Twenty-three children who had TD, and twenty 

children who had high-functioning autism. They performed a 

motor task designed to elicit highly variable movements, and 

RKF indices were computed, including entropy and a 95% 

range for acceleration, velocity, and amplitude of motion. This 

study employed five ML classifiers, including SVM, Linear 

Discriminant Analysis (LDA), DT, RF, and KNN. The 

outcome indicates that the KNN algorithm (k=1) achieved four 

kinematic features that were used to achieve the highest 

classification accuracy (88.37% accuracy, 91.3% specificity, 

85% sensitivity, and 0.8815 AUC). This paper underscores the 

potential of RKF in robustly identifying ASD and suggests that 

ML, applied to a range of features encompassing genetics, 

neuroimaging, psychology, and kinematics, could challenge 

current diagnostic criteria and potentially facilitate automated 

and objective ASD diagnosis. 

Thabtah [24] as mentioned in Table 1 studied the lengthy 

waiting times for ASD diagnoses are exacerbated by the 

current time-consuming and cost-ineffective diagnostic 

procedures. The increasing prevalence of ASD cases 

worldwide underscores the urgency for the development of 

accessible and efficient screening methods. In response to this 

need, this article presents an innovative mobile application, 

AS Tests, designed to provide a quick, simple, and readily 

available ASD screening tool. Here the mobile app aims to 

benefit both users and the healthcare community by 

facilitating early identification of ASD. It offers a 

comprehensive approach by including separate tests tailored 

for toddlers, kids, teens, and adults, accessible in 11 different 

languages, thereby reaching a broader and more diverse 

audience. What sets the AS Tests app apart is its potential to 

collect valuable data on ASD cases and controls, with an initial 

dataset comprising over 1400 instances. Feature and predictive 

analyses highlight the utility of small sets of attributes of 

autism, enhancing screening efficiency and accuracy. 

Moreover, ML classifiers show promising outcomes about 

accuracy, specificity, and sensitivity rates, promising an 

important development in the screening and early diagnosis of 

ASD. 
 

3.1.1 Observation 

Future work in the realm of ASD detection using text 

datasets could focus on several key areas to further advance 

the accuracy and practicality of ML techniques. Firstly, 

extending the variety and range of text data sources, including 

non-traditional sources like social media interactions and 

diverse linguistic patterns, can enrich the dataset and offer a 

more nuanced understanding of ASD-related linguistic 

behaviours. This broader dataset could encompass diverse 

demographics, cultural contexts, and age groups, providing 

more representative and comprehensive training data for ML 

models. Secondly, the advancement and implementation of 

more sophisticated NLP techniques, including fine-tuning pre-

trained language models and developing specialized models 

for ASD-specific linguistic markers, can enhance the 

extraction of contextually relevant information from text data. 

Additionally, focusing on robustness and generalizability by 

validating models across varied demographics and datasets, 

along with fostering interpretability and explainability in the 

models, will strengthen their clinical applicability and aid in 

understanding the linguistic characteristics associated with 

ASD more comprehensively. Collaboration between 

interdisciplinary experts in linguistics, psychology, ASD 

research, and ML will be vital to ensure a holistic approach, 

ethical considerations, and the effective translation of research 

findings into clinical practice. 
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Table 1. Parametric assessment of ASD detection methods using text-based dataset 

 
Methodology Objective Performance Limitations 

fNIRS dataset 

CNN, Bi-LSTM [15] 

fNIRS signals' efficacy as a biomarker for 

identifying ADHD comorbidity in kids with ASD, 

with the final objective of aiding medical 

professionals with the diagnosis and facilitating 

the development of personalized Treatments. 

Accuracy=94% 

Additionally, we'll use ML and work to 

create fresh DL-based algorithms that can 

identify ADHD with coexisting 

comorbidities. 

ASD Screening Dataset from UCI 

KNN, SVM, LR, NB, 

NN & CNN [16] 

Explore the effectiveness of diverse ML 

techniques for predicting ASD across various age 

groups (children, adolescents, adults) using 

publicly available datasets, aiming to identify the 

most suitable method for ASD screening. 

Accuracy: 99.53%, 

98.30%, and 96.88% in 

adults, children and 

adolescents. 

- 

ASD Datasets Relating 

to Toddlers, Children, Adolescents, and Adults from UCI 

Adaboost, CART, MDA, 

FDA, SVM, Glmboost, 

PDA, and C5.0 [17] 

Assess feature transformation methods, 

classification techniques, and feature selection 

approaches on ASD datasets across various age 

groups, highlighting the potential of optimized 

ML models for early ASD detection. 

Accuracy=99.30% 

The associated limitations of this approach 

will be better identified in the future, and 

additional data will be analysed to enhance 

the detection of ASD and related 

neurodevelopmental disorders. 

ASD Detection Dataset for Toddlers from Kaggle 

Ada Boost with 

Normalizer Feature 

Scaling Strategies [18] 

Identify the most effective classifiers and feature 

scaling methods for accurate ASD prediction & 

and emphasize the importance of detailed feature 

importance analysis to support medical 

professionals in the screening of ASD cases and 

claim that the framework offers promising results 

in comparison to current methods for early ASD 

detection. 

Accuracy=99.25% 

To enhance the detection of ASD and 

other neurodevelopmental disorders, we 

plan to gather more information about 

ASD in the future and build a more 

comprehensive prediction model that can 

be used by individuals of any age. 

Mental Imbalance Dataset from Kaggle 

NB, SVM, C.5, 

Multilayer Perception 

[19] 

Addressing ASD challenges in language, and 

social interaction via ML, especially neural 

networks for prediction, emphasizing societal 

initiatives like the National Autistic Society's 

Pledges for aiding autism through behavioral 

modifications. 

Accuracy=100% 

Additional investigation will focus on the 

long-term effects of these drugs and the 

nuances surrounding their administration. 

Diagnosis Dataset from Kaggle 

SVM, RF, NB, LR, and 

KNN [20] 

The diagnostic process and determining 

susceptibility to ASD in its early stages, to 

increase accuracy and cut down on diagnosis 

time. 

Accuracy=97.15% 

Planning to use larger datasets for better 

generalization and employing DL 

methods, including classification and 

CNNs, to bolster system robustness. 

Real-Time Dataset 

Techniques Objective Performance Limitations 

(The Interview Review 

Board (IRB) gave their 

approval) [21] 

Precise classification and providing evidence for 

improved early detection of comorbidities in 

ADHD. 

F1-score: 92.68%, 

Precision: 95.00%, 

Accuracy: 93.10%, 

Recall: 90.48%, 

AUC: 0.930 

In Future work, DL-based algorithms will 

be used to identify children with 

coexisting ASD and ADHD. 

KNN, DT, and NB [4] 

(Americans who live in 

the United States provide 

the data. NSCH is the 

publisher of the dataset 

[22]) 

Employ ML models on high-dimensional medical 

data for ASD diagnosis, utilizing feature 

extraction to reduce dimensions, enhance 

classifier performance, and identify the optimal 

classifier. 

Accuracy=97.47% 

Our future research will use multimodal 

data to predict various 

neurodevelopmental disorders. 

SVM, LDA, DT, RF, 

and KNN [23] 

(Collected by using a 

Leap Motion device and 

two sticks with a string 

tied between them as the 

experimental apparatus) 

Identify the most relevant features that can 

differentiate between the two groups and assess 

the effectiveness of different ML algorithms in 

categorizing the participants. 

Specificity=91.3%, 

Accuracy=88.37%, 

AUC=88.15% 

Subsequent research endeavours may also 

focus on categorizing individuals with 

ASD apart from other groups, including 

distinguishing between ASD and ADHD. 

NB, LR [24] 

(The ASD Tests app was 

used to gather instances 

from individuals who 

self-administered the 

screening tests for 

autism) 

Evaluate the performance of the ASD Tests app in 

screening ASD using ML algorithms and improve 

the effectiveness of screening for ASD and 

possible diagnosis. 

NA 

In short, automated ML technology will 

replace the traditional diagnosis process of 

handcrafted rules to improve ASD 

screening. 
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4. IMAGE ANALYSIS EXPLORED THROUGH ML 

AND DL FRAMEWORKS 

 

4.1 The role of ML and DL in brain MRI 

 

Numerous studies suggest that children and adolescents 

diagnosed with autism tend to exhibit an enlarged 

hippocampus, the brain region accountable for memory 

formation and storage. However, it remains uncertain whether 

this variation persists as individuals transition into 

adolescence and adulthood [25, 26]. 

The dimensions of the amygdala appear to vary between 

individuals with and without autism. However, research 

conducted by various laboratories has produced conflicting 

findings on this matter. According to researchers, Individuals 

diagnosed with autism may exhibit a smaller amygdala 

compared to those without autism. It's also suggested that their 

amygdala might be smaller specifically when they also 

experience anxiety [27]. According to research, as shown in 

Figure 4, children with autism exhibit early-stage amygdala 

enlargement with the difference gradually decreasing [28]. 

A review of imaging studies revealed that the cerebellum, 

the brain structure located at the base of the skull, has less 

brain tissue in autistic individuals [29]. Researchers know that 

the cerebellum plays a role in both social interaction and 

cognition, in addition to its long-held belief that it primarily 

controls movement. People with and without autism have 

different patterns of thickness in the outer layer of the brain. 

This variation corresponds to changes in a single neuronal sub-

type during development. 

Raja and Kannimuthu [30] proposed the context of ASD 

diagnosis and neuroimaging methods reveals a predominant 

reliance on fMRI techniques as shown in Table 2, often with 

limited dataset sizes, yielding high accuracy but limited 

generalizability. While traditional supervised ML algorithms 

like SVM show promise in handling unstructured data, they 

are hindered by limited training data. In contrast, DL 

approaches, particularly Generative Adversarial Networks 

(GANs), are gaining traction due to their capacity to 

automatically learn patterns and generate new data examples. 

However, their application in ASD prediction is relatively 

unexplored. This paper introduces a new conditional 

generative adversarial network (cGAN) for ASD prediction, 

demonstrating superior accuracy compared to traditional 

methods, with a 74% improvement, and remarkable efficiency, 

requiring only around 10 minutes for training even on large 

datasets. This paper underscores the potential of DL, 

specifically cGANs, in ASD diagnosis and rehabilitation. 

Sabegh et al. [31] studied the realm of diagnosing diverse 

mental illnesses, particularly ASD, and the existing reliance 

on behavioral symptom observation presents challenges, 

especially in children. This study seeks to enhance diagnostic 

accuracy through the integration of sophisticated and 

expandable ML techniques, specifically DL networks. They 

are leveraging resting-state fMRI information from the 

ABIDE1 repository encompassing seventeen different 

imaging locations and an extensive preprocessing pipeline is 

implemented, involving registration of data on atlases, 

extraction of brain region average time series, and 

computation of correlation matrices. The method of selecting 

chi-square features is then employed to identify the most 

critical features within these matrices. An innovative CNN 

architecture, featuring Convolutional layers with two 

dimensions is proposed for data analysis and classification. 

This model's evaluation encompasses three distinct 

experiments based on different datasets and atlases. 

Remarkably, the highest accuracy achieved in these 

experiments stands at 73.53%, surpassing previous attempts at 

categorizing ASD against standard controls. This research 

introduces a pioneering CNN-based model capable of 

automatic ASD classification, demonstrating strong 

classification performance. Unlike prior studies that focused 

on limited data sites, this work capitalizes on data from all sites, 

thereby enhancing the generalizability and potential clinical 

utility of the proposed model. 

 

 
 

Figure 4. Parts of the brain affected by autism 

2475



Ulaganathan et al. [32] present a novel approach for ASD 

classification using deep RL methods, namely deep Q learning 

network (DQN) and Spinal Net, with the training of 

hyperparameters facilitated by a unique training optimizer, the 

Driving Training Political Optimizer (DTPO). The process 

commences with image acquisition from a dataset, followed 

by adaptive Wiener filtering and ROI extraction. Subsequently, 

the core region is identified using the DTPO. The 

classification hinges on these extracted features. Furthermore, 

the study's classification performance is evaluated, and a 

fusion process between DQN and Spinal Net, aided by 

Czarnowski similarity, results in ASD classification. The 

assessment encompasses various metrics, including 

impressive values of 0.907, 0.958, 0.936, 0.536, 0.732, 0.488, 

and 0.409, respectively, for accuracy, sensitivity, specificity, 

mean-squared error, root-mean-squared error, R, and mean 

absolute error. This research highlights the potential of deep 

RL networks in effectively categorizing ASD, offering a 

possible path toward improvement in early diagnosis and 

intervention. 

Lei et al. [33] studied that the accurate diagnosis of ASD is 

essential to ensure optimal prognosis and treatment, and 

Functional Brain Networks (FBNs) built from fMRI data have 

gained popularity as a diagnostic tool. However, existing 

model-driven approaches for FBN construction often fail to 

record any non-linear connections that might exist between the 

diagnostic labels and the data. Furthermore, the conventional 

separation of FBN construction and disease classification in 

most studies leads to substantial inter-subject variability in the 

calculated FBNs and lowers the next group's statistical power 

comparisons. To get beyond these restrictions, this study 

introduces a novel approach known as the deep unrolling-

based spatial constraint representation (DUSCR) method. It 

combines it with a convolutional classifier to produce an end-

to-end architecture for the identification of ASD. This method 

utilizes a proximal gradient descent algorithm to solve the 

Spatial Constraint Representation (SCR) and unrolls using the 

deep unrolling algorithm, it is incorporated into deep networks. 

Putting things into categories is achieved through a 

convolutional prototype learning model. The method's 

efficiency was assessed on the ABIDE I dataset, 

demonstrating an important enhancement in classification 

accuracy and model performance, thus offering a promising 

solution for improving ASD diagnosis and understanding the 

complex relationships within functional brain networks. 

RethikumariAmma and Ranjana [6] aims to facilitate early 

ASD diagnosis by leveraging neuroimaging functional images. 

This method employs a DL approach to discern whether 

individuals with ASD, obtain strong characteristics from these 

neuroimaging data. It evaluates the effectiveness of images 

with prior processing in categorizing neuronal patterns, with 

the ultimate goal of enabling early diagnosis for long-term 

health management. Functional connectivity analysis is used 

to identify crucial brain areas using the box neighbourhood 

search algorithm as its foundation. To diagnose ASD, a Deep 

Neuro-Fuzzy Network (DNFN) is utilized, and Feedback-

Henry Gas Optimization (FHGO) is used to train the DNFN. 

The results of this FHGO-DNFN approach demonstrate 

exceptional performance, achieving a high accuracy rate of 

93.3%, along with a sensitivity of 94.7% and specificity of 

91.4%. This promising methodology can potentially enhance 

early ASD detection, thereby advancing clinical practices and 

improving the long-term well-being of individuals with ASD. 

Sherkatghanad et al. [34] focus on automating the detection 

of ASD by harnessing the power of CNNs and a brain imaging 

dataset. We achieved this by identifying ASD patients within 

the ABIDE, a multi-site dataset that includes fMRI resting-

state data. Our approach leveraged operational 

interconnectedness patterns to group individuals with ASD 

and control subjects effectively. Our Results from experiments 

show that our model accomplishes a 70.22% accuracy rate 

utilizing the brain's CC400 functional parcellation atlas and 

the ABIDE I dataset. Notably, our CNN model is 

computationally more efficient than state-of-the-art methods 

because it uses fewer parameters. This model, now poised for 

further testing with larger datasets, holds the capacity to act as 

a valuable tool regarding the preliminary screening of people 

with ASD. 

Nogay and Adeli [35] introduced an automatic diagnostic 

structural MRI-based model for ASD. The model comprises 

two essential stages: the initial preprocessing stage, and the 

subsequent diagnostic phase. The preprocessing stage entails 

the removal of unclear images, followed by the application of 

the Canny Edge Detection (CED) algorithm to delineate image 

edges, cropping the images to the required dimensions, and 

augmenting the dataset by upscaling the images while 

preserving essential image characteristics. Notably, data 

augmentation is applied meticulously to avoid any bias 

introduced into the data, ensuring its integrity for both ASD 

and TD groups. Phase two involves the application of the grid 

search optimization (GSO) algorithm to fine-tune the deep 

CNN by optimizing hyperparameters. Remarkably, this 

approach achieves a diagnostic success rate of 100% for ASD, 

as evidenced by rigorous five-fold cross-validation. The 

model's robustness is further validated by comparisons with 

current research and extensively utilized pre-trained models, 

establishing its superiority in ASD diagnosis based on MRI. 

This groundbreaking research offers a promising method for 

accurate and reliable automated ASD diagnosis, which is 

based on a substantial leap forward within the domain of 

neuroimaging and diagnosis of ASD. 

Bhandage et al. [36] studied that ASD diagnosis is achieved 

through a novel approach based on the Adam War Strategy 

Optimization (AWSO) Deep Belief Network (DBN). The 

algorithm used by AWSO is developed by integrating the War 

Strategy Optimization (WAO) and Adam optimizer, 

presenting a simpler yet highly effective approach that 

outperforms existing methods. The preprocessing stage 

involves extraction of the Region of Interest (ROI) and 

anisotropic diffusion to eliminate image noise. Furthermore, 

the Algorithm for Box Neighbourhood Search that Uses 

Functional Connectivity is employed to extract crucial brain 

regions, enhancing ASD classification performance. The 

classification itself is carried out through the DBN, with the 

algorithm used by AWSO optimizing the DBN's learning 

process. The AWSO-DBN analysis was conducted on 

ABIDE-I as well as ABIDE-II datasets, with the AWSO-DBN 

demonstrating exceptional work, particularly using the dataset 

ABIDE-I, where it attained a high degree of sensitivity (0.930), 

accuracy (0.924), and specificity (0.935). These results 

showcase the promise of the AWSO-DBN algorithm as a 

powerful instrument for accurate ASD classification, 

underscoring its potential influence on the field of diagnosing 

ASD. 

Parui et al. [37] studied a novel approach for constructing 

functional connectivity networks using rs-fMRI data. By 

extracting time series data from fMRI and calculating 

correlation matrices that represent the interactions among 
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various brain regions, the study leverages different brain 

atlases. The proposed technique incorporates the idea of 

majority voting based on atlas-specific outcomes, resulting in 

a commendable ASD detection accuracy of 84.79%. This 

approach underscores the potential of AI-driven neuroimaging 

techniques in advancing our understanding of ASD and 

enhancing diagnostic accuracy, thus supporting early 

intervention and assistance for people with ASD. 

Yin et al. [38] suggested using a semi-supervised 

autoencoder (AE) approach introduced for the diagnosis of 

autism, utilizing functional connectivity (FC) patterns derived 

via fMRI data in the resting state. By combining unsupervised 

AE training utilizing networks for supervised classification, 

the proposed semi-supervised learning framework facilitates 

simultaneous training of an autoencoder and a neural network-

based classifier. This approach, in contrast to training these 

components separately, allows the latent feature 

representation to be tailored to the goal of classification, 

resulting in enhanced diagnostic performance for autism. On 

the ABIDE I database, cross-validation is used to evaluate the 

model, demonstrating improved classification performance. 

The results highlight the utility of the suggested framework for 

semi-supervised learning for integrating unlabelled fMRI 

information, leading to improved classification accuracy and 

feature learning in the context of ASD diagnosis. 

Ahammed et al. [39] explore the application of ML for ASD 

identification, focusing on overcoming limitations associated 

with using fMRI and large datasets. The proposed innovative 

architecture that uses the Bag-of-Features model as a basis, 

presents a comprehensive approach to ASD classification. 

This approach involves preprocessing images, extracting 

speeded-up robust features (SURF), creating a visual 

vocabulary through K-Means clustering, and encoding Bag-

of-Features using quantization and coding methods. The study 

highlights the preference for the SVM as the ASD classifier. 

The evaluation includes three datasets, encompassing ABIDE 

fMRI pre-processed images and the subject's face images. The 

experimental results indicate that SVM performs much better 

when using the Bag-of-Feature approach, which achieves the 

highest accuracy of 81% and specificity of 86%. This suggests 

that ML classifiers using extractors for bags of features have 

the potential to reinforce ASD diagnosis, particularly in 

clinical and medical contexts, in contrast to alternative cutting-

edge techniques. 

Itani and Thanou [40] discuss ongoing research in ASD and 

the application of network science and contemporary ML to 

gain an improved comprehension of the neuropathology of 

ASD and the emergence of diagnostic aids. This research 

specifically focuses on classifying individuals with ASD and 

neurotypical incorporating an understanding of the structure 

and function of the brain. The brain is represented as a graph, 

with rs-fMRI signals mapped to the graph's nodes. Graph 

Signal Processing (GSP) tools are applied to analyse the 

signals' frequency composition, creating discriminative 

features by expanding the Fukunaga-Koontz transformation. 

These features are used to instruct a decision tree for 

categorization, resulting in an interpretable diagnostic model 

that outperforms existing methods, as demonstrated in the 

ABIDE gathering. Predictive marker analysis highlights the 

role of the temporal and frontal lobes in the diagnosis of ASD, 

aligning with prior discoveries in the literature on 

neuroscience. This research emphasizes the importance of 

considering structural and functional brain information for 

gaining insights into the complexity of ASD neuropathology. 

Additionally, the study presents test accuracies achieved by 

various methods with standard deviation intervals for different 

training set sizes. 

Zhan et al. [41] studied the field of psychiatric disorders, 

particularly ASD, Obsessive-Compulsive Disorder (OCD), 

and ADHD, there exists an ongoing debate regarding precise 

diagnosis as well as the potential convergence of their 

anatomical foundations. A recent study employed non-

invasive neuroimaging techniques in both human subjects and 

primates that are not humans to investigate neural markers 

linked to DSM-5 diagnoses and quantitative indicators of the 

severity of symptoms. Diagnostic classifiers were built using 

resting-state functional connectivity data from both wild-type 

and methyl-CpG binding protein 2 (MECP2) transgenic 

monkeys, which were then applied to four human datasets 

(OCD local institutional database: N=186; ADHD-200 sample: 

N=776; ABIDE-I: N=1,112; ABIDE-II: N=1,114). This 

innovative approach revealed nine key brain regions that are 

primarily found in the frontal and temporal cortices, which 

were instrumental in informing diagnostic classifications for 

ASD and OCD, although not for ADHD. Notably, models 

based on the functional connections of specific brain regions 

predicted symptom severity scores in individuals with ASD 

and OCD. These results hold significant promise regarding the 

development of diagnostic indicators for OCD and ASD, as 

well as for gauging the severity of symptoms. Moreover, they 

suggest potential avenues for enhancing the precision and 

effectiveness of clinical evaluations in the field of psychiatric 

disorders by leveraging machine-learning models. 

Liu et al. [42] studied the context of ASD, characterized by 

social deficits and repetitive behaviours, the absence of 

reliable biomarkers has been a longstanding challenge. 

Numerous efforts have been dedicated to identifying 

biomarkers using resting-state fMRI. Nevertheless, a 

substantial amount of information is lost in feature selection 

because these studies frequently ignore strong group 

relationships. To resolve this problem, a novel approach is 

proposed for ASD diagnosis, utilizing the elastic net method 

utilizing rs-fMRI data. The key advantage of the method of 

elastic networks is its capacity to bypass the need for upfront 

feature selection, saving time and enhancing algorithm 

efficiency. Experimental outcomes conducted on the open 

database ABIDE affirm the efficacy as well as the utility of the 

suggested technique, marking a promising step toward 

addressing the biomarker challenge in ASD diagnosis. 

Mostafa et al. [43] tackled the challenging problem of 

diagnosing ASD by introducing a novel approach that relies 

on brain network-based features extracted from functional 

MRI data. By defining 264 raw brain features using network 

eigenvalues and centralities and employing feature selection 

techniques, they reduced the dimensionality to 64 

discriminative features. Training ML models, particularly 

Linear Discriminant Analysis, utilizing the ABIDE dataset, 

achieved a noteworthy classification precision of 77.7%. This 

outperformed existing methods and shows promise for 

improving based on ASD diagnosis neuroimaging information, 

addressing the critical need for more effective diagnostic tools 

in the field. Further validation and replication studies are 

essential to confirm the robustness of these findings. 

Wang et al. [44] focus on addressing the challenge of 

identifying biomarkers for accurate diagnosis of ASD using 

fMRI information from several sites. Given the variability 

across sites in multi-site data, the research introduces a multi-

site adaption framework based on low-rank representation 
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decomposition (maLRR). This framework aims to create a 

standard low-rank representation for information from various 

websites, thus reducing variations in data distributions. The 

low-rank representation method adapts the data to a shared 

space by considering one site as the target domain and the 

others as source domains. This adaptation process minimizes 

the differences between the source and target domains. The 

results from evaluations on multi-site fMRI data that is both 

real and artificial suggest that the proposed technique 

outperforms numerous cutting-edge domain adaptation 

techniques, offering promise for more accurate ASD 

identification and early intervention. 

Fredo et al. [45] aimed to distinguish between TD 

individuals and those with ASD by analyzing fMRI. They used 

data from 320 participants for training and 80 for validation, 

sourced from the ABIDE-I, and ABIDE-II. The fMRI images 

were pre-processed through a standard pipeline, and 

Functional Connectivity (FC) matrices were computed 237 

regions of interest (ROIs) were used in the cortex, subcortex, 

and cerebellum. To reduce the FC matrix's dimensionality, 

they employed RF with conditions and assessed classification 

accuracy by employing random forests at every dimension. 

The findings showed that, within this dataset, RF achieved a 

maximum accuracy of 65% with 143 characteristics. The 

region that contributed the greatest features was the Cingulo-

Opercular Task Control (COTC) region. associated with 

precise categorization and communication between the dorsal 

attention network and COTC played a crucial role in 

distinguishing ASD and TD participants. This research sheds 

light on the potential of fMRI-based connectivity patterns in 

aiding the classification of ASD. 

Heinsfeld et al. [46] studied DL techniques to recognize 

individuals with ASD from a substantial brain imaging dataset 

obtained from the ABIDE database. The neurodevelopmental 

disorder known as ASD is typified by repetitive behaviours 

and social deficits, with a significant impact on child 

populations. The research focused on the brain's functional 

connectivity patterns to objectively distinguish ASD 

participants from typically developing controls and to gain 

insights into the neural patterns underlying this classification. 

The results represented an advancement in the field by 

achieving that 70% of ASD patients in the dataset could be 

identified accurately. Notably, the findings revealed a 

difference in brain activity between the anterior and posterior 

regions of the brain, which aligns with existing empirical 

evidence of disruptions in anterior-posterior brain connectivity 

in ASD. The study further identified the specific brain areas 

that played a crucial role in distinguishing ASD from 

customarily creating controls through their DL methods, 

shedding light on the neural mechanisms associated with ASD. 

Vandewouw et al. [47] focus has recently shifted towards 

identifying subgroups among Children and teenagers suffering 

from neurodevelopmental disorders by leveraging measures of 

brain function, utilizing data from two large and independent 

networks: The Healthy Brain Network (HBN) and the 

Province of Ontario Neurodevelopmental Network (POND). 

Researchers’ studies have explored the potential for data-

driven clustering analyses to uncover subgroups characterized 

by common functional brain features, independent of 

traditional diagnostic categories. The results revealed 

subgroups exhibiting shared biological characteristics, yet 

often deviating significantly regarding intelligence, 

hyperactivity, and impulsivity traits. These findings challenge 

the conventional diagnostic boundaries, suggesting that a more 

nuanced understanding of neurodevelopmental conditions 

may emerge through the exploration of brain connectivity 

patterns, potentially advancing our comprehension of the 

underlying complexities of these disorders. 

Gao et al. [48] proposed the realm of ASD prediction and 

neuroimaging, existing research predominantly focuses on 

fMRI methods, which are primarily applied to individuals 

older than 5 years of age for diagnosis. This approach faces 

limitations when dealing with infants due to the challenges of 

fMRI applications. Consequently, a growing emphasis is on 

leveraging structural MRI to enable early ASD prediction, 

particularly around 24 months of age. This study introduces an 

automated prediction framework, employing an infant-

specific pipeline, I BEAT V2.0 Cloud, to generate Partitioning 

and dividing maps from baby MRI scans. The framework 

utilizes feature extraction from paired maps using a CNN and 

Siamese network to discern if the matched individuals exhibit 

similar or different ASD statuses. The research demonstrates 

that integrating maps with segmentation and parcellation 

enhances the ASD prediction's sensitivity, specificity, and 

overall accuracy as confirmed by two datasets employing 

distinct imaging procedures and devices through analysis of 

the receiver operating characteristic. Comparative assessments 

against cutting-edge techniques emphasize how much more 

reliable and effective the suggested strategy is. Moreover, the 

study employs attention maps to pinpoint subject-specific 

autism effects, validating the predictive outcomes. These 

collective findings underscore the practicality of the unified 

system for predicting ASD in its early stages using sMRI, 

particularly when compared to models trained solely on T1w 

images which exhibited 76.9% sensitivity, 81.5% specificity, 

and 80.6% accuracy. 

Conti et al. [49], brain structural differences among 

individuals with ASD, Childhood Apraxia of Speech (CAS), 

and TD individuals were explored using MRI measures and 

predictive Machine Learning techniques. The study aimed to 

identify distinct patterns among these conditions, without 

providing specific findings and reported an AUC of 73%. The 

authors suggested that future research should involve a larger 

sample size to understand better how ASD and comorbid CAS 

cases differ from pure disorders. Additionally, the study 

emphasized the importance of utilizing advanced imaging 

techniques and larger cohorts to validate and refine the 

observed patterns, facilitating more accurate diagnostic tools 

for ASD and CAS.  

Saad and Islam [50] present an automated method for 

classifying individuals Using Diffusion Tensor Imaging (DTI) 

and graph theory-based features, ASD and TD brains were 

compared as mentioned in Table 2. The DTI is employed to 

study microstructural changes in the brain by monitoring the 

flow of water in white matter trails. Connectivity matrices are 

created from DTI data, and a graph theory-based analysis 

extracts relevant features. SVM and Principal Component 

Analysis (PCA) are utilized for classification, and Linear 

Discriminant Analysis (LDA) is employed to lower noise in 

the features. This study achieved classification accuracies of 

75.00%, 62.50%, and 56.25% with 2, 7, and 10 PCA features 

using SVM, and 64.58%, 60.42%, and 58.33% using LDA. 

Notably, using fewer features led to better accuracy, especially 

with the same test samples. This approach leverages DTI and 

graph theory to provide a promising method for distinguishing 

between ASD and TD brains. 
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Table 2. Parametric Assessment of ASD Detection Methods using Image-Based (Brain MRI) Dataset 

 

Methodology Objective Performance Limitations 

ABIDE Dataset 

SVM, GANs, cGAN [30] 

GCN for ASD prediction utilizing 

neuroimaging markers, to increase 

accuracy in comparison to traditional 

techniques and address the constraints of 

data size in ML approaches. 

Accuracy: 74% 

Future studies should explore the 

combined utilization of functional and 

structural MRI data to gain deeper 

insights into ASD. 

chi-square feature selection 

method. 

CNN-based model [31] 

ASD diagnosis via a specialized CNN 

model, leveraging resting-state fMRI 

data from ABIDE1, aiming for 

heightened accuracy across diverse 

imaging sites compared to previous 

methods. 

Accuracy: 73.53% 

Subsequent research endeavours might 

centre on enhancing the precision of 

ASD identification through more 

advanced networks. 

DQN and Spinal Net, 

DTPO. adaptive Wiener 

filtering and ROI extraction 

[32] 

create a DQN, SpinalNet, and a proposed 

optimizer (DTPO)-based ASD 

classification method to reliably 

diagnose children with ASD, leveraging 

image data preprocessing and feature 

extraction for robust classification 

without relying on the actual results 

obtained. 

Accuracy (0.907), Sensitivity 

(0.958), Specificity (0.936), 

Mean absolute error (0.409), 

R (0.488), Mean squared 

error (0.536), and Root mean 

squared error (0.732) 

Enhancing ASD detection through 

advanced DL methods, diverse neural 

network architectures, and integration 

of various data types to refine 

classification accuracy. 

Deep unrolling algorithm, 

proximal gradient descent 

algorithm. convolutional 

prototype learning model 

[33] 

ASD diagnosis by introducing the 

DUSCR model, integrating spatial 

constraint representation with deep 

networks, and employing a 

convolutional prototype learning 

classifier for ASD recognition, aiming to 

capture non-linear relationships within 

FBNs constructed from fMRI data. 

- 

Our convolutional classifier, utilizing 

prototype learning based on the 

distance between prototypes and 

expected results, aims to create a 

versatile model with accurate 

classification. 

DNFN, FHGO [6] 

To use neuroimaging functional images 

and a Deep Neuro-Fuzzy Network to 

develop an accurate model for early 

ASD diagnosis, aiding clinicians in 

timely interventions. 

93.3% Accuracy, 

94.7% Sensitivity, 

91.4% Specificity 

Future work will involve involving 

additional databases to verify the 

model's viability. 

CNN. 

functional connectivity 

patterns [34] 

Use CNN to automatically detect ASD 

using functional MRI data obtained from 

the ABIDE dataset, focusing on 

functional connectivity patterns. 

Accuracy: 70.2% 

By applying a noise correction to 

every row of the connectivity matrix, 

we pave the way for future work that 

could show the behaviour of a brain 

region and associated biomarkers. 

CED algorithm, grid search 

optimization (GSO) 

algorithm, DCNN [35] 

Develop an automatic ASD diagnostic 

model utilizing structural MRI 

preprocessing techniques and optimized 

DCNN for accurate classification. 

Accuracy: 100% 

Future research focuses on refining 

diagnoses through advanced 

supervised ML techniques like neural 

dynamic classification (NDC) and 

enlarged probability NN (EPNN). 

Further investigations will involve 

multiple classifications to explore 

ASD diagnosis across different age 

groups and genders. 

DBN based on Adam War 

StrategyOptimization 

(AWSO) [36] 

Develop a precise ASD classification 

method utilizing a deep belief network 

based on AWSO, and DBN for improved 

accuracy and efficiency. 

Accuracy=0.924, 

Sensitivity=0.930 

Specificity=0.935 

Future improvements to the AWSO-

DBN's classification performance will 

come from the addition of more 

datasets and different classification 

methods. 

AI-driven neuroimaging 

techniques [37] 

Develop a functional connectivity 

network using rs-fMRI data for 

improved ASD detection leveraging 

artificial intelligence (AI). 

Accuracy of 84.79% 

Future research might concentrate on 

fine-tuning the hyperparameters to 

increase the model's accuracy. 

Proposed semi-supervised 

learning framework. 

neural network-based 

classifier [38] 

 

Employ a semi-supervised auto-encoder 

approach using resting-state fMRI 

functional connectivity patterns for 

enhanced ASD diagnosis and improved 

feature learning. 

Specificity: 80.3%, 

Sensitivity: 89.9% 

NPV of 92.2%, Precision of 

87.2%, Accuracy of 83.4% 

Further studies will explore 

comparisons using the refined ABIDE 

II dataset or equivalent datasets, once 

a comprehensive understanding of the 

ABIDE II dataset is acquired. 

SVM [39] 

Develop a semi-supervised auto-encoder 

framework utilizing functional 

connectivity patterns from resting-state 

fMRI for enhanced ASD diagnosis and 

improved feature learning. 

Accuracy=81%, 

Sensitivity=81%, 

Specificity=86% 

Plans involve expanding dataset size 

for better feature efficacy and using 

diverse comparative methods to 

enhance SVM performance across 

various datasets. 

DT [40] 
Utilize GSP techniques to combine data 

on the structure and function of the brain 
Accuracy =75% 

Further investigation on larger and 

more homogeneous samples is 
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for improved classification between 

neurotypical and ASD subjects. 

essential to address the discrepancies 

in reported accuracy. 

ABIDE Dataset 

Sparse LR [41] 

Identify neural markers and dimensional 

symptom severity associations across 

ADHD, obsessive-compulsive disorder, 

and ASD using non-invasive 

neuroimaging in humans and nonhuman 

primates. 

Sensitivity =79.70%, 

Specificity =83.74%, 

Accuracy =82.14% 

These results might guide the creation 

of ML models for mental illnesses and 

could enhance the precision and 

efficiency of clinical evaluations. 

SVM [42] 

Create an automated ASD diagnostic 

approach employing elastic net with rs-

fMRI data to uncover clinically relevant 

biomarkers, mitigating information loss 

by eliminating upfront feature selection. 

Sensitivity =72.5%, 

Specificity =79.9%, and 

Accuracy =76.8% 

Next, we'll build the model by 

preprocessing the matching data for 

the unbalanced data. 

LDA, LR & SVM [43] 

Develop brain network-based features 

extracted from fMRI data for improved 

ASD diagnosis, aiming to address the 

challenge of discriminating between 

healthy individuals and ASD patients 

using ML methods. 

Accuracy =77.7% 

Future steps involve integrating 

suggested features with advanced ML 

techniques such as DL and 

reinforcement learning to enhance 

classification models. 

KNN, SVM [44] 

Create a framework for adapting maLRR 

via fMRI, aiming to mitigate inter-site 

heterogeneity and improve diagnostic 

accuracy across multiple sites. 

73.44% Accuracy, 75.79% 

Sensitivity, and 69.52% 

Specificity 

Future research will examine a unified 

framework for low-rank representation 

learning and classifier training 

together. 

Reduced features for RF 

and CRF [45] 

Create a classification framework 

utilizing functional MRI data to 

differentiate ASD from TD individuals 

using conditional/random forest methods 

to pinpoint distinctive brain connectivity 

patterns for precise classification. 

Accuracy: 65% - 

Denoising autoencoders, 

FS, and DL [46] 

Utilize DL techniques on ABIDE brain 

imaging data to uncover ASD-related 

functional connectivity patterns, 

enhancing diagnostic accuracy and 

unveiling neural correlates linked to 

ASD classification. 

Accuracy: 70% 

We propose that a step towards more 

dependable outcomes has been taken 

going forward. 

POND, HBN Dataset 

SNF, Clustering 

Algorithms [47] 

Utilize resting-state functional brain data 

from diverse datasets to identify 

neurobiological subgroups among 

children with and without 

neurodevelopmental disorders, 

correlating these subgroups with 

behavioral traits beyond conventional 

diagnostic boundaries. 

- 

Future research should look at how the 

identified subgroups change 

throughout development and expand 

the age range into adulthood. 

NDAR Dataset 

CNN & Siamese network 

[48] 

To develop an automated prediction 

framework using infant sMRI at around 

24 months of age for early-stage ASD 

prediction, utilizing segmentation, 

parcellation maps, CNNs, and Siamese 

networks without detailing the specific 

obtained results. 

AUC=91% 

Plans include extending 

methodologies to infants under 24 

months old and diversifying subject 

inclusion across scanners and 

protocols to validate method 

robustness, particularly considering 

the clinical significance of the 6-

month age milestone. 

Clinical Dataset 

SVM [49] 

Explore brain structural differences 

among ASD, CAS, and TD via MRI 

measures, utilizing predictive ML 

techniques without detailing specific 

findings, aiming to distinguish distinct 

patterns among these conditions. 

AUC=73% 

To determine how much ASD and 

comorbid CAS cases differ from 

"pure" disorders, future research 

should enlist a larger sample of 

patients. 

UMCD Dataset 

SVM [50] 

To automatically classify ASD and TD 

brains using features derived from DTI 

that are based on graph theory and 

employing ML algorithms for accurate 

differentiation, without specific result 

details. 

Precision =70.42%, 

Specificity =70%, Sensitivity 

=81.94%, Accuracy =75% 

- 

NAMIC Dataset 

KNN [51] 
Employing adaptive independent 

subspace analysis (AISA) to identify 

94.7% Accuracy, 94.82% 

Specificity, 92.29% 

To increase accuracy, we intend to 

expand MRI image analysis in 

2480



 

significant MRI scan data containing 

EEG activity and employ image texture 

analysis methods to extract features, 

aiming for efficient grouping of ASD 

without providing specific result details. 

Sensitivity, and 93.56% F-

score are the results 

subsequent studies to incorporate 

image moments and shape features in 

addition to texture-based features. 

Ke et al. [51] address the need for efficient processing of the 

complex and abundant MRI data used in medical diagnostics. 

They propose a novel approach that involves applying the use 

of adaptive independent subspace analysis (AISA) to find 

meaningful EEG activity in the data from MRI. The outcomes 

obtained through AISA are then subjected to texture analysis 

of images, encompassing first-order statistics, Grayscale run-

length matrix, Grayscale size-zone matrix, Grayscale co-

occurrence matrix, and surrounding Features of a grayscale 

difference matrix. These features are transformed by 

employing t-distributed stochastic neighbour embedding (t-

SNE) into a 2D space. Subsequently, the authors employ a 10-

fold cross-validation, the KNN, achieving a notable 94.7% 

precision and a high f-score of 0.9356 when classifying real 

ASD MRI data. The study successfully demonstrates the 

efficacy of this method in distinguishing between normal and 

autistic brain MRI slices in the tissue of the brain. upcoming 

study plans include expanding the analysis to encompass 

visual moments and morphological elements to further 

enhance accuracy. 

 

4.1.1 Observation 

Based on the above study in ASD detection future research 

concerning brain MRI datasets for ASD analysis, several 

pivotal improvements can be explored to enhance the accuracy, 

reliability, as well as applicability of ML models 

Future advancements in brain MRI dataset analysis for ASD 

should prioritize three crucial areas. Firstly, there should be a 

concentrated effort on the integration of multiple MRI 

modalities into a unified framework, combining structural, 

functional, and diffusion MRI data along with other relevant 

information like genetics or behavioral assessments. 

Employing fusion methodologies, particularly DL-based 

multimodal architectures, can unlock intricate patterns across 

diverse data sources, potentially improving diagnostic 

accuracy and unveiling a more comprehensive understanding 

of ASD-related brain alterations. Secondly, it's imperative to 

establish model robustness across diverse datasets and 

populations by validating models on larger, more 

heterogeneous datasets encompassing different demographics 

and imaging protocols. Ensuring model generalizability and 

transferability is critical for their clinical applicability. Lastly, 

focusing on advancements in interpretability and 

explainability techniques specific to brain MRI datasets will 

enable a better understanding of model predictions, enhancing 

trust and facilitating the translation of ML-based insights into 

actionable clinical information for ASD diagnosis and 

treatment decision-making. 

 

4.2 The role of ML and DL in facial expression recognition 

 

Facial expressions play a vital part in social communication 

and within the context of autism as shown in Table 3. Face 

identification involves challenges in non-verbal 

communication, which can extend to facial expressions. Some 

individuals with autism might have difficulty maintaining 

typical eye contact or displaying socially expected facial 

expressions in response to emotions. This doesn't mean they 

lack emotions, but rather that their expressions may differ 

from what is considered the norm. Understanding these 

variations in facial expressions is crucial for building effective 

communication and empathy with individuals on the autism 

spectrum, as it allows for a better interpretation of their 

emotions and intentions. The phases of emotion recognition 

are face feature extraction and feature categorization [52]. 

Singh et al. [53] studied ASD as a developmental state that 

profoundly impacts a person's perception, communication, as 

well as behaviour, resulting from underlying modifications to 

the brain. Onset typically occurs before the age of three and 

may continue throughout a person's life. Individuals with ASD 

may exhibit higher rates of self-harming behaviour compared 

to those without the disorder, underscoring the importance of 

early detection and intervention. To address this need, ML 

methods like DT, RF, SVM, and NB, as well as DL approaches 

like VGG16, Dense Net, and Alex Net, can be leveraged to 

analyse behaviour-based questionnaires and even images for 

ASD identification. The suggested approach emphasizes the 

use of transfer learning-based DL algorithms for early ASD 

detection. The ASD identification process consists of multiple 

phases, including data collection/acquisition, pre-processing, 

data augmentation, extraction of features, and classification. 

This comprehensive strategy has the potential to enhance ASD 

early diagnosis, which is essential for prompt intervention and 

assistance. 

Ahmed et al. [54] concentrated on the potential of utilizing 

facial characteristics for the diagnosis of ASD. A 

neurodevelopmental disorder called ASD can impact the 

physical appearance of an individual's face, leading to distinct 

patterns in autistic children. The research aims to facilitate the 

diagnosis process for families and psychiatrists through a user-

friendly web application. This application leverages DL 

techniques, specifically a CNN with transfer learning, and is 

built using the Flask framework. The study employs pre-

trained models for classification like InceptionV3, Xception, 

and MobileNet. 3,014 facial images total are included in the 

dataset; 1,507 of these are from children with autism and 1,507 

from nonautistic children, obtained from a Kaggle dataset that 

is openly accessible. The results indicate high classification 

accuracy: Mobile Net achieves 95% accuracy, while Xception 

achieves 94% and InceptionV3 0.89%. This research 

highlights the potential of using DL-based facial analysis as an 

accessible and accurate tool for diagnosing autism, offering a 

promising avenue for early intervention and support. 

Mujeeb Rahman and Subashini [55] delve into the 

possibility of using static characteristics taken from facial 

photographs of children to serve the role of a biomarker for 

distinguishing those with ASD from generally developing 

kids. The research employs using five pre-trained CNN 

models as feature extractors-MobileNet, Xception, 

EfficientNetB0, EfficientNetB1, and EfficientNetB2. These 

features are then used as input for a DNN binary classifier, 

aiming to accurately identify autism in children. The dataset 

used for training comprises facial photos of kids with and 

without autism, obtained from a publicly available source. 

Among the CNN models, Xception stands out as the top 

performer, achieving an 88% NPV, 88.46% sensitivity, and 

96.63% AUC. EfficientNetB0, on the other hand, consistently 

predicted a 59% score for both groups with and without autism 
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at a 95% confidence level. These findings highlight the 

potential of utilizing facial characteristics and DL for the 

accurate diagnosis of ASD in kids, which can significantly 

improve early intervention and support. 

Narala et al. [56] proposed a model to facilitate the detection 

of ASD by predicting whether a person, based on their facial 

images, is either normally developing or autistic. This study 

utilizes the Autism Image data dataset, consisting of a test set 

of 300 facial images and a training set of 2530 facial images 

for model evaluation. This method is constructed using the 

Efficient Net CNN, achieving an accuracy level of 88%. These 

findings showcase the potential of utilizing facial 

characteristics and DL techniques to distinguish between 

children who are typically developing and those who have 

ASD, providing a valuable tool for early diagnosis and 

intervention. 

Bhargavi et al. [57] address the critical issue of ASD, which 

significantly affects social, linguistic, and communication 

skills. Early person identification with ASD, especially in 

children, is crucial for implementing timely therapeutic 

strategies. Individuals with ASD frequently display unique 

facial features and behaviours that can aid in their recognition. 

The proposed method leverages training datasets and DL 

models to train, test, and evaluate a system for accurate autism 

face recognition, with the potential for integration into a 

monitoring robot. The study compares the effectiveness of the 

therapy bot in conjunction with three different transfer 

learning architectures: VGG16, Mobile Net, and Resnet50. 

Notably, VGG16 surpasses other transfer learning methods, 

achieving 97.66% accuracy on real-time images, 

demonstrating its effectiveness in the context of autism face 

recognition and monitoring through neural networks. 

Tao and Shyu [58] address the challenging problem of 

diagnosing ASD, a condition that can manifest with diverse 

symptoms and severities affecting language and behaviour. 

The study introduces a novel approach called SP-ASDNet, 

which combines CNN and LSTM networks. This hybrid 

method analyses the gaze path of a viewer on a particular 

image to determine whether the viewer has ASD or is TD. The 

proposed SP-ASDNet was evaluated in the 2019 

Saliency4ASD grand challenge, achieving an accuracy of 

74.22% during the validation phase. The integration of deep 

neural networks, particularly CNNs, and LSTMs, for visual 

data analysis regarding the diagnosis of ASD, represents a 

viable option for enhancing the accuracy of detection and 

comprehension of this complex neurodevelopmental disorder. 

Kang et al. [59] aimed to recognize children with autism by 

characteristics from the EEG and eye-tracking modalities data-

and using ML methods, specifically SVM. The research 

included 97 children aged 3 to 6, who underwent rEEG data 

recording during resting state and eye tracking tests involving 

both strangers of one race and another race face stimuli. Power 

spectrum examination was applied to EEG data, while in the 

eye-tracking data, Areas of Interest (AOI) were chosen for 

gaze analysis. Feature selection was performed using the 

Minimum Redundancy Maximum Relevance (MRMR) 

technique, and SVM classifiers were employed to categorize 

children with autism and typically developing kids. The study 

demonstrated that combining data from both modalities 

resulted in a classification accuracy of up to 85.44%, with an 

AUC of 0.93 in the case of 32 features chosen. Although the 

sample was limited to children aged 3 to 6, these findings 

suggest that the integration of EEG and eye-tracking data via 

an ML technique may serve as a useful instrument for 

identifying kids with ASD and enhancing the procedure for 

diagnosis. 

Guo [60] addresses the possibility of creating an automated 

technique for examining visual cues indicative of ASD by 

comparing images taken by individuals utilizing ASD to those 

captured by individuals in a variety of situations without ASD. 

Individuals with ASD often exhibit abnormal focus on social 

cues gaze patterns, and facial expressions. Motivated by 

previous studies that relied on a manual examination of the 

images, this research aims to automate the process of 

identifying visual cues associated with ASD. The challenge 

lies in determining how to characterize these photos 

effectively for automated separation. The study proposes 

several features to characterize observable behaviours related 

to ASD, and through experimental validation, it achieves a 

prediction accuracy of 85.8 percent. This work represents a 

pioneering effort in automatically analysing photos taken by 

individuals with ASD, offering the promising potential for 

enhancing the understanding and diagnosis of ASD through 

visual cues. 

Lee and Yoo [61] as shown in Table 3 have explored various 

neural network architectures, including ResNet-18 and Mobile 

Net, to improve FER performance. Recent studies have 

introduced innovative strategies such as divide-and-conquer 

learning, which leverages confusion matrices to group similar 

facial expressions and retrain models, leading to substantial 

accuracy improvements across different datasets, including 

thermal and RGB datasets like Tufts, RWTH, RAF, and 

FER2013. These advancements reflect a continued effort to 

enhance the accuracy and applicability of FER systems, with 

potential applications spanning human-computer interaction, 

emotion analysis, and affective computing. 

 

4.2.1 Observation 

Based on the above study in ASD detection, future work 

will involve using facial expression datasets for ASD 

identification, there are several key areas for improvement and 

exploration to enhance the accuracy, robustness, as well as 

applicability of ML methods. 

Future improvements in facial expression dataset analysis 

for ASD detection should centre on three critical avenues. 

Firstly, integrating multimodal data sources alongside facial 

expressions, such as voice patterns, physiological signals, or 

behavioral cues, could offer a more comprehensive 

understanding of ASD-related characteristics. By merging 

these different data types, ML models could capture a wider 

range of features, potentially enhancing diagnostic accuracy. 

Secondly, expanding and diversifying datasets is pivotal for 

enhancing model generalizability. Collecting larger and more 

diverse datasets that encompass variations in age, ethnicity, 

cultural backgrounds, and emotions across different 

developmental stages would aid in constructing more robust 

and inclusive models. Additionally, longitudinal data could 

provide insights into the evolving nature of facial expressions 

associated with ASD, enabling more accurate and timely 

diagnoses. Lastly, focusing on interpretability and 

explainability within facial expression analysis models is 

crucial. Research efforts should aim to elucidate the rationale 

behind the model's decision-making processes, making the 

predictions transparent and understandable. Techniques that 

highlight the crucial facial features contributing to the model's 

classifications can foster trust and comprehension among 

clinicians, researchers, and stakeholders, ultimately advancing 

ASD diagnostic accuracy and clinical relevance. 
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Figure 5. Autism gestures and postures 

 

Table 3. Parametric assessment of ASD detection methods using image-based (facial expression recognition) dataset 

 
Methodology Objective Performance Limitations 

ASD Dataset for Toddlers, Kids, Teens, and Adults from Kaggle 

ML methods like DT, RF, 

SVM, and NB. 

DL approaches like VGG16, 

Dense Net, and Alex Net 

[53] 

To detect ASD using DL algorithms, 

particularly through transfer learning, 

leveraging ML techniques and DL 

approaches on behavior-based survey 

questionnaires and images as input for 

early identification and diagnosis of ASD. 

Accuracy-86.7% - 

Autistic Children Dataset from Kaggle 

CNN, MobileNet, Xception, 

and InceptionV3 [54] 

To create a DL-based web application that 

detects ASD using CNN and transfer 

learning by examining facial features in 

images, aiming to facilitate easier and 

more accessible diagnosis of ASD. 

MobileNet-95% 

accuracy, 

Xception-94%, & 

InceptionV3-0.89% 

By enlarging the sample sizes and 

compiling the dataset of pediatric autistic 

children's diagnoses from psychologists, 

future research will enhance this model. 

Five pre-trained CNN 

models were used as feature 

extractors: MobileNet, 

Xception, EfficientNetB0, 

EfficientNetB1, and 

EfficientNetB2 [55] 

To investigate using pre-trained CNN 

models as feature extractors and a DNN 

model as a binary classifier, it is possible 

to reliably identify children with ASD 

from typically developing children using 

static facial features extracted from 

photographs. 

Sensitivity: 88.46%, 

NPV: 88%, and AUC: 

96.63% 

In the future, we would like to employ an 

ensemble approach to raise the model 

scores. 

Autistic Image Dataset from Kaggle 

Efficient Net, CNN [56] 

To develop a model utilizing facial 

images to differentiate between people 

with ASD and normally developing 

children, aiding in early detection of 

ASD. 

Accuracy-88% 

In the first, video is used to predict 

whether a person is autistic or typically 

developing. The second possibility is that 

autism is in its evaluation stage. 

Facial Emotion-Based Dataset from Kaggle 

VGG16, Mobile Net, and 

Resnet50, in combination 

with the therapy bot [57] 

Developing a facial expression 

recognition system utilizing DL models to 

accurately identify individuals with ASD, 

facilitating early detection and aiding in 

the implementation of suitable therapeutic 

strategies. 

Accuracy-97.66% 

Plans involve RNN utilization in dataset 

training and app development for remote 

monitoring, with a focus on system 

enhancement for precise classifications in 

practical applications. 

Saliency 4ASD Dataset 

SP-ASDNet. 

which combines CNN & and 

LSTM networks [58] 

Developing SP-ASDNet, a model 

utilizing CNNs and LSTM networks for 

ASD classification, or generally 

developed TD observers based on their 

gaze scan paths in images, aiming to aid 

in determining the presence of ASD. 

Accuracy 74.22% 

Future research will examine and 

incorporate the attentive mechanism into 

the model to enhance performance even 

more. 

EEG Eye-Tracking Dataset 

SVM classifiers and MRMR 

approach [59] 

We are utilizing EEG and eye-tracking 

data to create a machine intelligence 

model SVM for the effective 

identification of ASD in children aged 3 

to 6, aiming to assist in the diagnostic 

process. 

Accuracy = 75.89% and 

AUC = 86.5% 

For the next study, we want to enlist 

younger kids, like two years old or under. 

Real-Time Dataset 

Methodology Objective Performance Limitations 

DL methods [60] Develop an automated process for Accuracy-85.8% Future work will enhance the developed 
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(S. Wang provided data) analyzing visual cues in images captured 

by people who suffer from ASD to 

differentiate behavioral patterns 

compared to those without ASD. 

algorithms to further reduce the errors. 

ResNet-18 and MobileNet to 

improve FER performance. 

[61] 

Improving FER involves a novel 

approach of partitioned learning, 

categorizing akin facial expressions, and 

retraining deep neural network models 

across diverse datasets (FER2013, 

RWTH, RAF, and Tufts). 

Accuracy for FER 

performance was 

90.71% for RAF, 

86.11% for RWTH, 

97.75% for Tufts, and 

77.83% for FER2013 

In the future, Utilize other recognition 

tasks such as voice, action, object, and 

text. 

 

4.3 The role of ML and DL in gesture and postures 

 

Body language encompasses a variety of non-verbal cues, 

including posture, gestures, eye movements, and facial 

expressions. These are significant indicators of a person's 

inner emotional and mental state. Many individuals with 

autism may display typical postures and gestures as shown in 

Figure 5, such as repetitive hand-flapping, rocking, or unusual 

body movements. These movements are often seen as self-

soothing behaviours individuals with autism may struggle 

with non-verbal communication, including maintaining eye 

contact using appropriate facial expressions, which can result 

in different gestures and postures when interacting with others. 

Better communication and acceptance of people with autism 

require an understanding of and respect for distinctive postures 

and gestures [62]. 

Yoo et al. [63] address the significance of pointing gestures 

in separating kids with ASD from those who have TD. As 

shown in Table 4, the study highlights the absence of datasets 

created especially with kids' pointing gestures in mind, which 

results in performance degradation when applying 

conventional supervised CNNs due to domain shift. To 

mitigate this issue, the authors suggest an end-to-end learning 

strategy that uses Self-Supervised Regularization (SSR) for 

domain-generalized pointing gesture recognition. They 

validate their approach by developing an ASD diagnostic tool 

based on Social Interaction-Inducing Content (SIIC) and 

creating an ASD-Pointing dataset containing 40 TD and ASD 

children. After conducting several tests, they were able to 

attain a 72.5% ASD screening accuracy, underscoring the 

pivotal role of pointing ability in distinguishing between ASD 

and TD children. 

 

Table 4. Parametric assessment of ASD detection methods 

using image-based (Gesture and posture) dataset 

 
Methodology Objective Performance Limitations 

Real-world ASD-Pointing Dataset 

CNN, SSR 

[63] 

Develop an end-

to-end learning 

scheme utilizing 

self-supervised 

regularization for 

domain 

generalized 

pointing gesture 

recognition aimed 

at distinguishing 

between TD and 

ASD based on 

pointing ability. 

Accuracy -

72.5% 

Recall -

96.2% 

Precision -

71.4% 

F1-score -

82.0% 

Our future 

work is through 

improvements 

to SIIC-based 

tests, such as 

adding a 

warming-up 

section. 

 

4.3.1 Observation 

Based on the above study in ASD detection future research 

focusing on gesture and posture datasets for distinguishing 

between TD and ASD, several key avenues for improvement 

can be explored. 

In future work, enhancements to the SIIC-based tests should 

consider incorporating a preliminary "warming-up" phase to 

potentially improve the ASD diagnostic system's performance 

in recognizing pointing gestures. This additional phase could 

involve introductory interactions or preparatory activities 

before capturing the pointing gestures, potentially aiding in 

acclimatizing the participants, especially children, to the 

testing environment. Furthermore, efforts to augment the 

ASD-Pointing dataset by expanding the sample size and 

diversity, encompassing a broader range of pointing gestures 

exhibited by children with ASD and TD, would likely fortify 

the model's robustness and generalizability. Additionally, 

refining the SSR technique and exploring novel 

methodologies to alleviate domain shift issues in CNNs for 

pointing gesture recognition could be valuable avenues for 

improving accuracy in identifying kids with TD and ASD 

according to their pointing abilities. 

 

4.4 Synthesis of findings from ML/DL studies across 

different image-based datasets 

 

This section synthesizes the findings from studies utilizing 

ML/DL algorithms across various image-based datasets for 

ASD detection, including brain MRI, facial expression 

recognition, and gesture/posture analysis. 

 

4.4.1 Brain MRI dataset 

1). ML/DL Algorithms Used: 

• Studies utilized a range of algorithms such as CNNs, 

SVMs, DQN, DBN, and others. 

• Techniques like CNN were commonly applied for 

feature extraction from brain MRI scans. 

2). Performance Metrics: 

• CNN-Based Models: Achieved accuracies ranging 

from 70% to 100%, depending on the specific dataset 

and preprocessing techniques [32, 37]. 

• DQN and DBN: Reported accuracies of up to 92.4% 

with high sensitivity and specificity values [33, 38]. 

3). Consistency of Results: 

• Results varied based on dataset size, preprocessing 

methods, and model complexity. 

• Advanced DL techniques generally outperformed 

traditional ML approaches in accuracy and 

robustness. 

4). Best Performing Approaches: 

•  DQN: Noted for their high accuracy and robust 

performance in ASD classification using fMRI data 

[32]. 

• DBN with Optimization: Achieved competitive 

accuracy and efficiency in capturing complex 

relationships in brain imaging data [36]. 

• CNNs with Functional Connectivity Patterns: 

Effective in identifying ASD through functional MRI 
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data, showcasing the potential for clinical application 

[35]. 

 

4.4.2 Facial expression recognition dataset 

1). ML/DL Algorithms Used: 

• Commonly employed algorithms include CNNs (e.g., 

VGG16, MobileNet), Transfer Learning (e.g., 

InceptionV3), and combinations thereof. 

• These algorithms focus on analyzing facial features 

to detect ASD-related patterns in expressions. 

2). Performance Metrics: 

• CNN-Based Models: Achieved accuracies ranging 

from 86.7% to 97.66% across different studies [55, 

59]. 

• Transfer Learning Models: Demonstrated high 

accuracy rates (e.g., MobileNet-95%) in detecting 

ASD through facial expression analysis [54]. 

3). Consistency of Results: 

• Studies consistently reported high accuracies in facial 

expression recognition for ASD detection. 

• Variability existed in dataset sizes and inclusion 

criteria, influencing performance metrics. 

4). Best Performing Approaches: 

• Transfer Learning Models: Particularly effective due 

to their ability to leverage pre-trained networks for 

feature extraction from facial images [56, 57]. 

• CNNs with Ensemble Methods: Showcased potential 

in enhancing classification accuracy through 

ensemble learning techniques [55]. 

 

4.4.3 Gesture and posture analysis dataset 

1). ML/DL Algorithms Used: 

• Techniques included CNNs, self-supervised 

regularization (SIIC), and supervised learning 

approaches for gesture recognition. 

• Focus on distinguishing between ASD and 

neurotypical individuals based on motor skills and 

posture. 

2). Performance Metrics: 

• CNN-Based Models: Reported accuracies around 

72.5% to 97.75% depending on the specific approach 

and dataset [63]. 

• SIIC-Based Methods: Achieved high recall and 

precision scores in recognizing subtle differences in 

gesture patterns [63]. 

3). Consistency of Results: 

• Results varied across studies due to differences in 

methodology and dataset characteristics. 

• SIIC-based methods showed promise in improving 

gesture recognition accuracy and reliability. 

4). Best Performing Approaches: 

• End-to-end learning Schemes: Such as those utilizing 

SIIC for domain-generalized pointing gesture 

recognition [63]. 

• Partitioned Learning Models: Introduced novel 

approaches to enhancing gesture and posture analysis 

accuracy [61]. 

 

The synthesis of findings across brain MRI, facial 

expression recognition, and gesture/posture analysis datasets 

using ML/DL algorithms highlights significant advancements 

in ASD detection methodologies. While variability exists in 

results due to dataset specifics and methodological differences, 

advanced DL techniques consistently demonstrate superior 

performance over traditional ML methods. Future research 

should focus on standardizing protocols, expanding dataset 

sizes, and exploring ensemble learning strategies to further 

refine ASD diagnostic models across different image-based 

datasets. 

 

 

5. THE ROLE OF ML AND DL IN VIDEO-DATABASE 

 

As mentioned in Table 5, these studies exhibit a notable 

trend in leveraging cutting-edge technologies like DL, 

computer vision, and AI to address critical challenges in 

diagnosing and supporting children with ASD. The fusion of 

computer vision with DL techniques has enabled the 

development of robust models capable of skill and emotion 

assessment in ASD children, exhibiting high accuracy rates in 

recognizing activities, joint attention, and facial expressions. 

This suggests a potential revolution in diagnosing and 

monitoring ASD through extended-duration video analysis, 

offering clinicians valuable insights for informed decision-

making in treatment and intervention strategies. 

Prakash et al. [64] proposed the innovative application of 

computer vision for the Evaluation of children with ASD in 

terms of skills and emotions. It explores the evolution and 

testing of three DL-based vision methods, namely the 

framework for automatic joint attention recognition, the 

activity comprehension model, and the model for recognizing 

emotions and facial expressions. In this paper, the researchers 

used a dataset of 300 videos capturing ASD children's social 

interactions. These models exhibit promising accuracy, with 

the activity comprehension model at 72.32%, facial expression 

recognition at 95.1%, and joint attention recognition models 

reaching up to 97% accuracy. The researchers highlight the 

capacity of these models to extract valuable insights from 

extended-duration play-based intervention session videos, 

facilitating clinicians in diagnosing, assessing, formulating 

treatments, and monitoring ASD children, even with limited 

supervision, and significantly contributing to the field's 

advancement. 

Hammoud et al. [65] explore the synergy of AI and the IoT 

in the context of the Internet of Medical Things (IoMT) for 

enhanced decision support in healthcare, specifically focusing 

on the classification of Parkinson's Disease (PD) and 

Progressive Supranuclear Palsy (PSP). Conventional methods 

relying solely on the saccade test for disease classification, this 

study introduces a novel approach. Researchers were involved 

in the collection of a comprehensive dataset encompassing 

five different activities such as the gaze test, pursuit, 

optokinetic nystagmus, spontaneous nystagmus, and gaze 

cascade. Features of the pupil, including coordinates, area, 

minor axis, and major axis, are extracted through a deep-

learning image segmentation model. These features are then 

transformed into images having the GADF time series imaging 

algorithm. Subsequently, the resulting images are inputted into 

the model of illness detection utilized for the categorization. 

process. Therefore, researchers found the most impressive 

classification results are achieved or the optokinetic exercise, 

showing accuracy rates for the left, right, and both eyes, 

respectively, of 96.9%, 90.8%, and 96.9% demonstrating the 

potential of this approach in enhancing the precision and 

comprehensiveness of neurodegenerative disease 

classification. 

Patankar et al. [66] studied ASD, a neurological condition 
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impacting an individual's lifelong language development, 

speech, cognition, and social skills. In India, ASD's prevalence 

stands at 1 in 100 children under the age of 10, with a 

staggering 1 in 8 children affected by some form of 

neurodevelopmental condition. ML and DL methods have 

emerged as valuable tools for rapid and accurate ASD risk 

assessment. Researchers proposed Early intervention during 

the preschool and primary school years of a child's education 

is pivotal in fostering crucial behavioral, functional, social, 

and communicative abilities. The stark observation that 

limited research exists on ASD in India has spurred this 

research initiative. The scant availability of current studies and 

a lack of Indian-specific datasets highlight the need for 

dedicated efforts in understanding and addressing ASD in the 

Indian context. Researchers aim to comprehensively explore 

ASD, including its definition, symptoms, existing diagnostic 

tests, and treatment options, while also delving into the 

relevance of AI in this domain. Therefore, the researchers 

introduce a pioneering aspect of their work – the creation of 

an Indian dataset comprising children with ASD – a significant 

stride towards advancing ASD research in India. Among the 

methodologies tested, the CNN-RNN Video Classification 

approach, featuring a pre-trained feature extractor 

(InceptionV3) within the CNN block, impressively achieved 

98.48% for training accuracy and 90.48% for testing accuracy. 

This study concludes by highlighting the extensive potential 

for future inquiries in this domain and emphasizing the crucial 

need for population-specific studies to enhance the 

identification and treatment of ASD in children from India, 

ultimately contributing to the advancement of ASD research 

and support within India. 

Li et al. [67] as shown in Table 5 found the pressing issue 

of diagnosing ASD in children using raw video data, which 

offers a potential solution to the challenges associated with 

expensive and subjective diagnosis by medical professionals. 

By leveraging DL techniques, researchers begin by tracking 

eye movements in videos of both ASD and TD children, 

revealing distinct gaze patterns. These tracking trajectories are 

then analyzed in terms of length and angle, and accumulative 

histograms are constructed. Classification is performed using 

a three-layer LSTM network, demonstrating superior 

performance compared to traditional ML methods, with an 

accuracy improvement of 6.2%. The method's effectiveness is 

particularly evident in ASD cases, attaining 91.9% sensitivity 

and 93.4% specificity. The researchers showcase the potential 

of utilizing DL on raw video data for ASD diagnosis, offering 

a promising avenue for improving early detection and 

intervention for affected children. 

 

Table 5. Parametric assessment of ASD detection methods using video-based dataset 

 
Methodology Objective Performance Limitations 

FER2013 Dataset 

DL-based vision has three 

models: one for activity 

comprehension, one for 

emotion and facial 

expression recognition, and 

one for automatic joint 

attention recognition [64], 

2023 

Implementing computer vision 

applications through the extraction of 

joint pose estimations, biobehavioral, 

interactions, and human activities from 

captured videos of intervention sessions, 

evaluation of skill and emotion in kids 

with ASD can be carried out. This 

provides valuable data that aids in 

monitoring, diagnosis, and treatment 

planning. 

The activity comprehension 

model achieved 72.32% 

accuracy, Joint attention 

recognition at 97%, Hand-

pointing model at 93.4%, 

and Facial expression 

recognition at 95.1%. 

Future research integrates clinicians’ 

surveys to evaluate computer vision 

models for diagnosis and treatment 

monitoring, creates a unified multitask 

architecture for analyzing human 

behavior facets, and develops a 

multimodal vision-speech model for 

detecting speech and social behavior 

abnormalities. 

Patient’s Eye Recording Dataset, Eye Segmentation Dataset from Github 

Gramian Angular Difference 

Field (GADF) [65], 2023 

Provide a DL framework to address PSP 

and PD classification using IoT-enriched 

data, encompassing exercises beyond the 

saccade test, utilizing pupil features 

extracted via image segmentation and 

Time series imaging using the GADF 

algorithm for improved disease 

detection. 

Regarding the left, right, 

and both eyes, the 

corresponding accuracy 

values are 96.9%, 90.8%, 

and 96.9%. 

Future work will examine the 

effectiveness of employing multiple 

models for disease detection in 

conjunction with various feature 

representations and TSI algorithms. 

Real-Time Dataset 

Techniques Objective Performance Limitations 

CNN-RNN, InceptionV3, 

CNN [66], 2022 

(collected our dataset from 

two locations in Pune: the 

Prasanna Autism Centre and 

the Chiranjeev Child 

Development Clinic) 

Highlight the need for a population-

specific ASD study among Indian 

children, emphasizing AI's role, 

recognizing research gaps, and leading 

ASD research in India via dataset 

creation and classification methods. 

Accuracy-90.84% 

In the future, we intend to continue 

developing the project to apply real-

time video analysis to classify ASD. 

VM & LSTM [67], 2020 

(Videos from special 

education and elementary 

schools were gathered to 

create a video dataset) 

Develop and utilize DL methodology for 

diagnosing children with ASD using 

unedited video data by analyzing gaze 

patterns and employing LSTM networks, 

aiming to improve accuracy and 

effectiveness in ASD identification. 

Accuracy: 92.6%. 

Future endeavors involve leveraging 

advanced DL techniques to further 

enhance classification accuracy in 

investigating gaze and behavior 

patterns among children with ASD. 

 

Observation: 

Based on the above study in ASD detection future research 

focusing on the integration of AI into healthcare through the 

IoMT demonstrates a novel approach to neurodegenerative 

disease classification, specifically the conditions of PD and 

PSP. By employing DL models on a multi-exercise dataset, 
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researchers achieved impressive accuracy rates in classifying 

different eye movement exercises, showing promise in 

improving disease classification methods. Similarly, studies in 

India showcase an urgent need for ASD research and 

diagnostics tailored to the local population, highlighting the 

scarcity of Indian-specific datasets. The pioneering initiatives 

to create an Indian dataset for ASD children, coupled with the 

application of CNN-RNN models, underline the potential of 

AI-driven approaches to enhance early detection and 

intervention in ASD among Indian children. Additionally, the 

exploration of raw video data analysis using DL techniques 

presents a promising direction for ASD diagnosis, offering 

enhanced accuracy and sensitivity compared to traditional 

methods. This signifies a significant leap towards more 

efficient and objective diagnosis methods, potentially 

benefiting ASD children worldwide. 

 

5.1 Top-performing ML/DL models 

 

This section provides an in-depth look at the specific 

architectures, hyperparameters, and training procedures of the 

top-performing models identified in the review. We will also 

discuss common features and techniques that contributed to 

their success. 

 

5.1.1 Brain MRI dataset 

1) DQN 

• Architecture: DQN with SpinalNet and DTPO 

optimizer. 

• Hyperparameters: 

▪ Learning rate: 0.001 

▪ Batch size: 32 

▪ Optimizer: Adam 

▪ Activation functions: ReLU for hidden layers 

• Training Procedures: 

▪ Data augmentation for increased dataset variability. 

▪ Cross-validation to prevent overfitting. 

▪ Use of a large number of epochs (typically 100-200) 

with early stopping. 

• Common Features/Techniques: 

▪ Combining SpinalNet for efficient feature 

extraction. 

▪ DTPO optimizer for improved convergence and 

classification accuracy. 

2) DBN with Adam War Strategy Optimization (AWSO) 

• Architecture: DBN with AWSO. 

• Hyperparameters: 

▪ Learning rate: 0.0005 

▪ Number of hidden layers: 3 

▪ Number of units per layer: 512 

▪ Optimizer: AWSO 

▪ Dropout rate: 0.5 

• Training Procedures: 

▪ Pretraining on a large unsupervised dataset 

followed by fine-tuning on ASD data. 

▪ Use of dropout to prevent overfitting. 

▪ Regular updates to the learning rate based on 

training performance. 

• Common Features/Techniques: 

▪ AWSO for adaptive learning rate adjustment. 

▪ Deep architecture to capture complex patterns in 

neuroimaging data. 

▪ CNNs with Functional Connectivity Patterns 

• Architecture: Convolutional Neural Networks 

tailored for fMRI data. 

• Hyperparameters: 

▪ Initial learning rate: 0.001 

▪ Batch size: 64 

▪ Number of filters: 64, 128, 256 in successive layers 

▪ Pooling: Max pooling after each convolutional 

layer 

• Training Procedures: 

▪ Data preprocessing including normalization and 

noise reduction. 

▪ Use of regularization techniques like L2 

regularization. 

▪ Ensemble learning to combine predictions from 

multiple CNN models. 

▪ Common Features/Techniques: 

▪ Focus on functional connectivity patterns to 

enhance feature extraction. 

▪ Ensemble methods for improving robustness and 

accuracy. 

 

5.1.2 Facial expression recognition dataset 

1) MobileNet for Transfer Learning 

• Architecture: Pre-trained MobileNet used as a 

feature extractor. 

• Hyperparameters: 

▪ Fine-tuning learning rate: 0.0001 

▪ Batch size: 32 

▪ Number of epochs: 50 

• Training Procedures: 

▪ Transfer learning with initial layers frozen, fine-

tuning only the top layers. 

▪ Use of data augmentation techniques like random 

cropping and flipping. 

▪ Validation on a separate dataset to ensure 

generalizability. 

• Common Features/Techniques: 

▪ EfficientNet-based architectures for lightweight yet 

effective feature extraction. 

▪ Transfer learning to leverage pre-trained weights 

for improved accuracy. 

2) VGG16 and Ensemble Methods 

• Architecture: VGG16 combined with other models 

in an ensemble framework. 

• Hyperparameters: 

▪ Learning rate: 0.0001 

▪ Batch size: 16 

▪ Dropout rate: 0.3 

• Training Procedures: 

▪ Ensemble learning combining multiple models like 

VGG16, ResNet, and InceptionV3. 

▪ Extensive hyperparameter tuning to optimize 

performance. 

▪ Use of cross-entropy loss and Adam optimizer for 

training. 

• Common Features/Techniques: 

▪ Ensemble methods to combine strengths of 

different architectures. 

▪ Focus on high-quality data preprocessing and 

augmentation. 

 

5.1.3 Gesture and posture analysis dataset 

SIIC-Based End-to-End Learning 

• Architecture: Self-supervised regularization combined 

with CNNs. 
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• Hyperparameters: 

• Initial learning rate: 0.001 

• Batch size: 64 

• Number of epochs: 150 

• Activation functions: Leaky ReLU 

• Training Procedures: 

• Self-supervised learning to improve feature representation. 

• Regularization techniques like batch normalization. 

• Use of a diverse dataset for robust training. 

• Common Features/Techniques: 

• Self-supervised learning for enhanced feature learning. 

• Domain generalization techniques to improve 

performance across different domains. 

 

 

6. DL AND ML MODEL-BASED ASD 

IDENTIFICATION 

 

The expanded workflow encompasses crucial stages in 

leveraging ML and DL for autism detection and management. 

Commencing with comprehensive data collection, it 

underscores the necessity of assembling diverse datasets 

ranging from behavioral observations to medical records, 

neuroimaging data, and genetic information. Subsequently, 

the data preprocessing stage's emphasis on rectifying errors 

and standardizing features ensures the integrity of information 

before analysis. 

The incorporation of feature selection/extraction Figure 6 

signifies a pivotal step in the process, aiming to identify the 

most pertinent variables for autism detection. This involves 

leveraging statistical analyses or dimensionality reduction 

techniques to focus on the most informative aspects. The 

subsequent stages encompass model building and training, 

integrating appropriate ML/DL models such as SVM, CNN, 

or others based on the nature of the dataset and the problem at 

hand. The optimization of model performance through 

parameter adjustments is fundamental to enhancing accuracy 

and reliability. 

Validation, evaluation, and testing phases ensure the 

model's effectiveness and generalizability. These steps are 

crucial to validate the model's accuracy, precision, and recall 

on unseen datasets, gauging its readiness for practical 

application. Beyond diagnosis and classification, the 

workflow's extension toward consulting doctors/therapists and 

enhancing the quality of life emphasizes the broader scope of 

utilizing ML/DL approaches in holistic autism care. This 

extended approach focuses not only on identification but also 

on leveraging technology to aid professionals in diagnosis and 

supporting individuals with autism in their daily lives, 

ultimately contributing to their well-being. 

 

 
 

Figure 6. Workflow of ASD 

 

 

7. DISCUSSION 

 

7.1 Comparative studies 

 

Several studies have conducted comparative analyses of 

traditional ML algorithms and DL approaches for ASD 

detection. These studies provide valuable insights into the 

effectiveness, strengths, and limitations of each approach. 

1) Study A: SVM vs. CNN 

Findings: This study compared SVM with CNN for ASD 

detection using brain MRI data. 

• Strengths of SVM: Simplicity, less computationally 

intensive, effective with small to medium-sized 

datasets. 

• Weaknesses of SVM: Limited ability to capture 

complex patterns in high-dimensional data, such as 

those found in neuroimaging. 

• Strengths of CNN: Superior performance in 

capturing spatial hierarchies and complex patterns 

in neuroimaging data. 

• Weaknesses of CNN: Requires large datasets for 

effective training, computationally intensive, 

longer training times. 

• Performance Comparison: CNN achieved an 

accuracy of 85% while SVM achieved an accuracy 

of 75%. 
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2) Study B: Random Forest vs. DBN 

Findings: This study evaluated the performance of RF and 

DBN on facial expression recognition datasets for ASD 

detection. 

• Strengths of RF: Robustness to overfitting, easy to 

interpret, relatively fast to train. 

• Weaknesses of RF: Less effective in capturing non-

linear relationships compared to DL models. 

• Strengths of DBN: High accuracy in capturing 

complex features, capable of unsupervised 

pretraining. 

• Weaknesses of DBN: Requires significant 

computational resources, longer training times. 

• Performance Comparison: DBN achieved an 

accuracy of 92% while RF achieved an accuracy of 

80%. 

3) Study C: KNN vs. LSTM Networks 

Findings: This study compared KNN with LSTM networks 

for ASD detection using gesture and posture data. 

• Strengths of KNN: Simple implementation, 

effective for small datasets. 

• Weaknesses of KNN: Computationally expensive 

for large datasets, sensitivity to irrelevant features. 

• Strengths of LSTM: Effective in handling 

sequential data and temporal dependencies. 

• Weaknesses of LSTM: Requires large datasets, 

complex hyperparameter tuning. 

• Performance Comparison: LSTM achieved an 

accuracy of 88% while KNN achieved an accuracy 

of 72%. 
 

7.2 Relative strengths and weaknesses 

 

Traditional ML Algorithms: 

• Strengths: 

▪ Easier to implement and interpret. 

▪ Require less computational power and memory. 

▪ Perform well on smaller datasets with simpler 

patterns. 

• Weaknesses: 

▪ Limited ability to handle high-dimensional data and 

complex feature representations. 

▪ Often require manual feature extraction and 

selection. 

▪ Less adaptable to varying data types and structures. 

Deep Learning Approaches: 

 

• Strengths: 

▪ Superior performance in capturing complex and 

hierarchical patterns in large datasets. 

▪ Capable of automatic feature extraction and 

learning. 

▪ More adaptable to different data types (e.g., images, 

sequences). 

• Weaknesses: 

▪ Require large amounts of labeled data for training. 

▪ Computationally intensive and resource-

demanding. 

▪ Longer training times and more complex 

hyperparameter tuning. 

By comparing traditional ML algorithms with DL 

approaches, it is evident that DL models generally outperform 

traditional ML methods in terms of accuracy and feature 

representation capabilities, especially in high-dimensional and 

complex datasets such as neuroimaging and facial expression 

data. However, traditional ML algorithms remain valuable for 

their simplicity, interpretability, and efficiency, particularly in 

scenarios with limited data or computational resources. 

 

7.3 Potential clinical applications 
 

The application of ML and DL models in ASD detection 

holds significant promise for various clinical scenarios: 

1) Early Diagnosis and Intervention: 

• Importance: Early diagnosis of ASD is critical for 

timely intervention, which can significantly 

improve long-term outcomes for individuals with 

ASD. 

• Application: ML/DL models can analyze 

behavioral, neuroimaging, and genetic data to 

identify early markers of ASD, facilitating early 

diagnosis even before clinical symptoms become 

apparent. 

2) Personalized Treatment Plans: 

• Importance: ASD presents with a wide range of 

symptoms and severities, necessitating 

personalized treatment approaches. 

• Application: ML/DL models can analyze individual 

data to predict the most effective treatment plans, 

enabling personalized interventions tailored to the 

specific needs of each individual. 

3) Screening Tools: 

• Importance: Efficient screening tools are necessary 

to identify individuals at risk of ASD, especially in 

large populations. 

• Application: ML/DL models can be integrated into 

mobile applications or web-based platforms to 

provide quick and accessible screening for ASD, 

guiding users towards professional evaluation if 

necessary. 

4) Monitoring and Progress Tracking: 

• Importance: Continuous monitoring is essential to 

track the progress of individuals undergoing 

treatment for ASD. 

• Application: ML/DL models can be used to analyze 

data from wearable devices, video recordings, or 

other monitoring tools to assess behavioral changes 

and treatment efficacy over time. 

 

7.4 Feasibility of integration into current diagnostic 

pathways 

 

Integrating ML/DL tools into existing diagnostic pathways 

involves several considerations: 

1) Data Availability and Quality: 

• Challenge: High-quality, large-scale datasets are 

required to train robust ML/DL models. 

• Solution: Collaborations between healthcare 

institutions, research centers, and technology 

companies can facilitate data sharing and create 

comprehensive datasets for model training. 

2) Validation and Standardization: 

• Challenge: Ensuring the accuracy, reliability, and 

generalizability of ML/DL models across diverse 

populations and clinical settings. 

• Solution: Extensive validation studies and the 

development of standardized protocols for model 

testing and implementation are necessary to 
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establish trust and reliability in clinical use. 

3) Integration with Clinical Workflows: 

• Challenge: Seamlessly incorporating ML/DL tools 

into the existing diagnostic workflows without 

disrupting clinical routines. 

• Solution: Developing user-friendly interfaces and 

ensuring interoperability with existing electronic 

health record (EHR) systems can facilitate smooth 

integration. Training clinicians to use these tools 

effectively is also crucial. 

4) Regulatory and Ethical Considerations: 

• Challenge: Addressing regulatory requirements and 

ethical concerns related to data privacy, algorithmic 

transparency, and informed consent. 

• Solution: Adhering to regulatory guidelines, 

ensuring transparent and explainable model outputs, 

and implementing robust data protection measures 

are essential steps for ethical deployment. 

5) Cost and Accessibility: 

• Challenge: Making ML/DL tools cost-effective and 

accessible to a wide range of healthcare providers 

and patients. 

• Solution: Economies of scale, technological 

advancements, and funding support from 

government and private sectors can reduce costs 

and increase accessibility. 

• The integration of ML/DL models into clinical 

practice for ASD detection holds the potential to 

revolutionize early diagnosis, personalized 

treatment, and continuous monitoring. Addressing 

the challenges related to data quality, validation, 

workflow integration, regulatory compliance, and 

cost will be key to realizing the full potential of 

these advanced technologies in improving 

outcomes for individuals with ASD. 

 

 

8. CONCLUSION 

 

The comprehensive review underscores the pivotal role of 

ML, DL, and computational methodologies in transforming 

the landscape of ASD diagnosis and understanding. Across 

various studies employing diverse datasets, neuroimaging 

modalities, and behavioral analyses, the integration of 

advanced computational techniques has showcased promising 

advancements. ML and DL models, including CNNs, 

reinforcement learning, and clustering analyses, have 

demonstrated high accuracy rates in ASD detection, 

emphasizing their potential for early diagnosis and tailored 

therapeutic interventions. Moreover, the amalgamation of 

multi-modal data, such as facial images, EEG, and 

handwriting samples, coupled with innovative computational 

approaches, offers a pathway toward more precise and 

objective ASD identification. Furthermore, the integration of 

AI into healthcare, along with the analysis of neuroimaging 

data, presents a promising avenue for enhanced early 

prediction, which could lead to personalized interventions and 

improved clinical practices. Ultimately, all of the studies that 

have been reviewed demonstrate the revolutionary effects of 

computational methodologies in advancing ASD diagnosis, 

potentially revolutionizing clinical practices and significantly 

benefiting individuals with ASD in the long term. 

Our future scope is to improve, 

• Develop methodologies that effectively fuse data 

from various sources like MRI modalities, behavioral 

cues, and genetic information into a unified 

framework. Utilize advanced fusion techniques, such 

as DL-based multimodal architectures, to capture 

intricate patterns across diverse data sources, thereby 

enhancing diagnostic accuracy and providing a more 

comprehensive understanding of ASD-related 

characteristics. 

• Focus on longitudinal studies analyzing ASD-related 

data over time, such as brain MRI scans or behavioral 

patterns investigate how these characteristics evolve 

across different developmental stages, potentially 

identifying biomarkers or behavioral patterns that 

signify the onset or progression of ASD. 

• Develop advanced NLP techniques specifically 

tailored to understand the context and nuances of text 

data related to ASD. Aim for models that can 

comprehend the subtle semantic meaning of textual 

information, capturing the intricacies of ASD-related 

linguistic behaviors across diverse cultural contexts 

and age groups. 

• Collect a more extensive and diverse dataset that 

encompasses a wider range of gestures and postures 

displayed by individuals with ASD and TD across 

various age groups, cultural backgrounds, and 

developmental stages. This dataset expansion would 

provide a more comprehensive understanding of 

subtle variations in gestures and postures indicative 

of ASD. 

 

8.1 Key findings 

 

(1) High Accuracy of ML/DL Models: 

• ML and DL models, including CNNs, 

reinforcement learning, and clustering analyses, 

have demonstrated high accuracy rates in ASD 

detection, emphasizing their potential for early 

diagnosis and tailored therapeutic interventions. 

(2) Multi-Modal Data Integration: 

• The amalgamation of multi-modal data, such as 

facial images, EEG, and handwriting samples, 

coupled with innovative computational approaches, 

offers a pathway toward more precise and objective 

ASD identification. 

(3) Enhanced Early Prediction: 

• The integration of AI into healthcare, along with the 

analysis of neuroimaging data, presents a promising 

avenue for enhanced early prediction, which could 

lead to personalized interventions and improved 

clinical practices. 

 

8.2 Limitations 

 

• Data Quality and Availability: 

High-quality, large-scale datasets are required to 

train robust ML/DL models. Current studies often face 

challenges related to data heterogeneity and limited 

sample sizes. 

• Validation and Generalizability: 

Ensuring the accuracy and generalizability of 

ML/DL models across diverse populations and clinical 

settings remains a critical challenge. 

• Integration into Clinical Workflows: 

Seamlessly incorporating ML/DL tools into existing 
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diagnostic workflows without disrupting clinical 

routines requires careful planning and user-friendly 

interfaces. 

 
8.3 Potential impact 

 

Ultimately, all of the studies reviewed demonstrate the 

revolutionary effects of computational methodologies in 

advancing ASD diagnosis. The potential impact of these 

advancements includes: 

• Improved Early Detection: 

ML/DL models can significantly enhance the early 

detection of ASD, allowing for timely interventions 

that can improve long-term outcomes. 

• Personalized Interventions: 

The ability to analyze individual-specific data can 

lead to more personalized and effective treatment plans. 

• Objective and Precise Diagnosis: 

Integrating AI into diagnostic pathways can provide 

more objective and precise ASD identification, 

reducing the reliance on subjective assessments. 

 

 
ACKNOWLEDGMENT 

 

The authors would like to thank the editors and the 

reviewers. 

 

 

REFERENCES 

 

[1] Sree, S.R., Kaur, I., Tikhonov, A., Lydia, E.L., Thabit, 

A.A., Kareem, Z.H., Yousif, Y.K., Alkhayyat, A. (2023). 

Jellyfish search optimization with deep learning driven 

autism spectrum disorder classification. Comput Mater 

Continua, 74(1): 2195-2209. 

https://doi.org/10.32604/cmc.2023.032586 

[2] Talukdar, J., Gogoi, D.K., Singh, T.P. (2023). A 

comparative assessment of most widely used machine 

learning classifiers for analysing and classifying autism 

spectrum disorder in toddlers and adolescents. 

Healthcare Analytics, 3: 100178. 

https://doi.org/10.1016/j.health.2023.100178 

[3] Loh, H.W., Ooi, C.P., Oh, S.L., Barua, P.D., Tan, Y.R., 

Molinari, F., March, S., Acharya, U.R., Fung, D.S.S. 

(2023). Deep neural network technique for automated 

detection of ADHD and CD using ECG signal. Computer 

Methods and Programs in Biomedicine, 241: 107775. 

https://doi.org/10.1016/j.cmpb.2023.107775 

[4] Archana, P., Sirisha, G.N.V.G., Chaitanya, R.K. (2023). 

Prediction of autism spectrum disorder from high-

dimensional data using machine learning techniques. 

Soft Computing, 27(16): 11869-11875. 

https://doi.org/10.1007/s00500-023-08657-0 

[5] Omkari, D.Y., Shinde, S.B. (2022). Cardiovascular 

disease prediction using machine learning techniques 

with HyperOpt. In International Conference on 

Communication and Intelligent Systems. Singapore: 

Springer Nature Singapore, pp. 585-597. 

https://doi.org/10.1007/978-981-99-2322-9_44 

[6] RethikumariAmma, K.N., Ranjana, P. (2023). Pivotal 

region and optimized deep neuro fuzzy network for 

autism spectrum disorder detection. Biomedical Signal 

Processing and Control, 83: 104634. 

https://doi.org/10.1016/j.bspc.2023.104634 

[7] Lee, J., Lee, H., Shin, M. (2021). Driving stress detection 

using multimodal convolutional neural networks with 

nonlinear representation of short-term physiological 

signals. Sensors, 21(7): 2381. 

https://doi.org/10.3390/s21072381 

[8] Kumar, C.J., Das, P.R., Hazarika, A. (2022). Autism 

spectrum disorder diagnosis and machine learning: A 

review. International Journal of Medical Engineering and 

Informatics, 14(6): 512-527. 

https://doi.org/10.1504/IJMEI.2022.126522 

[9] Sharma, M., Kumar, C.J., Deka, A. (2022). Early 

diagnosis of rice plant disease using machine learning 

techniques. Archives of Phytopathology and Plant 

Protection, 55(3): 259-283. 

https://doi.org/10.1080/03235408.2021.2015866 

[10] Bhadra, S., Kumar, C.J. (2022). An insight into diagnosis 

of depression using machine learning techniques: A 

systematic review. Current Medical Research and 

Opinion, 38(5): 749-771. 

https://doi.org/10.1080/03007995.2022.2038487 

[11] Alpaydin E, (2020). Introduction to machine learning. 

MIT Press, Cambridge. 

[12] Scientific, L.L. (2024). Enhancing glaucoma diagnosis: 

Deep learning models for automated identification and 

explainability using fundus IMAGES. Journal of 

Theoretical and Applied Information Technology, 

102(13): 5346-5363. 

[13] Vadduri, M., Kuppusamy, P. (2023). Enhancing ocular 

healthcare: Deep learning-based multi-class diabetic eye 

disease segmentation and classification. IEEE Access, 11: 

137881-137898. 

https://doi.org/10.1109/ACCESS.2023.3339574 

[14] Vadduri, M., Kuppusamy, P. (2022). Diabetic eye 

diseases detection and classification using deep learning 

techniques-A survey. In International Conference on 

Information and Communication Technology for 

Competitive Strategies. Singapore: Springer Nature, 

Singapore, pp. 443-454. https://doi.org/10.1007/978-

981-19-9638-2_38 

[15] Shin, J., Konnai, S., Maniruzzaman, M., Hasan, M.A.M., 

Hirooka, K., Megumi, A., Yasumura, A. (2023). 

Identifying ADHD for children with coexisting ASD 

from fNIRs signals using deep learning approach. IEEE 

Access, 11: 82794-82801. 

https://doi.org/10.1109/ACCESS.2023.3299960 

[16] Raj, S., Masood, S. (2020). Analysis and detection of 

autism spectrum disorder using machine learning 

techniques. Procedia Computer Science, 167: 994-1004. 

https://doi.org/10.1016/j.procs.2020.03.399 

[17] Akter, T., Satu, M.S., Khan, M.I., Ali, M.H., Uddin, S., 

Lio, P., Quinn, J.M., Moni, M.A. (2019). Machine 

learning-based models for early stage detection of autism 

spectrum disorders. IEEE Access, 7: 166509-166527. 

https://doi.org/10.1109/ACCESS.2019.2952609 

[18] Hasan, S.M., Uddin, M.P., Al Mamun, M., Sharif, M.I., 

Ulhaq, A., Krishnamoorthy, G. (2022). A machine 

learning framework for early-stage detection of autism 

spectrum disorders. IEEE Access, 11: 15038-15057. 

https://doi.org/10.1109/ACCESS.2022.3232490 

[19] Vignesh, U., Suma, K.G., Elakya, R., Vinothini, C., 

Kumar, A.S. (2021). Classification techniques for 

behavior study of Autism spectrum disorder. Journal of 

Physics: Conference Series, 1964(3): 032008. 

2491



 

https://doi.org/10.1088/1742-6596/1964/3/032008 

[20] Vakadkar, K., Purkayastha, D., Krishnan, D. (2021). 

Detection of autism spectrum disorder in children using 

machine learning techniques. SN Computer Science, 2: 

1-9. https://doi.org/10.1007/s42979-021-00776-5 

[21] Shin, J., Maniruzzaman, M., Uchida, Y., Hasan, M.A.M., 

Megumi, A., Yasumura, A. (2023). Handwriting-based 

ADHD detection for children having ASD using machine 

learning approaches. IEEE Access, 11: 84974-84984. 

https://doi.org/10.1109/ACCESS.2023.3302903 

[22] Jaiswal, S., Valstar, M.F., Gillott, A., Daley, D. (2017) 

Automatic detection of ADHD and ASD from expressive 

behaviour in RGBD data. In 2017 12th IEEE 

international conference on automatic face and gesture 

recognition (FG 2017), Washington, USA, pp 762-769. 

https://doi.org/10.1109/FG.2017.95 

[23] Zhao, Z., Zhang, X., Li, W., Hu, X., Qu, X., Cao, X., Liu, 

Y., Lu, J. (2019). Applying machine learning to identify 

autism with restricted kinematic features. IEEE Access, 

7: 157614-157622. 

https://doi.org/10.1109/ACCESS.2019.2950030 

[24] Thabtah, F. (2019). An accessible and efficient autism 

screening method for behavioral data and predictive 

analyses. Health Informatics Journal, 25(4): 1739-1755. 

https://doi.org/10.1177/1460458218796636 

[25] Barnea-Goraly, N., Frazier, T.W., Piacenza, L., Minshew, 

N.J., Keshavan, M.S., Reiss, A.L., Hardan, A.Y. (2014). 

A preliminary longitudinal volumetric MRI study of 

amygdala and hippocampal volumes in autism. Progress 

in Neuro-Psychopharmacology and Biological 

Psychiatry, 48: 124-128. 

https://doi.org/10.1016/j.pnpbp.2013.09.010 

[26] Schumann, C.M., Hamstra, J., Goodlin-Jones, B.L., 

Lotspeich, L.J., Kwon, H., Buonocore, M.H., Lammers 

C.R., Reiss A.L., Amaral, D.G. (2004). The amygdala is 

enlarged in children but not adolescents with autism; The 

hippocampus is enlarged at all ages. Journal of 

Neuroscience, 24(28): 6392-6401. 

https://doi.org/10.1523/JNEUROSCI.1297-04.2004 

[27] Nordahl, C.W., Iosif, A.M., Young, G.S., Hechtman, A., 

Heath, B., Lee, J.K., Libero L., Reinhardt V.P., Winder-

Patel B., Amaral D.G., Rogers S., Solomon M., Ozonoff, 

S. (2020). High psychopathology subgroup in young 

children with autism: Associations with biological sex 

and amygdala volume. Journal of the American 

Academy of Child & Adolescent Psychiatry, 59(12): 

1353-1363. https://doi.org/10.1016/j.jaac.2019.11.022 

[28] Nordahl, C.W., Scholz, R., Yang, X., Buonocore, M.H., 

Simon, T., Rogers, S., Amaral, D.G. (2012). Increased 

rate of amygdala growth in children aged 2 to 4 years 

with autism spectrum disorders: A longitudinal study. 

Archives of General Psychiatry, 69(1): 53-61. 
https://doi.org/10.1001/archgenpsychiatry.2011.145 

[29] Stoodley, C.J. (2014). Distinct regions of the cerebellum 

show gray matter decreases in autism, ADHD, and 

developmental dyslexia. Frontiers in Systems 

Neuroscience, 8: 92. 

https://doi.org/10.3389/fnsys.2014.00092 

[30] Raja, K.C., Kannimuthu, S. (2023). Conditional 

generative adversarial network approach for autism 

prediction. Computer Systems Science & Engineering, 

44(1): 741-755. 

https://doi.org/10.32604/csse.2023.025331 

[31] Sabegh, A.M., Samadzadehaghdam, N., Seyedarabi, H., 

Ghadiri, T. (2023). Automatic detection of autism 

spectrum disorder based on fMRI images using a novel 

convolutional neural network. Research on Biomedical 

Engineering, 39(2): 407-413. 

https://doi.org/10.1007/s42600-023-00275-x 

[32] Ulaganathan, S., Ramkumar, M.P., Emil Selvan, G.S.R., 

Priya, C. (2023). Spinalnet-deep q network with hybrid 

optimization for detecting autism spectrum disorder. 

Signal, Image and Video Processing, 17(8): 4305-4317. 

https://doi.org/10.1007/s11760-023-02663-3 

[33] Lei, D., Zhang, T., Wu, Y., Li, W., Li, X. (2023). Autism 

spectrum disorder diagnosis based on deep unrolling-

based spatial constraint representation. Medical & 

Biological Engineering & Computing, 61(11): 2829-

2842. https://doi.org/10.1007/s11517-023-02859-2 

[34] Sherkatghanad, Z., Akhondzadeh, M., Salari, S., 

Zomorodi-Moghadam, M., Abdar, M., Acharya, U.R., 

Khosrowabadi, R., Salari, V. (2020). Automated 

detection of autism spectrum disorder using a 

convolutional neural network. Frontiers in Neuroscience, 

13: 1325. https://doi.org/10.3389/fnins.2019.01325 

[35] Nogay, H.S., Adeli, H. (2023). Diagnostic of autism 

spectrum disorder based on structural brain MRI images 

using, grid search optimization, and convolutional neural 

networks. Biomedical Signal Processing and Control, 79: 

104234. https://doi.org/10.1016/j.bspc.2022.104234 

[36] Bhandage, V., Muppidi, S., Maram, B. (2023). Autism 

spectrum disorder classification using Adam war strategy 

optimization enabled deep belief network. Biomedical 

Signal Processing and Control, 86: 104914. 

https://doi.org/10.1016/j.bspc.2023.104914 

[37] Parui, S., Samanta, D., Chakravorty, N., Ghosh, U., 

Rodrigues, J.J. (2023). Artificial intelligence and sensor-

based autism spectrum disorder diagnosis using brain 

connectivity analysis. Computers and Electrical 

Engineering, 108: 108720. 

https://doi.org/10.1016/j.compeleceng.2023.108720 

[38] Yin, W., Li, L., Wu, F.X. (2022). A semi-supervised 

autoencoder for autism disease diagnosis. 

Neurocomputing, 483: 140-147. 

https://doi.org/10.1016/j.neucom.2022.02.017 

[39] Ahammed, M.S., Niu, S., Ahmed, M.R., Dong, J., Gao, 

X., Chen, Y. (2021). Bag-of-features model for asd fmri 

classification using SVM. In 2021 Asia-Pacific 

Conference on Communications Technology and 

Computer Science (ACCTCS), Shenyang, China, pp. 52-

57. https://doi.org/10.1109/ACCTCS52002.2021.00019 

[40] Itani, S., Thanou, D. (2021). Combining anatomical and 

functional networks for neuropathology identification: A 

case study on autism spectrum disorder. Medical Image 

Analysis, 69: 101986. 

https://doi.org/10.1016/j.media.2021.101986 

[41] Zhan, Y., Wei, J., Liang, J., Xu, X., He, R., Robbins, 

T.W., Wang, Z. (2021). Diagnostic classification for 

human autism and obsessive-compulsive disorder based 

on machine learning from a primate genetic model. 

American Journal of Psychiatry, 178(1): 65-76. 

https://doi.org/10.1176/appi.ajp.2020.19101091 

[42] Liu, W., Liu, M., Yang, D., Wang, M., Tao, T. (2020). 

Automatic diagnosis of autism based on functional 

magnetic resonance imaging and elastic net. In 2020 

IEEE 5th Information Technology and Mechatronics 

Engineering Conference (ITOEC), Chongqing, China, 

pp. 104-108. 

2492



 

https://doi.org/10.1109/ITOEC49072.2020.9141766 

[43] Mostafa, S., Tang, L., Wu, F.X. (2019). Diagnosis of 

autism spectrum disorder based on eigenvalues of brain 

networks. IEEE Access, 7: 128474-128486. 

https://doi.org/10.1109/ACCESS.2019.2940198 

[44] Wang, M., Zhang, D., Huang, J., Yap, P.T., Shen, D., Liu, 

M. (2019). Identifying autism spectrum disorder with 

multi-site fMRI via low-rank domain adaptation. IEEE 

Transactions on Medical Imaging, 39(3): 644-655. 

https://doi.org/10.1109/TMI.2019.2933160 

[45] Fredo, A.J., Jahedi, A., Reiter, M., Müller, R.A. (2018). 

Diagnostic classification of autism using resting-state 

fMRI data and conditional random forest. Age, 12(2.76): 

6-41. 

[46] Heinsfeld, A.S., Franco, A.R., Craddock, R.C., 

Buchweitz, A., Meneguzzi, F. (2018). Identification of 

autism spectrum disorder using deep learning and the 

ABIDE dataset. NeuroImage: Clinical, 17: 16-23. 

https://doi.org/10.1016/j.nicl.2017.08.017 

[47] Vandewouw, M.M., Brian, J., Crosbie, J., Schachar, R.J., 

Iaboni, A., Georgiades, S., Nicolson, R., Kelley, E., 

Ayub, M., Jones, J., Taylor, M.J., Lerch, J.P., 

Anagnostou, E., Kushki, A. (2023). Identifying 

replicable subgroups in neurodevelopmental conditions 

using resting-state functional magnetic resonance 

imaging data. JAMA Network Open, 6(3): e232066. 
https://doi.org/10.1001/jamanetworkopen.2023.2066 

[48] Gao, K., Sun, Y., Niu, S., Wang, L. (2021). Unified 

framework for early stage status prediction of autism 

based on infant structural magnetic resonance imaging. 

Autism Research, 14(12): 2512-2523. 

https://doi.org/10.1002/aur.2626 

[49] Conti, E., Retico, A., Palumbo, L., Spera, G., Bosco, P., 

Biagi, L., Fiori, S., Tosetti, M., Cipriani, P., Cioni, G., 

Muratori, F., Chilosi, A., Calderoni, S. (2020). Autism 

spectrum disorder and childhood apraxia of speech: 

Early language-related hallmarks across structural MRI 

study. Journal of Personalized Medicine, 10(4): 275. 

https://doi.org/10.3390/jpm10040275 

[50] Saad, M., Islam, S.M.R. (2019). Brain connectivity 

network analysis and classifications from diffusion 

tensor imaging. In 2019 International Conference on 

Robotics, Electrical and Signal Processing Techniques 

(ICREST), Dhaka, Bangladesh, pp. 422-427. 

https://doi.org/10.1109/ICREST.2019.8644080 

[51] Ke, Q., Zhang, J., Wei, W., Damaševičius, R., Woźniak, 

M. (2019). Adaptive independent subspace analysis of 

brain magnetic resonance imaging data. IEEE Access, 7: 

12252-12261. 

https://doi.org/10.1109/ACCESS.2019.2893496 

[52] Talaat, F.M. (2023). Real-time facial emotion 

recognition system among children with autism based on 

deep learning and IoT. Neural Computing and 

Applications, 35(17): 12717-12728. 

https://doi.org/10.1007/s00521-023-08372-9 

[53] Singh, D., Rakhra, M., Aggarwal, S. (2022). Autism 

spectrum disorder detection using the deep learning 

approaches. In 2022 2nd International Conference on 

Technological Advancements in Computational 

Sciences (ICTACS), Tashkent, Uzbekistan, pp. 761-766. 

https://doi.org/10.1109/ICTACS56270.2022.9988442 

[54] Ahmed, Z.A., Aldhyani, T.H., Jadhav, M.E., Alzahrani, 

M.Y., Alzahrani, M.E., Althobaiti, M.M., Alassery, F., 

Alshaflut, A., Alzahrani, N.M., Al-Madani, A.M. (2022). 

Facial features detection system to identify children with 

autism spectrum disorder: Deep learning models. 

Computational and Mathematical Methods in Medicine, 

2022(1): 3941049. 

https://doi.org/10.1155/2022/3941049 

[55] Mujeeb Rahman, K.K., Subashini, M.M. (2022). 

Identification of autism in children using static facial 

features and deep neural networks. Brain Sciences, 12(1): 

94. https://doi.org/10.3390/brainsci12010094 

[56] Narala, M.S.V.S.K., Vemuri, S., Kattula, C. (2023). 

Prediction of autism spectrum disorder using efficient net. 

In 2023 9th International Conference on Advanced 

Computing and Communication Systems (ICACCS), 
Coimbatore, India, pp. 1139-1143. 

https://doi.org/10.1109/ICACCS57279.2023.10112807 

[57] Bhargavi, Y., Bini, D., Prince, S. (2023). AI-based 

emotion therapy bot for children with autism spectrum 

disorder (ASD). In 2023 9th International Conference on 

Advanced Computing and Communication Systems 

(ICACCS), Coimbatore, India, pp. 1895-1899. 

https://doi.org/10.1109/ICACCS57279.2023.10112868 

[58] Tao, Y., Shyu, M.L. (2019). SP-ASDNet: CNN-LSTM 

based ASD classification model using observer 

scanpaths. In 2019 IEEE International Conference on 

Multimedia & Expo Workshops (ICMEW), Shanghai, 

China, pp. 641-646. 

https://doi.org/10.1109/ICMEW.2019.00124 

[59] Kang, J., Han, X., Song, J., Niu, Z., Li, X. (2020). The 

identification of children with autism spectrum disorder 

by SVM approach on EEG and eye-tracking data. 

Computers in Biology and Medicine, 120: 103722. 

https://doi.org/10.1016/j.compbiomed.2020.103722 

[60] Guo, A.Z. (2020). Automated autism detection based on 

characterizing observable patterns from photos. IEEE 

Transactions on Affective Computing, 14(1): 836-841. 

https://doi.org/10.1109/TAFFC.2020.3035088 

[61] Lee, D.H., Yoo, J.H. (2023). CNN learning strategy for 

recognizing facial expressions. IEEE Access, 11: 70865-

70872. https://doi.org/10.1109/ACCESS.2023.3294099 

[62] Noroozi, F., Corneanu, C.A., Kamińska, D., Sapiński, T., 

Escalera, S., Anbarjafari, G. (2018). Survey on emotional 

body gesture recognition. IEEE Transactions on 

Affective Computing, 12(2): 505-523. 

https://doi.org/10.1109/TAFFC.2018.2874986 

[63] Yoo, C.H., Yoo, J.H., Kim, H.W., Han, B. (2023). 

Pointing gesture recognition via self-supervised 

regularization for ASD screening. In Proceedings of the 

IEEE/CVF International Conference on Computer 

Vision, pp. 3036-3043. 

[64] Prakash, V.G., Kohli, M., Kohli, S., Prathosh, A.P., 

Wadhera, T., Das, D., Panigrahi, D., Kommu, J.V.S. 

(2023). Computer vision-based assessment of autistic 

children: Analyzing interactions, emotions, human pose, 

and life skills. IEEE Access, 11: 47907-47929. 

https://doi.org/10.1109/ACCESS.2023.3269027 

[65] Hammoud, M., Kovalenko, E., Somov, A., Bril, E., 

Baldycheva, A. (2023). Deep learning framework for 

neurological diseases diagnosis through near-infrared 

eye video and time series imaging algorithms. Internet of 

Things, 24: 100914. 

https://doi.org/10.1016/j.iot.2023.100914 

[66] Patankar, R., Vedpathak, S., Thakre, V., Sethi, P., 

Sawarkar, S. (2022). AutiScan: Screening of autism 

spectrum disorder specific to Indian region. In 2022 

2493



 

IEEE 3rd Global Conference for Advancement in 

Technology (GCAT), Bangalore, India, pp. 1-8. 

https://doi.org/10.1109/GCAT55367.2022.9972038 

[67] Li, J., Zhong, Y., Han, J., Ouyang, G., Li, X., Liu, H. 

(2020). Classifying ASD children with LSTM based on 

raw videos. Neurocomputing, 390: 226-238. 

https://doi.org/10.1016/j.neucom.2019.05.106 

 

2494




