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A smart grid is a power distribution network that utilizes information and communication 

technologies to manage, track, and direct the flow of information between power generators 

and consumers. Only with dependable communication networks can a smart grid provide a 

wide range of electrical services while simultaneously streamlining and optimizing energy 

consumption. In a smart grid network, the Advanced Metering Infrastructure (AMI) sensor 

nodes detect, analyze, and communicate data; all of this activity necessitates energy, a finite 

resource that is crucial for the network's upkeep over time. Wireless mesh networks have 

the same trust issues that plague conventional distributed ad hoc networks. The proposed 

model considers the multi level trust models for the nodes for mitigating energy 

fluctuations. This research considers an Energy Efficient Multi Level Trust Model for Multi 

Route Selection with Rank based Route Clusters (EEMLTM-MRS-RRC) in Smart Grid that 

maintains multiple routes by considering the trust factors. The proposed model calculates 

the trust factor of nodes in smart grid by considering the internal and externals factors. The 

proposed model selects a cluster head node for analyzing and monitoring the internal and 

external factor of nodes in the network. The proposed model achieved 98.5% accuracy in 

Energy Consumption Reduction and 98.6% accuracy in Trusted Route Selection. The 

proposed model, when contrasted with traditional routing models, performs better in energy 

consumption reduction and route maintenance. 
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1. INTRODUCTION

Incorporating smart devices into the conventional grid 

allows for automated monitoring and control, as well as two-

way communication across systems known as the Smart Grid 

(SG) [1]. Like the conventional grid, the SG relies on 

distribution, transfer, and generation to function well. The 

establishment and ongoing development of the smart system 

is made feasible by the integration of the cyber infrastructure 

with the physical components of the traditional power systems 

[2]. Electric vehicles, energy from renewable sources, and 

various distributed power generators are just a few examples 

of the varied uses and integrations made possible by the Smart 

Grid [3]. 

Smart grid refers to an electrical network that tracks and 

manages the flow of power from power plants to homes and 

businesses using digital technologies [4]. Because it uses a 

wide range of Information and Communications Technology 

(ICT), it considerably improves the current electrical 

infrastructure. The goal is to make power distribution more 

efficient, less wasteful, and more responsive to changes in 

demand. 

In order to carry out their sophisticated functions, smart 

grids rely on a number of essential components: 

Smart Meters are devices that allow utilities and consumers 

to track power consumption in real-time. Users are able to 

make better judgments regarding their energy consumption 

using the data they supply on trends of energy usage. 

Integral to the smart grid are sensors and monitoring 

systems, which record information about energy flows, grid 

infrastructure health, and possible interruptions or outages. 

To improve operational efficiency and enable demand 

response capabilities, a system is needed to measure and 

analyze energy usage data in real-time. This system is known 

as AMI. 

Timely reactions to changes in energy demand or generation 

are ensured by robust ICT infrastructures that allow the secure 

transmission of data across different grid components. 

Technologies that produce energy on a smaller scale and 

add to the grid's overall energy mix are known as distributed 

energy resources (DER).  

Security of the Smart Grid is crucial because of the 

increased attack vector introduced by the cyber infrastructure's 

incorporation into the SG. As a result, studies have been 

conducted on subjects like routing, encryption, cryptographic 

key generation and management [5], privacy, risk assessment 

and trust of the nodes in the network. The level of trust inside 

the SG is crucial for determining the legitimacy of a given 

activity, transaction, or communication [6]. Devices attacked 

with malicious actions can be benefited from the use of trust 

in order to verify the safety of malicious commands before 

acting on them [7]. Next-generation electrical power systems, 
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or SGs are becoming increasingly popular because of the 

intelligence and efficiency they provide to the power grid [8]. 

Two-way communication between utilities, electrical devices, 

and software relies on a highly available network [9]. The 

availability of the smart grid communication system can be 

ensured by the use of redundant routes provided by the 

wireless mesh network technology. It is also a promising 

solution for smart grid because of its great degree of 

adaptability and scalability [10].  

The smart grid's stability is at risk due to rising electric 

demand and the increasing incorporation of renewable energy 

sources. A number of approaches aimed at regulating demand 

rather than boosting the supply's spinning reserve have been 

put forward as potential solutions to the energy fluctuations 

problem. Here, we zero in on dynamic demand control, a way 

that smart devices can self-adjust their operation schedules 

based on the electric frequency. The necessity to recover 

outstanding work raises the likelihood of big demand peaks, 

and hence huge frequency fluctuations, even though 

conventional control techniques can successfully mitigate 

small and medium size frequency fluctuations. Strategies to 

prevent these occurrences should be considered since, despite 

their rarity, they have the ability to cause the system to fail. 

Two-way communication between electrical utilities, 

electrical units, and electrical applications is made possible by 

the Smart Grid, a trend of the future generation electrical 

power grid. Market, customer, service provider [11], bulk 

generation [12], dispersion [13], operation, and transmission 

are several areas in which the Smart Grid standard is defined 

by the National Institute of Standards and Technology (NIST) 

[14]. Using data control transmission, the Smart Grid 

communication network anchors and links these domains 

together to enable interactive operation, with the ultimate goal 

of optimizing energy usage across power grids [15]. Smart 

Grid is the combination of the current electricity grid with the 

information and communication technology [16]. When it 

comes to supporting interactive operations among electrical 

services and applications, the communication network takes 

on increasing importance in the Smart Grid. With built-in 

reliability and durability in its topology, low-cost scalability 

[17], and flexibility [18], wireless networks are a viable 

infrastructure for Smart Grid. Packet latency and packet loss 

both rise when a network is experiencing attacks and other 

forms of instability. Since every action in a communication 

network requires energy [19], this would result in a net 

increase in the amount of power needed to accomplish the 

same task [20].  

Combining smart grid technology with the Internet of 

Things had many advantages that are: 

Enhanced Energy Efficiency: Smart grids make it possible 

to distribute and use energy more efficiently, which means less 

wasted energy and lower consumption overall. 

Enhanced Security Levels: Smart grids' ability to detect and 

react to attacks in real time enhances security, which in turn 

helps to protect vital infrastructure. 

Highly Scalable: The digital aspect of smart grids makes it 

easier to include renewable energy sources and future 

technologies, making them scalable and adaptable to shifting 

energy landscapes. 

Reduced Operating Expenses: Smart grids help utilities 

save money on operations by improving efficiency and cutting 

down on outages. This savings is then passed on to consumers 

as cheaper energy pricing. 

 

 
 

Figure 1. Complete SG layers architecture [19] 
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Figure 2. SG routing model [20] 

 

While the Smart Grid has great potential as an energy-

saving solution, the communication network's interactive 

operation and control will result in significant energy 

consumption [21]. To address these vulnerabilities and to 

improve energy efficiency by protecting against packet loss 

and long latency, a trust- based multi routing protocol is 

proposed that avoids delay in the smart grid in case of routing 

issues [22]. The proposed model is more effective in large 

wireless networks because it employs node trust information 

and selects the best routes with minimum energy consumption. 

Despite the presence of potential threats, SGs must still 

complete the task of transmitting data from one node to 

another throughout the network. Unpredictable environmental 

behavior, shifting network topologies, and shaky 

communication can all play a role in disrupting network 

services.  

SGs adaptability makes it useful in a wide range of settings. 

While different applications have varying needs for Quality of 

Service (QoS) parameters including throughput [23], energy 

efficiency [24], delay, etc., security is always a top priority. 

The characteristics of a program are the main factor in 

determining its safety [25]. However, smart networks require 

distinct approaches to security from those used in traditional, 

infrastructure-based networks. Furthermore, the features and 

QoS factors of each application domain are different. While 

multipath routing uses many paths to provide connectivity in 

the event of a link loss [26]. Additionally, route discovery is 

not always triggered when a link fails in a multipath routing 

system [27]. This is because, for small values of route ‘R’, the 

network is fault tolerant, meaning that the disruption of 

network services is not caused by a single failed connection 

[28]. The complete architectural layers of SG are shown in 

Figure 1. 

Multiple control systems and appropriate management 

including demand forecasting, technical maintenance, 

generation and transmission planning, etc. form the basis of 

the smart grid's steady operation. System operators have the 

critical responsibility of controlling the grid frequency to 

guarantee the grid's efficiency, dependability, and stability on 

a worldwide scale. A healthy supply-and-demand relationship 

between power generation and load/power consumption is 

crucial for frequency regulation. The frequency will increase 

if the supply is greater than the load, and it will decrease if the 

reverse is true. Because of the unpredictable nature of the load 

and the growing fluctuations of the supply as a result of 

renewable energy sources' incorporation, striking this 

equilibrium is challenging. Extra big fluctuations could be 

introduced if power lines go down or if a power plant fails. 

Therefore, conventional operation adjusts the supply side in 

response to a power imbalance by adjusting it to match the 

load. This necessitates that smart grid possess additional 

generation capacity, often known as spinning reserve, which 

enables them to adapt the power output in response to changes 

in frequency. In addition, standard grids use supplemental or 

non-spinning reserves that are connected to quick-response 

generating units that may be turned on in a matter of minutes. 

Although the terms are sometimes used interchangeably to 

refer to a risk-free system, distinguishing between trust and 

security is crucial to understanding the concept of trust. Trust 

between nodes is typically measured as an evaluation of the 

other nodes' dependability. As a result, it is important to 

employ measures beyond trust to keep networks safe. When it 

comes to SGs, there are a wide variety of behaviours that are 

considered malicious. As a result, the SGs needs a reliable 

method of discovering security issues [29]. Malicious nodes in 

SGs are able to successfully switch between states and launch 

attacks on the network's resources because of the nature of 

nodes participation in the communication. Therefore, it is 

crucial to maximize efficiency to choose which nodes will 

participate in the data transmission. Trust models are a solid 

method for accomplishing this goal. Models like this can aid 

nodes in detecting harmful activity and making the right 

choices [30]. The trust-based routing models in SG is shown 

in Figure 2. 

Limitations in areas like power, storage, memory, and 

computation have led to the discussion of how to quantify 

node trust [31]. Because of this, it is crucial that scalable trust 

models be made available that account for these constraints. In 

this research, a decentralized trust model in which nodes 

employ both direct and indirect measures of trust is 

considered, and where no node keeps any trust values other 

than those of its neighbours. Therefore, the model's 

reproducibility is enhanced by this method of trust and 

distribution measurement. Nodes cluster for a variety of 

reasons, including proximity to one another and energy levels 

[32]. Another crucial consideration is the degree of trust. To 

enhance SGs security, it is crucial to provide an energy-aware 

trust mechanism with low complexity and overhead. Bayesian 

analysis is generally used for establishing route in networks.  

Using probability statements, Bayesian analysis provides 

answers to research issues involving unknown parameters. 

Bayesian analysis fails to disclose which node should be 

chosen as a routing priority. The ability to convert one's own 

personal set of beliefs into a formalized mathematical prior is 

crucial for performing Bayesian inferences. The inference 

procedure of the model may take some time. If there is a large 

amount of available data for smart grid node data, the Bayesian 

strategy is not worthwhile, and the regular probability 

approach can accomplish the work more efficiently. The 

proposed methodology employs the Enhanced Maximum 

Likelihood Estimation technique to compute the direct and 

indirect trust of smart grid nodes. The estimators of the shape-

scale node parameters were derived using the enhanced 

technique. This research considers an EEMLTM-MRS-RRC in 

Smart Grid that maintains multiple routes by considering the 

trust factors. The main contributions of this research are: 

•We proposed a novel trust calculation model that calculates 
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the direct and indirect trust calculation of each node in SG 

using Enhanced Maximum Likelihood Estimation model. To 

do this, we maximize a likelihood function so that the observed 

data of a node is the most probable for picking that node into 

the routing process, given the stated statistical model. The 

estimators of the shape-scale family parameters were derived 

using the enhanced technique and compared to Bayesian 

estimators depending on the informational and kernel 

priorities. 

•We designed a model for selecting network head evaluator 

node among the trusted nodes. The Manhattan distance model 

is used to calculate the distance among the trusted nodes and 

node that is nearer to the threshold number of nodes is 

considered as an evaluator node. 

•The nonlinear knapsack problem is applied on the trusted 

nodes to select the best trusted nodes by ranking them and 

Trust Linked Probabilistic Controller (TLPC) is applied to 

select the multiple trusted shortest routes in the network for 

improving the network reliability during link issues. 

 

 

2. LITERATURE SURVEY 

 

The Industrial Internet of Things (IIoT) is useful for a wide 

variety of industrial tools and machinery, including robots, 

medical equipment, and SDM systems. Although the IIoT has 

great promise, there is room for development in the following 

areas: connectivity, security, privacy, heterogeneity, 

scheduling, and energy consumption of the networks. The 

intermittent nature of the nodes and the widespread use of IIoT 

has reduced the lifetime of the networks and introduced 

energy-limited units into them. It is also believed that the best 

approach to address the privacy and security issues raised by 

the IIoT design is to use safe routing algorithms. For a cluster-

based IIoT environment, Nagappan et al. [1] proposed a 

method called TAMOMO-SCRP, which stands for trust-aware 

multiobjective metaheuristic optimization based secure 

clustering with route planning. The TAMOMO-SCRP 

approach, proposed for use in routing and clustering, is mainly 

concerned with the creation of bald eagle search (BES) 

algorithms.  

For transportation planning to be intelligent, a trustworthy 

and safe transportation service is essential. In order to curb the 

wasteful consumption of computer resources, Li et al. [2] 

implemented and improved the trust model. In addition, the 

author introduced a Trusted Parallel Optimization on Route 

Planning (T-PORP) that utilizes a Dual-level Grid (DLG) 

index. This optimization method enables users to continuously 

handle the route planning process in parallel. The author 

periodically estimated road weights taking into account the 

ever-changing traffic conditions using a Long Short-Term 

Memory (LSTM) neural network. 

There are already billions of connected devices and smart 

things in use, and that number will only grow. Encryption and 

protection are prerequisites for the transmission of the vast 

quantities of data produced by IoT devices over the network. 

Certification bodies allow users to confirm the legitimacy of a 

node in a network by linking its public key to its self-reported 

identity. Hameed et al. [3] proposed utilizing blockchain 

technology. The suggested method for managing keys and 

trust in IoT networks is shown to be scalable by the 

presentation of an effective proof-of-concept. The proposed 

approach is evaluated by measuring the throughput and the 

access time delay.  

A dependable service provisioning method for Safe-as-a-

Service (Security as a Service) infrastructure in IoT-based ITS 

was proposed by Dass et al. [4]. Decision virtualization is a 

common approach used by Safe-as-a-Service platforms to 

make personalized safety-related decisions in real-time, 

allowing them to meet the demands of their numerous 

customers. The author considered the transportation sector as 

a potential setting for Software as a Service (SaaS) to enable 

trustworthy decision-making. However, the dependability of 

the data channel and the confidentiality settings of all involved 

sensor nodes impact the efficacy and accuracy of the 

subsequent judgments. The author laid up a framework for 

evaluating trust in order to ascertain the veracity of the data 

generated by these nodes.  

Quality of Experience (QoE) enhancement routing (QER) 

was introduced by Li et al. [5] as a smart protocol based on 

collaborative theory. Prior to delving into the possible 

applications of MWN, a comprehensive examination of the 

key factors influencing the data transmission procedure is 

offered. In order to find the optimal routing strategy based on 

real-time network data, the QER protocol uses two steps: 

collaborative observation and smart decision. Detailed 

procedures are provided that correlate to the capabilities of the 

system. Third, in order to compare and contrast their 

performance, the author included three distinct routing 

mechanisms into QER. In order to conduct tests, realistic 

settings are established. The system was able to intelligently 

execute the optimum strategy according to the outcomes of 

these performance tests. 

Elastic optical networks (EONs) are an exciting new optical 

technology that could revolutionize the way the Internet 

handles data transfer and connectivity in the future. This is 

especially true when thinking about how ideas like the Internet 

of Things (IoT), the Tactile Internet, and Industry 4.0 will 

impact this landscape. Each optical circuit or light path is 

independently furnished in this network design by use of 

superchannels with configureurable bit rates. Following a 

review of relevant literature, Ruiz et al. [6] introduced multi-

path best-fit (MP-BF), a novel RMSA method that leverages 

EONs' adaptability through the integration of a spectrum 

assignment technique with a split-spectrum multi-path 

strategy. 

 

 

3. PROPOSED MODEL 

 

The SG is an advanced electrical distribution network. Its 

advanced communication capabilities can boost system 

efficiency, reduce energy use, and ensure consistent service 

delivery, and network integration is a key component [33]. The 

routing protocol is a major challenge in the development of 

SG's communication networks because of the specifics of the 

deployed environment and other SG characteristics. Home 

area networks (HANs) and neighborhood area networks 

(NANs) are two types of networks that make up the smart 

grid's communication backbone, and they were the focus of 

extensive analysis of routing protocols [34]. HAN protocols 

can be broken down further into those that employ wireless 

communication. The Medium Access Control (MAC) 

protocols they use determine how they are built, how much 

they cost, and how fast they can move data [35]. Application 

needs, such as those for dependability, security, and quality of 

service, are taken into account when classifying routing 

protocols for NANs in addition to the underlying 
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communication used for routing.  

The AMI application's unique routing protocols have 

attracted a lot of attention from researchers; these protocols 

pose the biggest threat to the smart grid's NAN usage. The 

Internet of Things (IoT) has emerged in several sectors in the 

last several years, including transportation, healthcare, and 

even academia. The Internet of Things (IoT) integrates several 

services to achieve its goals [36]. The goal of these services is 

to give consumers convenient, personalized experiences 

through smart actions that connect their devices to the physical 

environment. Because of the tremendous advancements in 

modern technology, attacks have grown increasingly common 

and complex. Malicious actors sometimes exploit the diversity 

of the Internet of Things (IoT) to cause confusion among 

consumers regarding the reliability and safety of their 

connected devices, as well as the service they provide. Trust is 

thus a security concern for IoT smart services.  

To identify questionable behaviour and distinguish between 

harmful objects, trust management strategies have been widely 

used in recent years. Nevertheless, these technologies still 

have a way to go before they can fully address complex 

problems, such as dealing with large amounts of data or 

unpredictable behaviours. Security is a top priority in SG-

based communications because of the large range of linked 

devices. This study presents a novel trust-assuring approach 

that considers a broad variety of contextual parameters, 

including the interactions between individual nodes and their 

power states, in response to the challenges of SG network 

security. It is also advised to use a minimum hop count 

approach to select a route that requires the least amount of 

processing time. This study develops a composite routing 

metric that considers all of these criteria when determining 

which node to employ as the subsequent link in a 

communication chain. As a method for improving security, 

trust management helps protect data and user privacy. 

Verifying the trustworthiness of nodes before granting them 

permission to request help is crucial for SG security.  

The distribution of fluctuations' probabilities changes, with 

huge tails introduced, due to the need to recover outstanding 

work. Consequently, even though the energy balancing model 

is effective in decreasing small and medium size fluctuations, 

the likelihood of uncommon occurrences causing big 

frequency variations becomes non-negligible. An unsafe 

unforeseen effect of small-level load balancing could cause the 

smart grid to go down. Afterwards, methods to prevent such 

unintended consequences must be considered. In this research, 

proper communication between smart devices, either directly 

or via a hub, is an easy way to minimize or eliminate excessive 

frequency variations caused by the necessity of recovering 

unfinished tasks is considered. In contrast to other efforts, the 

suggested method is primarily concerned with coordinating 

the switching of various devices in order to maintain a constant 

cluster power consumption through the exchange of very little 

data. 

The node in need of assistance checks the reliability of its 

neighbours before passing information along to them. The 

fundamental issue with current trust definition approaches is 

that they do not easily allow for the development of metrics 

and evaluation frameworks. The challenges of identity 

administration and access control are also directly tied to the 

criteria of satisfaction or trust. Taking into account the 

multifaceted technique to evaluate the trustworthiness of SG 

nodes, this research provides a novel trust-aware routing 

framework for SG networks. To describe a node's 

trustworthiness in an SG network, the multi-level trust 

approach took into account both its communication trust and 

its energy trust. Additionally, multiple paths are picked based 

on the hop count for a given source and destination node pair. 

The suggested method is resilient against resource limits and 

security constraints since it takes into account multiple 

variables in choosing a forwarding node. Whereas traditional 

methods only addressed one of these two issues, energy or 

security, at a time. The proposed model architecture is shown 

in Figure 3. 

 

 
 

Figure 3. Proposed model architecture 

 

A control system that reduces the frequency stability impact 

of electric power on the grid could be an asset to a smart grid. 

For lower electric supply, the smart grid can control load. 

When called upon, the smart grid may regulate the amount of 

electricity generated by renewable sources. While auxiliary 

appliances aren't required for load balancing applications, 

power losses can happen based on factors including energy 

fluctuation amplitude, smoothing level, and frequency of 

balanced power fluctuations. To lessen the fluctuations, 

trusted nodes are considered and clusters are generated. Ranks 

are allocated to the clusters for the effective load balancing in 

the selected route. 

There are a number of benefits to using Manhattan distance 

and the nonlinear knapsack problem (NKP) for smart grid 

route selection. While NKP is great at improving resource 

allocation and satisfying different constraints, Manhattan 

distance is great at computing efficient routes in grid-like 

systems. Utilizing these approaches can greatly improve smart 

grid solutions, which in turn improve operational efficiency 

and electricity distribution dependability. 

Because it is both simple and computationally efficient, 

Manhattan distance is ideal for use in smart grid route 

selection. Since most urban infrastructure only allows for 

horizontal and vertical mobility, this metric—which measures 

the distance between two places in a grid-like pattern—works 

wonderfully with it. Smart grid systems can find the quickest 

routes for distributing energy by using Manhattan distance, 

which reduces travel time. 

One area where the nonlinear knapsack problem shines is in 
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smart grid route selection optimization for resources. To 

maximize energy savings while limiting operational expenses, 

for example, are two examples of nonlinear constraints and 

goals that NKP excels at handling. Because smart grids must 

frequently weigh opposing concerns like cost, environmental 

effect, and dependability, this capacity is crucial. 

 

 
 

Figure 4. Proposed model workflow 

 

Table 1. Notations 

 
Notation Description 

Δ Packets Received 

Λ Packets Sent 

Β Packet Delivery Rate 

Γ Energy Allocated 

Τ Energy Consumed 

Α Transmission Rate 

µ Delay Level 

Ω Loss Level 

N( ) Smart Grid Node 

Σ Computational Level 

N Current node 

M Total Nodes in SG 

Th Threshold Value 

Ξ Time Instant 

DT Direct Trust 

IDT Indirect Trust 

Π Maximum Likelihood Estimator 

TF Trust Factor 

NC Node Capabilities 

Ƭ Manhattan Distance 

RS Route Selection 

𝜑 Route Ranking 

 

For smart grids to function properly, the supply and demand 

for electricity must be constantly tracked. Smart grids can 

make rapid modifications to power generation and 

transmission techniques to preserve energy balance with the 

use of energy demand forecasting models, which estimate 

future loads and energy supply. Smart grids face difficulties 

with the unpredictability and unreliability of renewable energy 

sources. The proposed model flow of work is shown in the 

Figure 4. 

The smart grid node's own perception in unrestricted mode 

is the basis for a direct trust relationship. In a wireless network, 

a node can interact directly with any other node and receives 

any traffic within its radio range regardless of how the data 

was originally routed. In the smart grid network, an indirect 

trust relies on the other node or recommender for 

communication. With indirect trust, one node contacts another 

via the network's recommender nodes. This trust model 

illustrates indirect trust by demonstrating how to communicate 

with smart grid nodes that have already been installed 

throughout a network. The node trust calculation algorithm 

calculates trust of each node by considering the internal and 

external parameters. The notations represented in the proposed 

mathematical models are indicated in Table 1. 

 

Algorithm Node_Trust_Calculation 

{ 

Consider a smart grid SG that contains nodes 

{SGN1,SGN2,…..,SGNM}. The energy γ is allocated to the 

smart grid. 

The nodes information in the network will be gathered and 

processed. The nodes data will be maintained by the network 

authority. The node information is used to communicate with 

the node and also to monitor the nodes in the network. The 

node information processing is performed as 

 

𝑁𝑅[𝑀] = ∑ 𝑝ℎ𝑦𝑎𝑑𝑑𝑟(𝑁(𝑛)) +
𝜏(𝑁(𝑛))

𝛾
+ 𝛼 + 𝑇ℎ

𝑀

𝑛=1

 

 

A trust value will be assigned to each node in the network 

that processes data. Packet transmission ratio, end-to-end 

delay, throughput, and normalized routing overhead are some 

of the metrics used to determine a node's trust factor. The 

calculation of the trust factor will involve determining the 

nodes' direct and indirect trust. The direct and indirect trust of 

the nodes are calculated as 

 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒(𝛼)[𝑀] = ∑
𝜆(𝑁(𝑛))

𝜔(𝑁(𝑛))
+ 𝛼(𝑁(𝑛))

𝑀

𝑛=1

 

 

𝐿𝑜𝑠𝑠𝑅𝑎𝑡𝑒(𝜔)[𝑀] = ∑ 𝜆(𝑁(𝑛)) − 𝛿(𝑁(𝑛))

𝑀

𝑛=1

 

 

𝐷𝑒𝑙𝑎𝑦𝐿𝑒𝑣𝑒𝑙(µ)[𝑀] = ∑ ξ(λ(N(n))) − ξ(δ(N(n)))

𝑀

𝑛=1

 

 

𝐷𝑖𝑟𝑒𝑐𝑡𝑇𝑟𝑢𝑠𝑡 (𝐷𝑇)[𝑀] = ∏
𝛿(𝑁(𝑛))

𝜆(𝑁(𝑛))

𝑀

𝑛=1

 

−
∑ 𝛽(𝑁(𝑛)) ∗ 𝛿(𝑁(𝑛))𝑀

𝑛=1

𝜆(𝑁(𝑛)) ∗ ξ(λ(N(n))
 

 

𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑇𝑟𝑢𝑠𝑡(𝐼𝐷𝑇)[𝑀] 

= ∏
𝜎(𝑁(𝑛))

𝑀
∗ (𝛾(𝑁(𝑛)) − 𝜏(𝑁(𝑛)))

𝑀

𝑛=1

 

 

In order to determine a node's ultimate trust degree levels, 

the proposed method use the Enhanced Maximum Likelihood 

Estimation model for both direct and indirect trust calculations 

within the smart grid. Enhanced maximum likelihood 
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estimation can be employed to estimate the requirements of an 

assumed probability distribution using some observed data 

from smart grid nodes. This is accomplished by maximizing a 

probability function such that, according to the specified 

statistical model, the information that is observed of a node is 

most likely to be used to select that node for the routing 

process. 

The likelihood function LF(ε; M) for M node sin the smart 

grid contains the data to be transmitted and unknown attributes 

in the network is represented as ŋ=(λ, δ) and the data packets 

{dp1,dp2,….,dpL}. The maximum likelihood estimator (ϖ)is 

represented as 

 

𝑑𝑥

𝑑𝑦
(𝑀) = ∑ 𝐹(ŋ, 𝜆) + max(𝐷𝑇) + max(𝐼𝐷𝑇)

𝑀

𝑛=1

 

+
𝛼

𝜔
𝑤𝑖𝑡ℎ𝑡ℎ𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑛𝑜𝑑𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑠ŋ(𝛿) = max(𝛼) 

 

The enhanced maximum likelihood estimation is performed 

to calculate the final trust value as 

 

𝑑𝑥

𝑑𝑦
(𝑀) = ∑ max (

𝑀

𝑛=1

𝑑𝑥

𝑑𝑦
(𝑛)) + 𝐹(ŋ, 𝛿) +

max(𝐷𝑇)

min(𝐷𝑇)
+

max (𝐼𝐷𝑇)

min (𝐼𝐷𝑇)
 

𝑇𝑟𝑢𝑠𝑡𝐹𝑎𝑐𝑡𝑜𝑟(𝑇𝐹)[𝑀] = ∑ max (

𝑀

𝑛=1

𝑑𝑥

𝑑𝑦
(𝑛)) 

 

A DT and IDT based trust estimation is one that is more 

than threshold 0.5, where trust values typically range from 0 

to 1. If the nodes trust values sum to 1, it has the highest level 

of trustworthiness possible. If a device's estimated trust value 

is below 0.5, it is seen as displaying selfish conduct or being 

malevolent; devices with trust ratings below 0.3 are flagged as 

potentially harmful. If a device's trust score is zero, it is the 

most malevolent device, exhibiting the worst possible 

behavior or generating the greatest possible number of 

packets, hence posing an unlimited flood threat to the network. 

The energy consumption levels of the nodes with their trust 

values are calculated. The energy consumption of the nodes is 

calculated based on the node capabilities. The node behaviour 

will reflect the energy consumption levels. The energy 

consumption levels of each node are calculated as 

 

𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝜏)[𝑀] 

= ∑[𝛾(𝑁(𝑛)) + 𝜏(𝑁(𝑛))] ∗ 𝛼(𝑁(𝑛))

𝑀

𝑛=1

 

} 

 

Psecudocode: EEMLTM-MRS-RRC 

γ=100MW 

α=100mbps 

Trth=70mbps 

Th=30 

Counter=1 

Rank=1 

Rth=80 

Trust TTh=75 

Disth=25 

Dth=10ms 

NCth=50 

ITh=65 

Msg[M]=getData(SGset) 

For each node SGNi  in SGset 

For i in SGset 

addr[i]=phyaddr(SGNi) 

τ=ener(SGNi) 

re=γ(SGNi)-τ(SGNi) 

Nodereg[i]=addr[i]+τ[i]+re[i] 

i=i+1 

End for 

For j in SGset 

α[j])=δ(j)-ω(j)+α(j) 

loss[j]=λ(j)-δ(j) 

For k in SGset 

IV=δ(j)/λ(j) 

DT[k]=IV- 

For f in range(k) 

DT[f]=IV(k)-((β(k)*δ(k)/ξ(k)*λξ(k)) 

IK[f]=σ(k)/range(SGset) 

IDT[f]=IK(f)*(γ(k)-τ(k)) 

f=f+1 

k=k+1 

end for 

j=j+1 

end for 

i=i+1 

end for 

For each node Ni in SGset 

If ((DT(Ni)>=75) && (IDT(Ni)>=65)) 

NodeTID=1 

else 

NodeTID=0 

i=i+1 

End for 

For each node H in SGset 

if(ŋ(𝛿) == max (𝛼)) 

MLF[H]=max(DT(H))+max(IDT(H))+(α/ω) 

Tf[H]=(max(DT)/min(DT))+(max(IDT)/min(IDT)) 

Ener[H]=(γ(H)+τ(H))*α(H) 

H=H+1 

End for 

For each node Ni in SGset 

If((α(Ni)>=Trth) && (ω(Ni)<0.5))&&(µ(Ni)<dth) 

NC[Ni]=counter 

Else 

NC[Ni]=0 

Counter=counter+1 

i=i+1 

End for 

For each node Ni in SGset 

For i range (SGset) 

For j in range(i) 

ManHD[Ni]=(j+1-j)/(i+1-i) 

If((ManHD(Ni)<disth)&&(NC(i)>NCth)) 

NHEN[Ni]=NodeTID(Ni) 

i=i+1 

j=j+1 

End for 

End for 

End for 

For each node Ni in SGset 

For i range (SGset) 

For j in range(i) 

If(ManHD(Ni)<disth)&&(NC(i)>NCth)) 

If(((α(Ni)>=Trth) && (ω(Ni)<0.5))&&(µ(Ni)<dth)) 

Rank(Ni)=Rank 
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If(Rank(Ni)>=Rth) 

RS[i][j]=NodeTID(Ni)(i)(j) 

Else  

Continue 

Rank=Rank+1 

i=i+1 

J=j+1 

End for 

End for 

End for 

End for 

 

The proposed approach chooses a node to act as the 

Network Head Evaluator Node (NHEN), keeping monitoring 

on everything and pinpointing the safest possible path through 

the network. The Manhattan distance is used to determine the 

top dog smart grid head node.  The Manhattan distance is a 

standard unit of measurement that adds together the x and y 

separations between points. The proposed model performs 

ranking of trusted nodes in the SG. Nonlinear knapsack 

problem is used to rank trusted nodes. The knapsack problem 

is a combinatorial optimization problem in which one is given 

a set of nodes, each of which has a weight and a value, and one 

must choose which nodes to include in the routing process so 

that the sum of the weights is less than or equal to a given limit 

and the sum of the values is as large as possible while still only 

including trusted nodes. 

 

Algorithm NHEN_Selection 

{ 

The trust factor of each node is calculated and based on the 

trust factor, based on energy consumption, the nodes 

capabilities are calculated. The individual node capabilities are 

calculated as 

 

𝑁𝑜𝑑𝑒𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠(𝑁𝐶)[𝑀] = ∑ 𝑔𝑒𝑡𝑎𝑡𝑡𝑟(𝑁𝑅(𝑛))

𝑀

𝑛=1

 

𝑁𝐶 ← {
𝑁𝐶 ← max (𝛼(𝑁(𝑛)) + min (𝜔(𝑁(𝑛)) + min (µ(𝑁(𝑛))

𝑁𝐶 ← 0                                                                     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

The node distance with other nodes is calculated using the 

manhattan distance and the node which has nearer distance to 

maximum nodes in the trusted node set is considered as NHEN 

node. The manhattandistance of nodes is calculated among 2 

nodes SGNi and SGNj that are in the location points 

(SGN(X1), SGN(Y1)) and (SGN(X2), SGN(Y2)) as 

 

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(ƭ) = ∑
∑(𝑋2 − 𝑋1)

∑(𝑌2 − 𝑌1)

𝑀

𝑛=1

 

+|𝑆𝐺𝑁(𝑋𝑛) − 𝑆𝐺𝑁(𝑋𝑛+1)| 
+|𝑆𝐺𝑁(𝑌𝑛) − 𝑆𝐺𝑁(𝑌𝑛+1)| 

 

The proposed model selects a node from the available 

trusted nodes a network head evaluator node. This NHEN is 

selected from the trusted nodes which has the highest 

capabilities. The NHEN node selection is performed as 

 

𝑁𝐻𝐸𝑁[𝑀] = ∑
max (𝑁𝐶(𝑁(𝑛)))

𝑀
+ min (𝑆𝐺𝑁(ƭ))

𝑀

𝑛=1

 

{
ƭ ← min (𝑁𝐶(GN(X1), SGN(Y1))

𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

} 

In this research, a Trust Linked Probabilistic Controller 

(TLPC) model is used to find multiple minimum-distance 

routes that include only trusted nodes. This research proposed 

an EEMLTM-MRS-RRC in Smart Grid considering all the 

factors that maintains multiple routes by considering the trust 

factors. The proposed model is divided into three modules. 

Initially the node t rust calculation algorithm is implemented 

for processing node information and the node trust 

calculations are performed. After trust factors are calculated, 

the NHEN selection is performed that monitors the entire 

network. Finally, the TLPC module selects the best minimal 

distance trusted route and energy consumption levels are 

calculated. 

 

Algorithm Trust_Linked _Probabilistic_Controller 

{ 

The distance-based route selection process is performed that 

is used for communication. The distance-based route selection 

process is performed as: 

 

𝑅𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑅𝑆)[𝑀] = ∑ max(𝑁𝑅(𝑛))

𝑀

𝑛=1

 

+min (ƭ(𝑁(𝑛), ƭ(𝑁(𝑛 + 1)) + min (𝜏(𝑁(𝑛), 𝑁(𝑛 + 1))) 

 

𝑅𝑆 ← {
𝑅𝑆[ ] ← max(𝛼) + max(𝐷𝑇, 𝐼𝐷𝑇) + min(𝜔)

+ min(ƭ) + 𝑁𝐻𝐸𝑁(𝑁(𝑛))
𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒                                                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

The selected routes based are distance is considered for final 

selection for multiple routes. The Nonlinear knapsack problem 

is used to rank the selected routes. The process of route ranking 

is performed using nonlinear knapsack problem with nodes 

count Ni (max) with a probability function Probf(max) is 

performed as 

 

𝑃𝑟𝑜𝑏𝐹[𝑀] = ∏ 𝑚𝑎𝑥 {∑ 𝑅𝑆𝑛

𝑀

𝑛=1

𝑀

𝑛=1

 

∗ 𝑁𝑛| ∑[min(𝜔) + min(𝜏)] ≥ 𝑇ℎ

𝑀

𝑛=1

 

 

The nonlinear knapsack problem is represented as 

 

NKP[M] = max ∑ 𝑃𝑟𝑜𝑏𝐹(𝛿, 𝜆) ∗ ∑ max (𝑃𝑟𝑜𝑏𝐹(

𝑀

𝑛=1

𝑀

𝑛=1

ᵠ, σ) 

𝑅𝑜𝑢𝑡𝑒𝑅𝑎𝑛𝑘(ᵠ) = ∑
𝑀𝑎𝑥(𝑁𝐶(𝑛, 𝑛 + 1))

𝑀

𝑀

𝑛=1

 

+
max(𝑁𝐾𝑃(𝑛))

max(𝑃𝑟𝑜𝑏𝐹)
+ max(𝑅𝑆(𝑛, 𝑛 + 1)) + max(𝐷𝑇) 

+ max(𝐼𝐷𝑇) + min (𝜏(𝑛, 𝑛 + 1)) 

 

Step-3: The TLPC model is applied on the selected routes 

based on ranks. The proposed model considers minimum 

distance routes that include only trusted nodes. The multiple 

route selection process is performed as: 

 

𝑀𝑅𝑆[𝑀] = ∑ ∑ 𝑠𝑒𝑙𝑒𝑐𝑅𝑜𝑢𝑡𝑒

𝑀

𝑗=1

[𝑖][𝑗](max(ᵠ))

𝑀

𝑖=1

 

𝑀𝑅𝑆 ← {
𝑀𝑅𝑆[𝑖][𝑗] ← max(ᵠ) + max(𝑁𝐾𝑃(𝑛)) +

max(𝑃𝑟𝑜𝑏𝐹) + min(ƭ)
𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

} 
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4. RESULTS 

 

Trust is an intangible concept whose meaning changes over 

time and across contexts, influenced by both concrete and 

intangible factors. Because of this, it is clear that trust is a 

multifaceted notion that encompasses many other qualities 

besides only trustworthiness. Therefore, trust management is 

more difficult than security itself, especially in the developing 

sector like IoT. Trust in SGGG is shorthand for investigating 

the actions of connected nodes. The history of reliable 

communication between two technologies shapes how they 

interact in the future. When nodes have trust in one another, 

they're more likely to work together cooperatively. To make 

smart choices in setting up dependable and efficient 

communication between devices, trust management facilitates 

the computation and analysis of trust among SG nodes. 

Problems with trust in the SGs can be mitigated with careful 

trust management. Such approaches have been used to 

enhance security, facilitate decision-making, detect malicious 

activity, quarantine harmful objects, and reroute their 

functions to safe areas. Researchers have devised a number of 

methods to address trust difficulties. Problems that these 

solutions have to deal with include the dynamic and 

heterogeneous nature of SGs, the large amounts of data it 

generates, the high energy it consumes, the difficulty of 

quantifying uncertainty for untrusted behaviours, and the 

difficulty of selecting the optimal trust model components. In 

this research, a novel trust evaluation mechanism is proposed 

for selected the multiple trusted nodes in the SG to achieve 

secure data transmission. At the same time, it mitigates the risk 

of being misled by hostile nodes during the trust assessment 

procedure by utilizing network-related factors like the 

frequency of communication and the likelihood of successful 

data transmission. In this case, direct and indirect measures of 

trust in communication are considered.  

Grid frequency energy stability is under increasing strain 

from the increasing penetration of renewable resource energy. 

Typically, inertial response and other auxiliary services are not 

provided by power. Similarly, fluctuations in power intensify 

its impact. While fluctuations in energy in smart grid might 

mitigate load fluctuations, they can magnify frequency 

aberrations in power networks if they are in antiphase. On the 

other hand, the likelihood of energy fluctuations, the 

combination of several frequency fluctuations, and the phase 

angle between them cannot be determined. 

In Table 2 the summary of the typical simulation parameters 

is indicated. All of the network nodes were randomly assigned 

to the beacon-enabled mode and ran the simulations. 50 nodes 

made up the cluster that the gateway generated. There are four 

distinct radio modes described: broadcasting, receiving, idle, 

and sleeping. For each state, the time spent is multiplied 

listening to the radio by the energy use to get the overall 

consumption. To find out how interference from surrounding 

devices affected the simulation, clusters from different 

gateways were run in sequence. On the first second, gateway 

1 started working. The second gateway began functioning at 

200 s, while the third began at 300 s. Runtime for the 

simulations was 1000 s. To test how well the proposed scheme 

worked, NS-2 simulator version 2.34 is used. The algorithms 

are executed on a 64-bit Windows 10 operating system with 

an Intel Core i5-5300U CPU and 8 GB of RAM. Installing a 

hypervisor on a physical server enables VMware server 

virtualization to operate numerous virtual machines (VMs) on 

a single physical server. With virtual machines (VMs), it is 

possible to run numerous operating systems (OSes) on a single 

physical server. Virtual machines on a single physical server 

share hardware resources like memory and network 

bandwidth. The Node configure ration parameters include 

address type, link layer, interface queue type, physical layer 

type, medium access control, ad hoc routing protocol, antenna 

type, propagation types, channel used, mobile IP, energy 

model, and more. 

 

Table 2. Simulation parameters [22] 

 
Simulation Parameters 

Simulator Ns-2.34 

Protocol AODV 

Simulation Duration 400 sec 

Simulation Area 1000m × 1000m 

Number of Nodes 50,100 

Transmission range 300m 

Movement Model Random Waypoint 

Pause Time 50 sec 

Packet Rate 4pckts/Sec 

Traffic Type CBR 

Data Payload 512 bytes/packet 

 

It is common practice to incorporate randomization into ns-

2 implementations; for instance, two TCP Senders competing 

shall implement both traffic generators that release packets at 

random times and random sliding-window delays. The 

random-number generator will always give the same 

sequence, even though it is feasible to seed it such that various 

repeats of the same experiment provide different outputs. As a 

result, running the same ns-2 script should consistently 

produce the same outcome. 

Ratio of successful communications to total 

communications. If the value is high, it suggests a high level 

of trust, and if it's low, it indicates harmful actions. Each node 

calculates a trustworthiness ratio for each of its neighbours 

using this metric. In this case, the credibility of both the sender 

and the recipient of a message can be evaluated. When gauging 

trust directly, a SG node looks at how often messages were 

sent and received. The neighbours of a SG node are used to 

determine how trustworthy it is in a recommended trust 

evaluation. This research considers an EEMLTM-MRS-RRC 

in Smart Grid that maintains multiple routes by considering 

the trust factors. The proposed model is compared with the 

traditional trust-aware multi-objective metaheuristic 

optimization-based secure clustering with route planning 

(TAMOMO-SCRP) technique and Trusted Parallel 

Optimization on Route Planning (T-PORP). 

Because the chosen traditional models outperform a large 

number of other existing models, we compare them to the 

suggested model. A lot of computing power is usually needed 

for the complicated algorithms used in trust-aware multi-

objective metaheuristic optimization methods. Deployed 

sensor nodes in smart grids are one example of an environment 

with restricted processing capabilities and energy constraints 

that can make it challenging to implement these algorithms. 

Deployment and real-time operational efficiency in dynamic 

contexts may be impacted by this extra complexity. Even if 

trust-aware models try to make things more secure, they might 

still be vulnerable. Attackers can take advantage of loopholes 

in the trust evaluation process, compromising the trust models 

and making hostile nodes seem trustworthy. The routing 

algorithm's dependability and security are severely 

jeopardized by this. Further risks may be introduced by 
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managing trust relationships that are dynamic and occurring in 

real-time. 

Models of attacks on smart grids centre on cyber dangers 

that jeopardize the availability, confidentiality, and integrity of 

grid operations. These models are useful for figurering out 

how malware might spread in smart grid settings and finding 

entry points for attacks. In order to better understand the 

dynamics of cyber-attacks, researchers have proposed a 

generic model that encompasses all stages of a cyber attack's 

lifecycle. Smart grids are vulnerable to a wide variety of 

threats, such as phishing, data manipulation, and Distributed 

Denial of Service (DDoS) attacks. Public safety, data integrity, 

and power supply can all be jeopardized by these attacks. In 

order to guarantee security, it is necessary to employ 

comprehensive tactics and customized responses due to the 

variety of threats. 

One way to measure accuracy is by counting how many 

predictions were right, or by tallying up all of the guesses. All 

of the models are used to determine the score levels. 

Improving confidence scores is as simple as following 

recommended practices when developing models. The time 

levels represent the total time consumed to complete an 

operation. The time levels of the proposed model are less and 

the accuracy levels are high. The calculations are made on the 

simulation results and the mathematical representations are 

used to calculate the accuracy levels. Time levels are 

calculated using the functions that are used to calculate the 

total time consumed to complete an operation. 

 

Table 3. Node information processing accuracy levels 

 

Nodes in 

the 

Network 

Models Considered 

EEMLTM-

MRS-RRC 

Model 

TAMOMO-

SCRP Model 

T-PORP 

Model 

50 97.3 94.3 92.4 

100 97.6 94.7 92.7 

150 97.7 94.9 92.9 

200 97.9 95.3 93.1 

250 98.0 95.3 93.4 

300 98.2 95.6 93.5 

 

 
 

Figure 5. Node information processing accuracy levels 

The nodes that need to involve in SG routing model has to 

update the information with the network authority. The nodes 

information helps to identify the nodes in the network and to 

involve in routing and communication. The Node Information 

Processing Accuracy Levels of the proposed and existing 

models are shown in Table 3 and Figure 5. 

The types of node transactions in the smart grid and their 

total range are shown in Figure 6. The y axis represents the 

total samples considered for a particular type and x axis 

represents the attack type. The types of attacks in the smart 

grid and the attack ratio are indicated. 

 
 

Figure 6. Smart grid attack ratio 

 

Table 4. Node trust factor calculation accuracy levels 
 

Nodes in 

the 

Network 

Models Considered 

EEMLTM-

MRS-RRC 

Model 

TAMOMO-

SCRP 

Model 

T-

PORP 

Model 

50 97.6 92.8 94.3 

100 97.8 93.0 94.5 

150 98.0 93.2 94.8 

200 98.2 93.5 95.1 

250 98.4 93.8 95.4 

300 98.5 94 95.6 

 

 
 

Figure 7. Node trust factor calculation accuracy levels 

 

A node's trust factor is a representation of the node's 

behavior and attributes. Factors like as packet delivery rate, 

delay levels, loss levels, and fake data injections are used to 

determine each node's trust factor. To determine how well a 

node is doing, we look at its trust factor. The trust factor 
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calculation is done for each node in the network and the trust 

factor represents the node internal properties. The trust factor 

represents whether to consider the node or not in routing 

process. Table 4 and Figure 7 show the Node Trust Factor 

Calculation Accuracy Levels of the existing and proposed 

models. 

For the purpose of keeping tabs on the network's nodes, the 

suggested model takes the network's head evaluator node in 

the SG into account. We will evaluate the NHEN node 

according to its transmission levels, energy consumption, and 

performance. The Network Head Evaluator Node Selection 

Accuracy Levels of the existing and proposed models are 

depicted in Table 5 and Figure 8. 

 

Table 5. Network head evaluator node selection accuracy 

levels 
 

Nodes in 

the 

Network 

Models Considered 

EEMLTM-

MRS-RRC 

Model 

TAMOMO-

SCRP Model 

T-PORP 

Model 

50 97.1 94.1 93.5 

100 97.4 94.3 93.7 

150 97.7 94.4 93.9 

200 97.9 94.7 94.2 

250 98.1 94.9 94.4 

300 98.4 95.2 94.6 

 

 
 

Figure 8. Network head evaluator node selection accuracy 

levels 

 

Table 6. Node behaviour analysis time levels 
 

Nodes in 

the 

Network 

Models Considered 

EEMLTM-

MRS-RRC 

Model 

TAMOMO-

SCRP Model 

T-PORP 

Model 

50 14.7 19.9 17.9 

100 14.9 20.1 18.1 

150 15.1 20.3 18.3 

200 15.5 20.6 18.6 

250 15.8 20.8 18.9 

300 16 21 19 

 

In SG communication, each node consumes its own 

resources by sending out data packets to its neighbours. In a 

perfect scenario, all the nodes would send packets to the other 

nodes based on their individual requirements. The node 

behaviour analysis is performed by the NHEN node to verify 

whether there is any data loss or unusual traffic in the network. 

The Node Behaviour Analysis Time Levels of the existing and 

proposed models are shown in Table 6 and Figure 9. 

 

 
 

Figure 9. Node Behaviour Analysis Time Levels 

 

 
 

Figure 10. Route ranking accuracy levels 

 

Table 7. Route ranking accuracy levels 

 

Nodes in 

the 

Network 

Models Considered 

EEMLTM-

MRS-RRC 

Model 

TAMOMO-

SCRP Model 

T-

PORP 

Model 

50 97.3 92.5 93.6 

100 97.5 92.7 93.9 

150 97.8 92.9 94.2 

200 97.9 93.1 94.5 

250 98.1 93.5 94.7 

300 98.4 93.7 94.8 

 

The proposed model performs ranking of the routes 

identified that are minimum. The ranking is performed to the 

nodes that are minimum di stance and less energy 
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consumption. The route rankings help in selection of the best 

ranked routes among the available routes. The Route Ranking 

Accuracy Levels of the existing and proposed models are 

depicted in Table 7 and Figure 10. 

The correlation factor among the node features is calculated 

and these features are used for selecting the trusted nodes in 

the route. The correlation factor of the smart grid node features 

is shown in Figure 11. 

 

Table 8. Trusted route selection accuracy levels 

 

Nodes in 

the 

Network 

Models Considered 

EEMLTM-

MRS-RRC 

Model 

TAMOMO-

SCRP Model 

T-

PORP 

Model 

50 97.4 94.3 93.5 

100 97.6 94.5 93.7 

150 97.9 94.7 93.9 

200 98.1 94.9 94.1 

250 98.4 95.1 94.5 

300 98.6 95.4 94.8 

 

 
 

Figure 11. Smart grid nodes correlation factor 

 

 
 

Figure 12. Trusted route selection accuracy levels 

 

The value or metric used by a routing system to measure the 

distance to a network is what ultimately determines which path 

it chooses as the optimal one. A metric is a numerical value 

used to express how far away from a network something is. 

The shortest path in a network is the optimal one. With the 

assistance of trusted route selection, the most reliable path can 

be used to safely transmit data. Table 8 and Figure 12 show 

the Trusted Route Selection Accuracy Levels of the current 

and suggested models, respectively. 

The proposed model considers the trusted nodes in the 

network and in routing process. The network contains nodes 

of normal behaviour avoiding malicious actions in the SG. 

This helps in reducing the utilization of power in the network. 

The data is also transmitted in the best shortest path in the SG. 

The Energy Consumption Reduction Accuracy Levels of the 

existing and proposed models are depicted in Table 9 and 

Figure 13. 

 

Table 9. Energy consumption reduction accuracy levels 
 

Nodes in the 

Network 

Models Considered 

EEMLTM-MRS-

RRC Model 

TAMOMO-

SCRP Model 

T-PORP 

Model 

50 97.6 92.9 92.4 

100 97.9 93.2 92.7 

150 98.1 93.6 92.9 

200 98.5 93.9 93.1 

250 98.7 94.2 93.4 

300 98.8 94.5 93.6 

 

 
 

Figure 13. Energy consumption reduction accuracy levels 

 

 
 

Figure 14. Loss rate 
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Figure 15. Packet delivery rate Vs latency 

 

 
 

Figure 16. Throughput Vs latency 

 

The loss rate of the model represents the performance levels 

of the routing model. The less the loss rate, the more the 

accuracy in route detection will be. The y axis is the loss levels. 

The loss levels during training and testing phases are indicated 

in the figure. The proposed model loss rate is shown in Figure 

14. 

When it comes to smart grid routing performance, the 

network topology is paramount. The efficiency of data 

transmission between nodes is affected by the topological 

structure, which might be tree, mesh, or ring. For example, 

while tree architectures make data aggregation faster, they can 

increase latency and introduce potential sites of failure. While 

mesh topologies improve redundancy and fault tolerance, they 

can make route administration and calculation more 

complicated. Another important factor in routing speed is the 

network's traffic load, or the amount of data that needs to be 

transmitted at any one time. Longer route recognition times 

and decreased accuracy might result from strain on routing 

protocols caused by fluctuations in energy demand, especially 

during peak hours. The only way to reduce their impact and 

make sure data packets are properly delivered regardless of the 

load is to use congestion management measures and load 

balancing techniques. 

Variations in energy production and consumption patterns 

can be caused by environmental conditions, such as the 

implementation of renewable energy sources. To 

accommodate these modifications and the resulting 

unpredictability of energy flows, dynamic routing adjustments 

are required. How well routing algorithms respond to these 

changes depends on how fast they can adjust. The stability of 

the system depends on routing protocols that can withstand 

unexpected shifts in generation and demand, according to the 

studies. 

The latency and data delivery rate of the smart grid under 

various conditions are shown in Figure 15. 

The throughput levels Vs latency in the msartgrid is shown 

in Figure 16. 

Despite the transmission time required by the proposed 

scheme, the delay is within an acceptable range and the 

research aims to deliver an excellent packet delivery ratio to 

ensure high smart grid reliability. In addition, we guarantee 

that the suggested technique achieves top-notch performance. 

Results from simulations show that the suggested route 

selection method can reliably transmit data in a smart grid 

setting.  

 

 

4. CONCLUSION 

 

The efficiency and dependability of the power grid depend 

on the power communication network. In both the monitoring-

industry and intelligent power grid communication networks, 

you'll find dispersed nodes in various, complicated locations. 

By dissecting the smart grid's routing mechanism, we can 

extend the life of the network and make it more capable. Trust 

management poses a significant challenge to the IoT and other 

artificial societies. Since more and more people rely on 

Internet of Things (IoT) devices and services, the situation has 

gotten worse. Because of the inherent heterogeneity and 

volatility of static models, they are no longer useful in the age 

of big data and IoT devices. An approach to controlling trust 

in SG devices is suggested in this paper. The suggested 

approach determines the direct and indirect trust of the SG 

nodes in the network by utilizing the node's own data. For the 

purpose of keeping tabs on the whole SG network, this study 

took into account a network head evaluator node. In order to 

decrease network latency, a Trust Linked Probabilistic 

Controller is employed to identify the various shortest paths in 

the SG. This study proposes a new method of control that takes 

into account a rank-based cluster model and multi-level trust 

factors to enhance energy efficiency, reduce fluctuations, and 

mitigate power quality degradation and power fluctuations 

caused by the smart grid's integration of large-scale routing 

models. Minimizing energy swings and making the most 

efficient use of a storage system for energy are the goals of this 

technique. Based on theoretical research, the mathematical 

model of an energy balancing system is employed to conduct 

a comprehensive analysis of the power fluctuation and 

smoothing technique. The goal of this approach is to make 

energy efficiency improvements more precise. In order to keep 

many routes operational in smart grids, this study examines a 

multi-level trust model for energy-efficient multi-route 

selection using rank-based route clusters.The proposed model 

achieves 98.5% accuracy in trust calculation and 98.4% 

accuracy in multiple shortest and trusted paths elections for 

secure data transmissions in SG. In future, optimization 

techniques can be applied on the multi path routing models for 

detecting the optimal path and more sensitive parameters of 

nodes can be considered for trust evaluation and degree of 
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trust-based routing also can be applied for better security 

levels. 
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