
Bridge Between Agile and Traditional Methods: Agile Requirements Documentation

Structuring (ARDocS)

Hind Wissam Kalfat1,2* , Mourad Oussalah2 , Azeddine Chikh1

1 Computer Sciences Department, LRIT Laboratory, Tlemcen University, Tlemcen 13000, Algeria
2 LS2N, CNRS, Ecole Centrale Nantes, Nantes Université, UMR 6004, Nantes F-44000, France

Corresponding Author Email: hind-wissam.kalfat@univ-nantes.fr

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290601 ABSTRACT

Received: 2 September 2024

Revised: 13 November 2024

Accepted: 26 November 2024

Available online: 25 December 2024

Software Requirements Engineering (SRE) varies significantly between agile and

traditional methods, particularly in documentation practices. In traditional methods, for

instance, the team is required to produce one structured and detailed document which is the

software requirements specification. While agile methods require less documentation,

which is spread over several artefacts. These differences can lead to communication

challenges in hybrid development environments, where both agile and traditional teams

collaborate. In such contexts, documentation can serve as a crucial communication tool,

bridging the gap between the two methods. This paper proposes ARDocS approach, which

translates agile artefacts into a structured document compatible with traditional methods.

ARDocS involves defining and specifying agile and traditional documentation through

multiple abstraction levels using metamodeling, and mapping the concepts between these

two metamodels. We validate our approach through a case study that applies ARDocS to

the Scrum method for agile and the VOLERE template for traditional. ARDocS effectively

consolidates information from various agile artefacts into structured documentation that can

be understood and used by both agile and traditional teams.

Keywords:

software requirements engineering,

traditional requirements, agile requirements

documentation, hybrid documentation,

meta-modeling

1. INTRODUCTION

Software requirements engineering (SRE) is considered as

the most important aspect of software development as it

consists on understanding the product to be developed.

SRE is a process that differs from one method to another: in

traditional approaches like waterfall, SRE is carried out at the

very beginning of the project, enabling an upstream planning

of the entire product. The plan is then strictly followed by the

development team throughout the rest of the project [1]. These

approaches are highly effective in safety-critical systems.

According to Martins and Gorchek they are preferred in such

domains because the new ones are not yet mature or not

convincing enough [2]. Indeed, projects in defence or

healthcare need a strict regulatory standard that takes every

detail into account; to insure they stay within budget and time

while addressing the correct requirements. On the other side,

in agile approaches, SRE is informal and highly dependent on

individuals’ knowledge and skills. It is carried out throughout

all the Software Development Life Cycle (SDLC) and

requirements evolve as the project progresses [3]. These

approaches are widely adopted by companies that prioritize

customer feedback and adaptability. For instance, Microsoft’s

commitment to agile principles helped the company to

continuously evolve, stay at the forefront of technological

innovation and respond to market demands. By embedding

SRE throughout the development cycle, they can address

constantly changing needs and refine the product in real time.

The knowledge gathered during the SRE process must be

documented. This documentation contributes to the success of

the project, reducing the risk of misunderstandings and

ensuring that the software development process is well

managed and transparent. The documentation also varies

depending on the approach used.

In traditional approach, for instance, the team is required to

produce the software requirements specification document

(SRS). The SRS is deemed good if it is unambiguous,

comprehensive, precise, and can be easily communicated with

all of the involved stakeholders [4]. In some cases, it can also

be used as an integral part of the contract [5].

In agile approach, teams tend to minimise documentation in

order to focus on software development, as outlined in the

agile Manifesto [6]. However, it’s acknowledged within the

agile community that a certain level of documentation is

essential [7] and even agile developers consider

documentation to be an important issue [8]. During SRE

applied in agile context, teams use a variety of artefacts [9],

with some being specific to a particular agile method like

SCRUM, such as user stories or backlogs, while others are not.

There are also other differences between the requirements

documentation of these two approaches, such as the roles

responsible for it, the style adopted and the content that makes

up the documentation. All this influences the way in which the

documentation is created and used throughout the project.

Nonetheless, these dissimilarities can have significant

consequences, especially in the case of hybrid development.

Ingénierie des Systèmes d’Information
Vol. 29, No. 6, December, 2024, pp. 2091-2104

Journal homepage: http://iieta.org/journals/isi

2091

https://orcid.org/0009-0007-4276-8973
https://orcid.org/0000-0001-8049-110X
https://orcid.org/0000-0001-6704-5754
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290601&domain=pdf

Hybrid development involves integrating both agile and

traditional methods within a single project. Organizations

intentionally opt for hybrid development when they deem

agile suitable for certain scenarios, while preferring a more

traditional method in others [10]. We think that the best way

for teams using these hybrid methods to communicate with

each other is through documentation as it provides a clear and

consistent reference point for all team members. However,

documentation produced by agile teams is challenging for

traditional teams to understand. This is due to its level of detail,

which is considered to be very low, but also to its structure,

which is different.

This research presents a solution that bridges the gap

between agile and traditional methods within the context of

hybrid development. The solution involves transforming the

fragments of documentation produced during an agile

development process into a structured requirements

documentation. Our main contribution is a new approach,

named ARDocS (Agile Requirement Documentation

Structuring), which is based on metamodeling techniques

across different layers to abstract and generalize

documentation concepts for both agile and traditional methods,

facilitating their reuse and enhancing their understanding. The

designed metamodels are used in a mapping process to

establish connections between their concepts. Ultimately, the

goal is to improve communication, collaboration, and overall

efficiency in software development processes through

enhanced documentation. In this paper, we make three

contributions:

(1) Specifying both agile and traditional SRE, using

metamodels, specifically from the point of view of

documentation

(2) Structuring agile documentation artefacts, according to

a traditional documentation structure, using a third mapping

metamodel.

(3) Presenting of a case study for demonstrating the

application of ARDocS approach.

 The remainder of this paper is structured as follows.

Section 2 gives an overview about SRE in agile and traditional

methods and also introduce the metamodeling approach. Then,

section 3 presents the related works and points out the research

gap. Section 4 describes the proposed approach for creating

and instantiating the metamodel. Section 5 details ARDocS

approach and describes the metamodels. We validate the

proposed approach in section 6 using a case-study. Finally,

section 7 presents our conclusions, discusses validity of our

research and indicates directions for further research.

2. BACKGROUND

SRE plays an important role in the success of SDLC.

Effective requirements documentation is essential to ensure

clear communication, alignment of stakeholder expectations

and the overall quality of the software product. This section

provides a comprehensive background on the subject. It first

defines requirement concept, then highlights the differences

between traditional and agile methods in SRE, with a

particular focus on the documentation activity, which remains

a sensitive issue in both methods, mainly in the second one. It

finally presents the metamodeling approach.

2.1 Requirement definition

There is much debate about what should and should not be

considered a requirement, as well as the necessary

characteristics it should have. However, the BABOK guide

ensures that the term “requirement” is understood in the

broadest possible sense. The BABOK states that Requirements

include, but are not limited to, the past, present and future

conditions or capabilities of a business, as well as descriptions

of organisational structures, roles, processes, policies, rules

and information systems [11]. It is this definition that will be

considered in this research work.

2.2 Traditional requirements engineering (TRE)

In TRE such as the waterfall model, all requirements are

elicited and analysed before the actual development process

begins. Sommerville and Sawyer claim that RE covers all of

the activities involved in discovering, analysing, documenting,

and maintaining a set of requirements for a system [12].

Throughout this TRE process, it is imperative for the team to

thoroughly document all discussed requirements within a

software requirement specification. The former could be

supported by additional documents describing other types of

requirements. To facilitate the documentation process in TRE,

several templates are available, enabling the team to adopt a

precise structure. At the final stage, all documented

requirements have to be implemented afterwards.

The documented requirements serve as the foundation for

verification activities, ensuring that the customer’s needs are

accurately and fully captured. As a result, these requirements

are formally certified as the accepted specifications to be

implemented [13, 14]. Various techniques are used by teams

to review requirements. One such technique is the

walkthrough review [15], which is an informal process where

feedback is gathered regarding the technical content of the

software product document. Another valuable technique

involves prototyping, which helps stakeholders verify that

their needs are correctly understood and addressed. In the case

of safety-critical systems, more formal methods may be used,

which involve converting requirements into a mathematical

model to assess their consistency and completeness with

respect to system properties [16]. Additionally, it is crucial

during the verification process to ensure that the requirements

are testable. Testing-oriented techniques focus on evaluating

whether use cases derived from the requirements are practical

and easy to generate. Test case generation not only provides

early feedback from users but also guides developers in

understanding how the system should behave [16]. This early

verification process of TRE offers numerous benefits, such as

the early identification of errors and gaps, which ultimately

leads to better-defined product requirements. It also helps

uncover additional requirements that need to be addressed

before the design phase [17].

2.3 Agile requirements engineering (ARE)

The ARE process differs significantly from the TRE process.

Indeed, the elicitation, analysis, specification, validation and

management of requirements in agile are performed iteratively

and carried out in collaboration with the stakeholders.

In ARE, various techniques are used across its key activities,

as identified in a survey conducted by Elshandidy and Mazen

[18]:

• Elicitation: Direct, face-to-face communication is a

primary technique, enabling stakeholders to share their needs

through structured interviews or collaborative sessions such as

2092

Joint Application Development (JAD).

• Analysis: The development team examines the collected

requirements for completeness, consistency, and feasibility.

This phase often involves prioritizing user stories to focus on

the most critical elements for the upcoming iterations.

• Specification: Agile teams typically use concise user

stories to outline functional requirements from the end user’s

perspective. These stories, usually written on simple note

cards, are prepared by the customer’s team to ensure they are

expressed in business language they understand.

• Validation: Review meetings are a common technique,

allowing stakeholders to interact directly with the product.

This hands-on approach facilitates immediate feedback,

ensuring any issues or concerns are identified and addressed

early in the process.

Encouraging customer involvement in agile development

practices promotes a preference for more face-to-face

communication, which reduces the volume of documentation.

However, there are some situations when the communication

is insufficient like: sudden changes in requirements,

unavailability of appropriate client representatives, project

complexity, customers at distributed geographical locations

and not collocated or onsite [19]. Therefore, it becomes

cumbersome to tackle such situations with little or no

documentation [20]. In fact, many studies investigated the

challenges that result from ARE practices, with documentation

consistently identified as one of the prominent issues [19, 21].

Agile is conducted by a set of values and principles described

in the agile manifesto, but there are multiple methods applied

with different practices. For this research, we opted for Scrum,

identified as the most widely used agile development method

[22].

2.4 Metamodeling approach

Metamodeling defines abstract models that describe the

structure, behavior, and semantics of other models. It has the

same objectives as a modelling act, the only difference being

the object of the modelling. This approach is very useful as it

helps for:

• Standardisation: By defining meta-metamodels and

metamodels, we create common standards and structures for

documentation in both agile and traditional methodologies.

This facilitates consistency and understanding between teams

working in different environments.

• Reuse: Metamodels enable to define abstract models that

can be reused in different projects.

• Comparison: By matching the concepts of agile and

traditional methods, we make it easier to compare their

practices and processes. This can help developers identifying

similarities, differences and best practices to adopt.

• Defining and integrating multiple models: It allows to

define and integrate multiple documentation models, offering

significant flexibility and adaptability. We can take into

account different methodologies, documentation templates, or

even specificities of each organisation.

3. RELATED WORKS

In this section, we explore existing work related to four key

areas to clearly describe the research context and understand

the current state of the issues being addressed. In the first part,

we present the papers that provide a specification for both

ARE and TRE. Then, we introduce the concept of hybrid

development. The second part examines what has been

proposed in the literature in relation to our problematic. Here,

we discuss the techniques currently used to improve the

structuring of documentation in the context of ARE. Then, we

investigate the metamodeling approach used in this research,

providing an overview of its application and relevance in the

context of SRE. Finally, we summarise the state of art.

3.1 The specification of traditional and agile methods

Agile is generally defined in terms of its methods. There are

several agile methods, practices and frameworks (for example,

Scrum, XP, Kanban, Safe, LeSS). Each of these methods uses

its own terminology. There are studies that have modelled the

concepts of ARE in its entirety [23], and others that have done

so for specific agile methods [24]. On the other side,

traditional approach is usually represented by the waterfall

method. However, there are other traditional methods such as

V-model, Incremental model, and Spiral model. Batool et al.

[25] did a mapping of traditional RE and agile Scrum RE with

respect to their roles, activities and artefacts. In Table 1 we can

see how TRE and ARE specified throughout the RE process.

Table 1. Definition of TRE and ARE according to literature

(Adapted from Batool et al. [25])

 TRE ARE

Role

Software Engineer,

System Analyst,

Requirement Engineer.

Stakeholder, Product

Owner, Development

Team, Scrum Master.

Activities

Requirement Elicitation,

Requirement Analysis,

Requirement

documentation,

Requirement validation,

Requirement management

Refine the backlog,

Update Sprint Backlog,

Prioritize functions,

Project status meeting,

project demonstration

meeting, Retrospective

meeting

Artefacts

Valid requirements,

Software Requirements

Specification

Vision, Product backlog,

Sprint backlog, User

stories.

3.2 Hybrid development

Several studies discuss hybrid development approaches, all

defining hybrid as a combination of both agile and plan-based

(or traditional) methods. The strength of the hybrid approach

lies in its ability to combine the benefits of both methods in a

single project and therefore maximise its chances of success.

Prenner et al. [26] found that hybrid development

approaches are primarily used to meet security and safety

requirements, manage large-scale or distributed development,

and remain adaptable to changes while dealing with uncertain

requirements. They identified 13 goals for using agile methods

and 12 goals for using plan-based methods in Agile-Plan-

based Hybrid approaches (Short: APH approaches). Indeed,

plan-based methods are suitable for large-scale projects or

safety-critical applications but face challenges when

customers do not fully understand requirements or when

frequent changes occur. On the other hand, agile methods are

known for their ability to adapt to changing requirements and

technology choices. The authors suggest that combining the

two methods can create a more flexible and adaptive

development process that accommodates evolving customer

needs and project complexities.

Hess et al. [27] compare the scope and content of the

2093

outcome produced by the ARE practices to artefacts of a

traditional software development framework. This enabled

identifying the differences, similarities, and potential gaps

between the information communicated through various

artefacts in TRE and ARE practices.

Boehm and Turner [28] identify key challenges in

integrating agile and traditional methods, citing those related

to RE, which include:

• Documentation Practices: Traditional methods rely on

extensive documentation, while agile methods prioritize

working software, which may result in insufficient records for

future use. Enhancing agile practices, such as enriching user

stories with more detail, can help bridge this gap.

• Requirements Formality: The informal nature of agile

requirements can conflict with the detailed, formal approach

of traditional methods. To bridge this gap, Gupta et al. propose

a method for integrating conceptual models into agile projects

by automatically generating them from user stories [29].

• Stakeholder Involvement: Agile’s need for continuous

interaction differs from traditional structured engagement,

leading to role confusion. Educating stakeholders in traditional

methods on agile practices and emphasizing active

participation helps improve collaboration and alignment.

3.3 Techniques for structuring agile documentation

While natural language is widely used for documentation

[30], some have considered adopting structured or semi-

structured templates to minimize ambiguities and enhance

clarity. Some studies discuss structuring documentation

produced in agile, particularly the backlog and user stories, but

their objectives differ from ours as this structuring is not

tailored to traditional methods. Mahmud and Veneziano

introduce the use of mind-mapping as a technique for

enhancing SRE, particularly in the process of creating a

backlog. This approach has been shown to improve the quality

of the backlog, with a case study using function points as a

performance measure. However, it’s important to note that the

article lacks specific details on how mind-mapping was

applied [31].

Gupta et al. address challenges in agile requirements

engineering and introduce a method for generating conceptual

models from user stories. These models, which include use

case, domain, state machine, and process models, enhance

communication and understanding within agile projects. The

paper emphasizes the importance of seamless integration and

automation to prevent additional burdens on agile teams and

outlines conditions for model adoption, proposing the use of

NLP techniques for automation [29].

3.4 Metamodeling approach

The metamodel has been explored in various studies, both

general and domain specific, focused on RE. In the existing

literature, the development of metamodels for SRE has been a

significant concern for providing practical support.

Koutsopoulos et al. [32] explore the differences between

plan-driven and agile approaches to SRE, highlighting the

strengths and weaknesses of each. They conceptualize the

main concepts of the two approaches through individuals

metamodels, then design an integrated metamodel to

understand how they relate to each other. The integrated

metamodel helps make differences of the two approaches and

groups together the different methods being used in a project.

The use of the integrated meta-model was demonstrated

through illustrative examples to showcase its practical

application and effectiveness in combining agile and plan-

driven approaches.

Schön et al. introduces a metamodel designed to describe

key concepts within ARE, promoting a common

understanding of this complex research field. Through case

studies in Scrum and Kanban environments, the authors

demonstrate how to instantiate the metamodel to develop

concrete process models. Their contribution to the software

development body of knowledge includes providing a

metamodel for ARE, which holds implications for both

researchers and practitioners. Researchers can utilize the

metamodel to design new value-driven process models while

practitioners can evaluate and enhance existing ones using the

metamodel as a guide [23].

3.5 Summary of the related works

In summary, our review of the state of the art reveals distinct

differences in the documentation processes between agile and

traditional methods. Since the hybrid approach aims to

combine the advantages of both, it should also integrate the

strengths of their documentation practices. We have selected

several criteria to analyse the state of documentation across

agile and traditional methods and then explain how it should

be in hybrid approach so that both teams can benefit from it,

as shown in Table 2.

Table 2. Comparing documentation in agile, traditional and

hybrid approaches

Criteria Agile Traditional Hybrid

Level of detail Minimal Detailed
Evolving

documentation

Structure
Several

artefacts

One structured

document

One structured

document

Clarity and

understandability

The short

content is easy

to understand

but its structure

is likely to

cause problems

The large content

is hard to

understand

despite its clear

and easy

structure

Easy structure

with simple

content

Collaboration

Collaborative

(Strongly

support

collaboration)

Centralized

(There are

specific roles

designated for

creating and

maintaining the

documentation)

Role-Based

(Everyone

knows what

information

they are

responsible for)

We also note that the metamodeling has been used for

specifying agile and traditional methods, but not as a technique

for structuring agile documentation like those mentioned

above. Additionally, it has been employed to map ARE and

TRE processes, supporting their separate or combined use. In

this paper, we have combined these elements to provide a

metamodel-based solution, called ARDocS, that not only

specifies and describes ARE and TRE at different levels of

abstraction, but also serves as a technique for structuring agile

documentation in a traditional manner, fostering hybrid

approaches.

It should be noted that the cited methods for structuring

agile documentation have different objectives than ARDocS.

Mind-mapping focuses on backlogs, and conceptual models

center on user stories, but both are limited to specific agile

2094

artefacts and do not produce formal, structured documentation

aligned with traditional templates. They also don’t address

collaboration between agile and traditional teams with

differing documentation needs. In contrast, ARDocS considers

all types of agile artefacts and translates them into structured

documents compatible with various traditional templates. It

supports both lightweight documentation for agile processes

and formal outputs for traditional or regulatory contexts,

encouraging smoother communication and reducing potential

conflicts in hybrid environments.

4. ARDOCS: AGILE REQUIREMENT

DOCUMENTATION STRUCTURING

The findings of this research are intended for an agile team

that, after documenting its requirements as it usually does by

producing several distinct elements, will be able to assemble

them into a more structured documentation in the traditional

way. This is useful for hybrid projects, but also for large-scale

projects with large teams and a high level of criticality. This

chapter will explore the significance of organizing agile

documentation and provide guidance on the process. This

section is divided into three parts: “Solution context” explains

the problem and need for solving it, “Objective and overview”

defines the goals, and the other subsections outline our

approach and methodology.

4.1 Solution context

The agile process is continuous and iterative, as is its SRE

process. In scrum for example, there is a correspondence

between the ceremonies and ARE activities. Indeed, each ARE

activity is associated with its corresponding Scrum ceremony.

Documentation, on the other hand, is needed several times in

a single iteration and can be applied in parallel with the other

activities [33]. This leads the team to generate various artefacts

tied to software requirements. Some of them are discussed

verbally among team members, while others are documented.

The agile team’s documentation through distinct artefacts

results in unstructured documentation, leading to a lack of

standardization and uniformity. This creates difficulties

related to clarity, traceability, and consistency.

Accordingly, there is a real need for structured

documentation as part of the agile approach. While the

informal and unstructured documentation approach might

prove functional and efficient in certain small-scale projects,

there are other cases where it can cause problems and lead the

project to failure. The first case is when organisations use

hybrid approaches which means that they combine both agile

and traditional methods and this can be used particularly in

complex, critical, or regulated project environments involving

large teams and diverse stakeholder needs [26]. Gill et al. [34]

state that large-scale projects often face challenges in meeting

stakeholders’ expectations, and there is a need to address these

challenges by integrating both agile and non-agile elements to

create hybrid adaptive methodologies [35].

Wagenaar et al. also point out that despite the fact that the

use of documentation in agile software development (ASD) is

perceived as “old-fashioned”, recent research reveals a

combination of traditional software development methods and

ASD in hybrid approaches [9]. Among the different

combinations, Scrum, the classic waterfall model and V-

processes represent the majority [36, 37]. Kuhrmann et al. also

found similar results in their survey, with around 75% of

participants deliberately mixing different development

approaches. Typically, hybrid development is used

intentionally when organisations feel that the agile approach is

suitable for certain scenarios, while a more traditional

approach is preferred in other situations [36].

In situations like these, where hybrid solutions are needed,

traditional teams need to understand agile practices in order to

collaborate effectively and to facilitate their transition [38].

A specific type of hybrid development involves agile and

traditional teams working together on the same project. In such

cases, it is important to avoid duplicating documentation in

two different styles, as this would be inefficient. However,

traditional teams may find agile artefacts unfamiliar or lacking

in detail, which can result in confusion and misalignment. This

disconnect can slow collaboration and reduce overall

efficiency.

In the second case, during the transition from traditional to

agile methodologies, organisations often adopt both agile and

traditional practices simultaneously. This dual approach may

be temporary during the transition from a traditional to a more

agile method, or it may be a deliberate choice.

In the last case, customers sometimes require more tailored

documentation than is typically produced as part of an agile

process. This documentation may be required by law, to ensure

clearer communication or to guarantee compliance.

We can conclude that there should be a common referential

between the two development methods, and this is achieved

naturally through a comprehensive documentation.

4.2 Objective and overview

The idea behind this research work is to create a bridge

between agile and traditional teams through documentation.

The idea is to structure the various pieces of documentation

created by the agile team during the development process into

a single organized document. This solution is divided into

three main components, as shown in Figure 1.

Agile structure component: It corresponds to the source

model, and represents the structure that assembles the

fragments of information collected during ARE activities.

• Traditional structure component: It corresponds to the

target model and represents the structure of the final

documentation. Here, source model components are structured

on the basis of a predefined template familiar to the traditional

team.

• Mapping component: It establishes the link between the

elements of the source model and those of the target model,

offering a projection of agile documentation artefacts into

structured documentation.

Figure 1. Solution components for structuring documentation

4.3 Metamodeling levels

The suggested approach relies on metamodeling. Table 3

provided below shows the four levels of modelling, as

2095

specified by the Object Management Group (OMG), and how

they are applied in the context of this research.

Table 3. The four conceptual levels in agile/traditional

documentation modeling

Levels Agile Traditional

M3

Agile Meta-metamodel

(Referred to as

M3A)

Traditional Meta-

metamodel (Referred to as

M3T)

M2

Metamodel (Scrum, XP,

Kanban, ...)

(Referred to as M2A)

Metamodel (VOLERE,

IEEE 830, ...)

(Referred to as M2T)

M1 Scrum documentation model VOLERE template

M0
Scrum documentation artefact

instances
VOLERE instances

At M3 level, we model the agile and traditional concepts

that have an impact on documentation and are related to

software requirements. The chosen concepts are represented at

a high-level of abstraction, referred to as meta-metamodeling.

At this level, the definition must be sufficiently generic to

specify the concepts and relationships used to define the

metamodels at level M2. In the context of agile methodology,

for example, it should be possible to represent documentation

concepts independently of the agile method employed.

Similarly, on the traditional side, it should represent

documentation concepts regardless of the template chosen.

The aim of the M3 level is to enable the comparison and

alignment of two languages represented by metamodels at M2

level, corresponding to the agile method chosen and the

selected traditional documentation template.

M2 level represents the concepts of a selected agile method,

as well as the concepts of a chosen traditional documentation

template. The metamodel designed at this level defines the

structure and semantics of the models created at M1 level.

M1 level represents the different types of agile

documentation resulting from the chosen method as well as the

selected template from the traditional side.

Finally, M0 level represents the actual instances of agile

documents that we want to structure, as well as the instances

that correspond to them in the traditional.

4.4 The mapping process

In ARDocS, the structuring of agile documentation is

achieved through a mapping process that translates a set of

agile artefacts into a structured document in line with the

traditional format. To avoid mapping for each agile project, we

have opted to establish it at a meta-level between the concepts

of M3A and M3T. This not only standardizes the process but

also makes it easier, as the meta-level significantly reduces the

number of concepts involved. In this strategy, the mapping is

done in four stages, as described in Figure 2.

(1) Instantiating the agile requirements documentation

meta-metamodel (M3A) creates the agile requirements

documentation metamodel (M2A). (M3A) represents the

concepts from which we can instantiate any agile metamodel.

This instantiated metamodel can represent one of the agile

methods among which we can cite Scrum, Kanban or XP

metamodel.

(2) Mapping the agile documentation concepts to the ones

of traditional documentation. This mapping is also represented

using a metamodel.

(3) The instantiation of the traditional meta-metamodel

(M3T) provides a metamodel that describes a specific template

(M2T). This metamodel specifies all the structural elements of

the template and the relationships between them.

(4) The final step consists of choosing the concepts of (M2T)

that correspond to those of (M2A). In other words, selecting

the right elements of the traditional template that reflect the

elements of the chosen agile method.

4.5 Structuring documentation process

In Figure 3 we use the three levels of abstraction to describe

the process of structuring documentation.

At M1 level, when the agile team members participate in an

ARE activity, they automatically produce information that

must be documented. These collected elements of information

are identified as “chunks”. The chunks are grouped in a

structure that represents the source model of ARDocS.

The target model on the other side represents a traditional

documentation template. At this stage, an existing traditional

documentation template will be used.

Then, in order to align the agile documentation structure

(source model) with the traditional one (target model), we

carry out a mapping between their respective terms and

concepts using the process of metamodeling explained in

section 4.4. In this study, we assume the role of agile and

traditional methodologists in modelling meta-models and

meta-metamodels at the M3 and M2 levels. As researchers, we

propose these two models as part of our research work.

Figure 2. Overview of the mapping process

2096

Figure 3. ARDocS architecture

5. THE MAPPING PROCESS

In this section, we will explore in detail the four steps

described in Figure 2. The first subsection describes ARDocS

at the M3 level, which includes the modeling of both agile and

traditional meta-metamodels and the mapping between their

concepts. The second subsection describes ARDocS at the M2

level, which involves the instantiation of M3A and M3T,

namely the modeling of agile and traditional metamodels, and

finally the selection of the appropriate concepts.

5.1 The mapping process at M3 level

In this section we define the meta-metamodels for both agile

and traditional requirements engineering, referred to as M3A

and M3T, respectively. Then we define the mapping between

their concepts. The development of these two meta-

metamodels enabled the identification of similarities and

related concepts, along with their integration into one.

Figure 4. Conceptual model of software process engineering

metamodel SPEM

Here, we adopt the Software Process Engineering

Metamodel (SPEM) introduced by the OMG [39], which is

used to describe software development processes. There are

two versions of SPEM, each comprising several concepts.

However, we will focus only on the three main concepts: The

role who is responsible for a product and performs activities

that use and produce products. As shown in Figure 4, these

three components are integrated into the SPEM conceptual

model, providing an overview of how SPEM works in general.

5.1.1 Meta-metamodel for ARE documentation: M3A

As shown in Figure 5, M3A defines requirements

documentation in agile context at a high level of abstraction.

It is built around the three SPEM concepts with an agile

specification using the A annotation: A.Role, A.Activity and

A.Documentation (Corresponds to work product in SPEM);

these are considered from a documentation perspective.

Figure 5. ARE documentation Meta-metamodel (M3A)

The M3A allows for describing documentation across two

dimensions: process and product. (i) The process dimension is

described through the concepts of role and activity. It

describes who is responsible for each documentation chunk

and what activities produce or use them. In addition, agile

activities are divided into three main types found in the most

2097

common agile methods: The vision is the stage of exploring

and understanding the problem, followed by planning and

analysis, which consists of deciding what to do to solve the

stated problem. The last stage is the iteration, which represents

managed intervals of time, of short or long duration depending

on the agile method chosen, which bring together a set of

activities designed to produce value. (ii) The product

dimension describes documentation product concept and its

components. At the atomic level, components can be of several

types, including goal, constraint and item. The M3A concepts

are described individually in Table 4.

Table 4. M3A concepts description

M3A Concepts Description

A.Activity Agile activities related to the whole development process, allowing to use and produce documentation chunks.

Vision This phase involves establishing a clear understanding of the project vision and goals.

Planning/Analysis In this phase, the team plans and analyses the work required to achieve the project vision.

Iteration
During this phase, the team executes the work in iterative cycles, focusing on delivering value incrementally. At

least one iteration is completed during this phase.

A.Role Represents both the agile team and the stakeholders involved in the project.

A.Documentation It groups together the essential elements found in requirements documentation (The chunks).

A.atomic element Represents an individual piece of information that describes either the final product or the process of creating it.

A.Composite element Integrate several atomic elements.

A.Goal Objectives established by involved roles in the project, which must be accomplished to deliver the desired product.

A.Item Elements necessary to describe the final product to be developed.

A.Constraint All restrictions on the way the product is produced.

5.1.2 Meta-metamodel for TRE documentation: M3T

As shown in Figure 6 and based on the same logic as in agile,

two dimensions have been used to describe traditional

documentation: process and product. (i) The process

dimension is described through T.role and T.activity. The

activity concept in M3T refers to activities of TRE process.

Batra and Bhatnagar [40] conducted a comparative analysis of

various requirements engineering process models. Of

particular interest was the study by Loucopoulos and

Karakostas [41], which categorizes the process into three key

activities: Elicitation, Specification, and Validation. These

activities encompass tasks performed across multiple

traditional processes simultaneously. (ii) The product aspect

represented by T.requirement specification document (Which

corresponds to the work product in SPEM) gathers together

the elements of the documentation and their components. The

most frequently used documentation elements are Purpose or

Goal, Requirement and Scenario, which are also in accordance

with the concepts defined in the SWORE ontology - SoftWiki

Ontology for Requirements Engineering [42]. The addition of

the concept of constraint was considered important, since it is

included in the majority of existing models. The M3T concepts

are described individually in Table 5.

5.1.3 Mapping agile to traditional concepts: Step 2

After modeling the two meta-metamodels: M3A and M3T,

the next step (which corresponds to step 2 in Figure 2) is to

establish a mapping between their concepts, which will allow

to identify the equivalent of each agile documentation element

in the traditional template. This mapping is modeled in the

following format: “agile concept: traditional concept” as

illustrated in Figure 7. It should be noted that, even if there is

a correspondence between all agile and traditional concepts

there is still a difference in the level of detail handled and

documented between the two methods. Traditional methods

generally involve more extensive detail, aligning with their

characteristic plan-driven development approach. In contrast,

agile methodologies, in line with the third value of the agile

manifesto, prioritise working software over comprehensive

documentation [6]. Furthermore, there is no correspondence

between the activities because the two processes are

performed differently, and in M3A, the entire development

process is represented, unlike in M3T, where only the RE

activities are included.

The selection of concepts in the mapping was made as

follows:

• A.Goal corresponds to T.Purpose: Both concepts

define the ”why” of a project or iteration. A goal in

agile and a purpose in traditional methods represent

what guides the work to achieve the business objectives.

• A.Item corresponds to T.Requirement/T.Scenario:

Agile items represent achievable work focused on

value creation. They are aligned with requirements or

scenarios, as both articulate what needs to be

accomplished.

• A.Constraint corresponds to T.Constraint: In both

methods, constraints establish the limits that the project

or product must respect. These limits are essential for

decision-making and planning.

• A.Role corresponds to T.Role: Roles are essential for

defining responsibilities in any methodology. Although

the implementation differs, both methods rely on roles

to ensure the successful execution of tasks.

Figure 6. TRE documentation Meta-metamodel (M3T)

2098

Table 5. M3T concepts description

M3T Concepts Description

T.Activity TRE activities that produce or use requirements.

Elicitation Refers to gathering the requirements of the system from different stakeholders.

Specification The activity of documenting requirements.

Validation Checks that the requirements accurately represent the needs of the system.

T.Role
Individuals with an interest in the product, who either have requirements for it or contribute to its

development.

T.Requirement specification

document
A complete collection of requirements knowledge for a specific project.

T.atomic element
Represents an individual piece of information that describes either the final product or the process of creating

it.

T.composite element Integrate several atomic items.

T.Purpose Intended result to be achieved by the system.

T.Scenario Descriptions of the usage of the planned system to reach a defined goal.

T.Requirement What the product must do, or a property that the product must have.

T.Constraint Restrictions on the product or the way it is produced.

Figure 7. Mapping metamodel: M3 level

5.2 The mapping process at M2 level

In this section, we see the connection between the concepts

at M3 and M2 levels, examining how they were instantiated

and modeled at the M2 level for both the agile and traditional

sides. This corresponds to step 1 and step 3 in Figure 2.

5.2.1 ARE process

By instantiating the M3A, we obtain the agile metamodel

M2A. This instantiation is based on a single chosen agile

method. The M2A is presented in two parts: the first shows

how each concept was derived from the M3A and the second

explains the different concepts and how they are related to

each other.

Instantiation of M3A (Step 1) In step 1, to instantiate M3A,

we opted for a single agile method, selecting Scrum due to its

widespread popularity. We mapped the relevant Scrum

concepts to each M3A concept, using the latest version of the

Scrum Guide [43]. The instantiation process of M3A was

carried out based on the semantics of the concepts. Due to the

generic nature of M3A, the instantiation was a smooth and

straightforward process, leading to a logical and coherent

outcome. The instantiation of M3A is presented in Table 6, and

below, we explain how it is applied to Scrum artefacts:

• Agile Goal is instantiated into two key goals in Scrum:

Product Goal and Sprint Goal, reflecting both long-

term product vision and short-term sprint objectives.

• Agile Item is instantiated into Theme, Epic,

Functionality, Benefit, and Task, representing different

levels of work, from high-level strategic objectives to

specific tasks that enable daily progress.

• Agile Constraint is instantiated into Project Estimation,

Story Points, Acceptance Criteria, and Definition of

Done, providing measurable limits and conditions that

ensure work quality.

Agile metamodel: (Scrum) The artefacts included in this

metamodel are those most commonly found in an agile project,

particularly when using the Scrum framework.The metamodel

shown in Figure 8 brings together the scrum concepts,

focusing on those related to documentation. The Concepts in

yellow represent A.Role, those in blue are A.Activity and

those in green are A.Documentation.

Table 6. Instantiating M3A concepts

M3A Concept Scrum Concept

A.Role Scrum team, Stakeholders, Persona

Vision Envisioning

Planning Product backlog refinement, Release planning

Iteration Sprint

A.Composite

item

Product backlog (PB), Sprint backlog (SB), User

story (US)

A.Goal Product goal, Sprint goal

A.Item Theme, Epic, Functionality, Benefit, Task

A.Constraint
Project estimation, Story point (SP), Acceptance

criteria (AC), Definition of done (DOD)

5.2.2 TRE process

By instantiating the M3T, we obtain the traditional

metamodel M2T. As with the work done in agile, this

instantiation is based on a single traditional documentation

model. Also, the M2T is presented in two parts: the first

illustrates how each concept was derived from the M3T and the

second explains the different concepts and how they are

related to each other.

Instantiation of M3T (Step 3): In step 3, we have chosen

the VOLERE Requirements Specification Template to

instantiate the M3T [44]. VOLERE was established by Suzanne

and James Robertson and is described in their book “Mastering

the Requirements Process: Getting Requirements Right,”

which was first published in 1999 [45]. While the book

outlines a process for successfully discovering, verifying, and

2099

documenting requirements, our focus in this research is solely

on the VOLERE template itself. The VOLERE template is

included in the book as a result of the VOLERE process. In

order to respect intellectual property rights and use the

template appropriately, we reached out to the book’s authors,

who kindly provided us with the most recent version of the

template (Edition 20-2020). The template is protected by

copyright, and our use of it is restricted to academic purposes

as per the authors’ guidelines. We selected the VOLERE

template because it is rich and comprehensive, covering a wide

range of requirements concepts, including those defined in the

IEEE 830 standard. The instantiation is shown in Table 7, and

below, we explain how it is applied to the VOLERE template

elements:

• T.Purpose is instantiated as the Project Goal,

representing the reasons for doing the project.

• T.Scenario is instantiated into Business Scenario and

Product Scenario, capturing the different contexts or

situations the project aims to address, from business

needs to product-specific scenarios.

• T.Requirement is instantiated into Functional

Requirement and Non-functional Requirement,

reflecting the functionalities the system must perform

and the quality attributes it must satisfy.

• T.Constraint is instantiated into Solution Constraint

and Project Constraint, defining both the limitations

imposed on the solution itself and the boundaries

within which the project must operate.

Traditional metamodel: VOLERE The M2T presented in

Figure 9 consolidates the key concepts of VOLERE. It is

evident that traditional documentation entails more details

compared to agile documentation. Consequently, as

mentioned before, during the mapping process, some

VOLERE concepts may not be utilized. The concepts in

yellow represent T.Role, those in blue are T.Activities and

those in green are T.Documentation.

5.2.3 Concepts selection: Step 4

The final step of ARDocS approach (which corresponds to

step 4 in Figure 2) is selecting concepts from the traditional

template (i.e. VOLERE) that match those of agile framework

(i.e. Scrum). This selection is guided by the mapping

conducted earlier, reducing the options for each concept in

agile documentation. However, we have always had to make a

choice since Scrum and VOLERE are both conceptually rich.

Furthermore, this selection is a singular event and will serve

as a reference for all practitioners employing Scrum, wanting

to structure their documentation artefacts.

Table 7. Instantiating M3T concepts

M3T

Concept

VOLERE

Concept

T.Role Core team, Stakeholders, Persona

Elicitation Project blast off, Trawl for knowledge

Specification Write requirements

Validation Quality gateway

T.Purpose Project goal

T.Scenario Business scenario, Product scenario

T.Requirement Functional requirement, Non-functional requirement

T.Constraint Solution constraint, Project constraint

Figure 8. Scrum metamodel (M2A)

2100

Table 8. Selection step of ARDocS

N° SCRUM VOLERE

1 Scrum team Core team

2 Stakeholder Stakeholder

3 Product goal Project goal

4 Project estimation Project constraint

5 Sprint goal Project goal

6 Theme Business use case (BUC)

7 Epic Product use case (PUC)

8 Persona Stakeholder (Persona)

9 Functionality Functional requirement/ Non-functional requirement

10 Benefit Functional requirement (Rationale)

11
Definition of done, Acceptance criteria,

Story point
Solution constraint

12 Task Tasks

Figure 9. VOLERE metamodel (M2T)

As shown in Table 8, during the selection process, we

encountered three scenarios. The first scenario is when there

is a direct link between the concepts, in which case no choice

is imposed on us (see lines 3-5). The second scenario is when

we have a choice to make, but it is obvious because the

concepts in Scrum and VOLERE are similar (see lines 1-2-8-

9-10-12). The third scenario is when the choice is unclear and

the semantics of both sides differ. In this case, the choice is

made through careful consideration and a thorough

understanding of VOLERE, allowing us to select the concepts

that are the most representative and the closest semantically to

make our selection meaningful (see lines 4-6-7-11). It is worth

noting that certain Scrum concepts, being generic, may not

have direct equivalents; however, the projection is made for

their components, as is the case with the product backlog.

6. VALIDATION: CASE STUDY

Requirements documentation is considered trade secrets by

companies and is therefore confidential [46]. Consequently,

finding User Stories and backlogs becomes challenging for the

validation stage. To validate ARDocS approach we used an

existing case study which is an adaptation of a case from

Yourdon and Argilla [47]. The case study is realistic and

typical of medium-sized web application development

projects, which means it can be generalised to similar cases.

Bolloju et al. described their own version of the example

which they used to validate their method [48]. They provide a

description of the case study’s project and a set of user stories.

We completed the example by extracting other important agile

artefacts from the project description to obtain documentation

that is as concrete and realistic as that of a real project and that

could be structured using ARDocS. Table 9, in the appendix,

presents the agile documentation derived from the case study.

Due to space constraints, we could not provide full

descriptions of all documentation elements; but only extracts

are shown. The selected artefacts are among the most common

in agile documentation and have been chosen for their

importance in the development process, but also for their

diversity in terms of nature and level of abstraction. In this way,

they enable the method to be tested correctly by covering the

main concepts of the ARDocS mapping process shown in

Figure 7. We’re going to run through ARDocS approach on

US2 and the elements linked to it: SP2, Theme2, Epic3, AC2,

as shown in Table 10.

2101

Table 9. Agile documentation artefacts

Artefact Description

Product goal
Build a web-based software system for efficiently managing the subscriptions, reviews, and publications of various

journals.

Project estimation
Sprint Length: 2 weeks. Total Time: 26 weeks (13 Sprints). Total

Budget: $260,000

Theme Theme1: Subscription Management. Theme2: Article Review and Publication.

Epic
Epic1: Manage Subscriptions. Epic2: Manage Article Submissions and Reviews. Epic3: Manage Editorial

Workflow.

User story+Story point

US1: As a Subscriber I want to Subscribe to the one or more journals so that I can receive the journal issues. (SP1:

5 points). US2: As an Editor I want to Reject an article without any further reviews so that irrelevant articles need

not be assigned for review. (SP2: 3 points)

Definition of done All acceptance criteria of the user stories are met.

Acceptance criteria
AC1: The subscriber can select one or more journals to subscribe to. AC2: Upon rejection, the article’s status is

updated to “Rejected” and no further review steps are triggered.

Table 10. ARDocS application

Levels/Chunks M2A M3A M3T M2T

Theme2 Theme A.item T.scenario BUC

Epic3 Epic A.item T.scenario PUC

US2

Persona A.role T.role Persona

functionality A.item T.requirement Functional/ Non-functional requirement

Benefit A.item T.requirement Rationale

SP2 Story point A.constraint T.constraint Solution constraint

AC2 Acceptance criteria A.constraint T.constraint Solution constraint

7. DISCUSSION AND CONCLUSION

The case study used here is just a demonstration of the

application of ARDocS. It’s clear that the benefits of ARDocS

will be seen more clearly when applied to complete

documentation. Currently, most agile teams use digital tools to

manage and document their projects. The most popular tool is

Confluence by Atlassian, which is dedicated to documentation

and offers a wide choice of templates such as the Product

Requirements Document (PRD) for user stories, the Project

Kickoff for project objectives and estimations, to-do lists for

tasks and so on.

According to a recent study by Atlassian, there are currently

over 70 templates for defining all kinds of information,

including software requirements. ARDocS would bring

together all the information dispersed in the various agile

templates to create a structured documentation that could be

used by both traditional and agile teams. This would reduce

the complexity of use and the repetition of concepts. However,

when applying ARDocS approach, teams are faced with two

scenarios due to the iterative nature of agile: 1) Generating a

single document at the end of the project from the artefacts

produced during the SRE activities, specifying the iterations.

2) Generating documentation increments at the end of each

iteration. These scenarios can be adapted to the needs of the

team using them.

In conclusion, the aim of ARDocS is to conceptualize agile

and traditional documentation at different levels of abstraction.

It also serves as a means of structuring agile documentation,

which is particularly useful in the context of a project

developed in hybrid approach. ARDocS can therefore be seen

as a tool of communication between agile and traditional teams,

or among multiple agile teams using different methods with

different documentation artefacts. This approach can be

enhanced by integrating it with tools used by agile teams, such

as Confluence, which offers the possibility of extending it by

creating new plugins. To achieve this, we propose developing

a Confluence plugin that will retrieve relevant content from

Jira (for example, user stories and priorities) and fill in

predefined sections of a custom Confluence template based on

VOLERE. An important challenge is ensuring real-time

synchronization between agile artefacts and the generated

document, as agile teams frequently update artefacts that must

be immediately reflected in the traditional document. To

address this, we suggest that the plugin will incorporate a

trigger that periodically checks for changes in agile artefacts

and updates the Confluence document accordingly.

Automating ARDocS in this way would streamline its use,

making the documentation process more efficient and

accessible.

REFERENCES

[1] Garscha, P. (2021). From sustainability in requirements

engineering to a sustainability-aware scrum framework.

In 2021 IEEE 29th International Requirements

Engineering Conference (RE), Notre Dame, IN, USA, pp.

462-467. http://doi.org/10.1109/RE51729.2021.00069

[2] Martins, L.E.G., Gorschek, T. (2016). Requirements

engineering for safety-critical systems: A systematic

literature review. Information and Software Technology,

75: 71-89. https://doi.org/10.1016/j.infsof.2016.04.002

[3] Pang, C.Y. (2020). Product backlog and requirements

engineering for enterprise application development. In:

Software Engineering for Agile Application

Development. IGI Global, pp. 1-29.

http://dx.doi.org/10.4018/978-1-7998-2531-9.ch001

[4] Hull, E., Jackson, K., Dick, J. (2011). Requirements

Engineering (3rd ed.). Springer.

https://doi.org/10.1007/978-1-84996-405-0

[5] Alhazmi, A., Huang, S. (2020). Survey on differences of

requirements engineering for traditional and agile

development processes. Proc. 2020 SoutheastCon, IEEE,

2102

Raleigh, NC, USA, pp. 1-9.

https://doi.org/10.1109/SoutheastCon44009.2020.93974

92

[6] Fowler, M., Highsmith, J. (2001). The agile manifesto.

Software Development, 9(8): 28-35.

[7] Hadar, I., Sherman, S., Hadar, E., Harrison, J.J. (2013).

Less is more: Architecture documentation for agile

development. In 2013 6th International Workshop on

Cooperative and Human Aspects of Software

Engineering (CHASE), San Francisco, CA, USA, pp.

121-124. http://doi.org/10.1109/CHASE.2013.6614746

[8] Stettina, C.J., Heijstek, W. (2011). Necessary and

neglected? An empirical study of internal documentation

in agile software development teams. In Proceedings of

the 29th ACM International Conference on Design of

Communication, Italy, pp. 159-166.

https://doi.org/10.1145/2038476.2038509

[9] Wagenaar, G., Overbeek, S., Lucassen, G., Brinkkemper,

S., Schneider, K. (2018). Working software over

comprehensive documentation-Rationales of agile teams

for artefacts usage. Journal of Software Engineering

Research and Development, 6: 1-23.

http://dx.doi.org/10.1186/s40411-018-0051-7

[10] Rigby, D., Sutherland, J., Takeuchi, H. (2016).

Embracing Agile. Harvard Business Review.

https://hbr.org/2016/05/embracing-agile.

[11] Brennan, K. (2009). A guide to the business analysis

body of knowledge. IIBA.

https://www.academia.edu/6555031/A_Guide_to_the_B

usiness_Analysis_Body_of_Knowledge_BABOK_Guid

e_Version_2_0.

[12] Sommerville, I., Sawyer, P. (1997). Requirements

engineering: A good practice guide. John Wiley and Sons,

Inc. https://dl.acm.org/doi/10.5555/549198.

[13] Paetsch, F., Eberlein, A., Maurer, F. (2003).

Requirements engineering and agile software

development. In WET ICE 2003. Proceedings. Twelfth

IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative

Enterprises, Linz, Austria, pp. 308-313.

https://doi.org/10.1109/ENABL.2003.1231428

[14] Kotonya, G., Sommerville, I. (1996). Requirements

engineering with viewpoints. Software Engineering

Journal, 11(1): 5-18.

http://doi.org/10.1049/sej.1996.0002

[15] Alsayed, A.O., Bilgrami, A.L., Foster, W.A. (2017).

Improving software quality management: testing, review,

inspection and walkthrough. International Journal of

Latest Research in Science and Technology, 6(1): 1-12.

[16] Atoum, I., Baklizi, M.K., Alsmadi, I., Otoom, A.A.,

Alhersh, T., Ababneh, J., Almalki, J., Alshahrani, S.M.

(2021). Challenges of software requirements quality

assurance and validation: A systematic literature review.

Proc. 2021 IEEE Access, 9: 137613-137634.

http://dx.doi.org/10.1109/ACCESS.2021.3117989

[17] Scukanec, S.J., van Gaasbeek, J.R. (2010). A day in the

life of a verification requirement. In INCOSE

International Symposium, 20(1): 2524-2542.

https://doi.org/10.1002/j.2334-5837.2010.tb01180.x

[18] Elshandidy, H., Mazen, S. (2013). Agile and traditional

requirements engineering: A survey. Proc. Int. Journal of

Scientific & Engineering Research, 4(9): 473-482.

http://dx.doi.org/10.14299/ijser.2013.09.002

[19] Inayat, I., Salim, S.S., Marczak, S., Daneva, M.,

Shamshirband, S. (2015). A systematic literature review

on agile requirements engineering practices and

challenges. Computers in Human Behavior, 51: 915-929.

http://dx.doi.org/10.1016/j.chb.2014.10.046

[20] Goetz, R. (2002). How agile processes can help in time-

constrained requirements engineering. In Proceedings of

the International Workshop on Time Constrained

Requirements Engineering.

https://citeseerx.ist.psu.edu/document?repid=rep1&type

=pdf&doi=aff0a3151a7c742d94fad1bbcbe04139af8509

e0.

[21] Ramesh, B., Cao, L., Baskerville, R. (2010). Agile

requirements engineering practices and challenges: An

empirical study. Information Systems Journal, 20(5):

449-480. http://dx.doi.org/10.1111/j.1365-

2575.2007.00259.x

[22] Sutherland, J., Sutherland, J.J. (2014). Scrum: The art of

doing twice the work in half the time. Crown Currency.

https://www.agileleanhouse.com/lib/lib/News/More_Pra

ise_for_Scrum_The_Art_of_Doing_T.pdf.

[23] Schön, E.M., Sedeño López, J., Mejías Risoto, M.,

Thomaschewski, J., Escalona Cuaresma, M.J. (2019). A

metamodel for agile requirements engineering. Journal

of Computer and Communications, 7(2): 1-22.

http://dx.doi.org/10.4236/jcc.2019.72001

[24] Júnior, P.S.S., Barcellos, M.P., Falbo, R. de A., Almeida,

J.P.A. (2021). From a Scrum reference ontology to the

integration of applications for data-driven software

development. IST, 136: 106570.

https://doi.org/10.1016/j.infsof.2021.106570

[25] Batool, A., Motla, Y.H., Hamid, B., Asghar, S., Riaz, M.,

Mukhtar, M. (2013). Comparative study of traditional

requirement engineering and agile requirement

engineering. In 2013 15th International Conference on

Advanced Communications Technology (ICACT),
PyeongChang, Korea (South), pp. 1006-1014.

https://ieeexplore.ieee.org/abstract/document/6488350.

[26] Prenner, N., Unger‐Windeler, C., Schneider, K. (2021).

Goals and challenges in hybrid software development

approaches. Journal of Software: Evolution and Process,

33(11): e2382. http://doi.org/10.1002/smr.2382

[27] Hess, A., Diebold, P., Seyff, N. (2019). Understanding

information needs of agile teams to improve

requirements communication. Journal of Industrial

Information Integration, 14: 3-15.

http://doi.org/10.1016/j.jii.2018.04.002

[28] Boehm, B., Turner, R. (2005). Management challenges

to implementing agile processes in traditional

development organizations. IEEE Software, 22(5): 30-39.

http://doi.org/10.1109/MS.2005.129

[29] Gupta, A., Poels, G., Bera, P. (2022). Using conceptual

models in agile software development: A possible

solution to requirements engineering challenges in agile

projects. IEEE Access, 10: 119745-119766.

http://doi.org/10.1109/ACCESS.2022.3221428

[30] Franch, X., Palomares, C., Quer, C., Chatzipetrou, P.,

Gorschek, T. (2023). The state-of-practice in

requirements specification: an extended interview study

at 12 companies. Requirements Engineering, 28(3): 377-

409. http://doi.org/10.1007/s00766-023-00399-7

[31] Mahmud, I., Veneziano, V. (2011). Mind-mapping: An

effective technique to facilitate requirements engineering

in agile software development. In 14th International

Conference on Computer and Information Technology

2103

https://dl.acm.org/doi/10.5555/549198

(ICCIT 2011), Dhaka, Bangladesh, pp. 157-162.

http://doi.org/10.1109/ICCITechn.2011.6164775

[32] Koutsopoulos, G., Kjellvard, N., Magnusson, J.,

Zdravkovic, J. (2020). Towards an integrated meta-

model for requirements engineering. In: Proceedings of

the Practice of Enterprise Modelling 2019 Conference

Forum, RWTH Aachen University, pp. 40-53.

[33] Kalfat, H., Oussalah, M., Chikh, A. (2023). ADM: An

agile template for requirements documentation. In

Proceedings of the 18th International Conference on

Software Technologies (ICSOFT 2023), Rome, Italy, pp.

494-501. http://doi.org/10.5220/0012122400003538

[34] Gill, A.Q., Henderson-Sellers, B., Niazi, M. (2018).

Scaling for agility: A reference model for hybrid

traditional-agile software development methodologies.

Information Systems Frontiers, 20: 315-341.

https://doi.org/10.1007/s10796-016-9672-8

[35] Ortega-Ordoñez, W.A., Pardo-Calvache, C.J., Pino-

Correa, F.J. (2019). OntoAgile: An ontology for agile

software development processes. Dyna, 86(209): 79-90.

http://doi.org/10.15446/dyna.v86n209.76670

[36] Kuhrmann, M., Münch, J., Diebold, P., Linssen, O.,

Prause, C. (2016). On the use of hybrid development

approaches in software and systems development:

Construction and test of the HELENA survey.

Gesellschaft für Informatik, pp. 59-68.

https://dl.gi.de/items/56845282-077d-41b7-ab86-

a1af5847514d.

[37] Theocharis, G., Kuhrmann, M., Münch, J., Diebold, P.

(2015). Is water-scrum-fall reality? On the use of agile

and traditional development practices. In Product-

Focused Software Process Improvement: 16th

International Conference, PROFES 2015, Bolzano, Italy,

16: 149-166. https://doi.org/10.1007/978-3-319-26844-

6_11

[38] Hoda, R., Noble, J., Marshall, S. (2012). Documentation

strategies on agile software development projects.

International Journal of Agile and Extreme Software

Development, 1(1): 23-37.

http://doi.org/10.1504/IJAESD.2012.048308

[39] Object Managment Group. (2008). Software & Systems

Process Engineering Metamodel. About the Software &

Systems Process Engineering Metamodel Specification

Version 2.0. https://www.omg.org/spec/SPEM/2.0/.

[40] Batra, M., Bhatnagar, A. (2017). A comparative study of

requirements engineering process model. International

Journal of Advanced Research in Computer Science, 8(3):

740-745. https://doi.org/10.26483/ijarcs.v8i3.3088

[41] Loucopoulos, P., Karakostas, V. (1995). System

requirements engineering. McGraw-Hill Book Co.,

Europe. https://dl.acm.org/doi/abs/10.5555/545779.

[42] Riechert, T., Lauenroth, K., Lehmann, J., Auer, S. (2007).

Towards semantic based requirements engineering. In

Proceedings of the 7th International Conference on

Knowledge Management (I-KNOW). Springer Berlin

Heidelberg. http://jens-

lehmann.org/files/2007/swore.pdf.

[43] Schwaber, K., Sutherland, J. (2011). The scrum guide.

Scrum Alliance, 21(1): 1-38.

http://dx.doi.org/10.1002/9781119203278.app2

[44] Robertson, J., Robertson, S. (2000). Volere requirements

specification template.

https://www.volere.org/templates/volere-requirements-

specification-template/.

[45] Robertson, S., Robertson, J. (2012). Mastering the

requirements process: Getting requirements right.

Addison-Wesley. https://www.volere.org/mastering-the-

requirements-process-getting-requirements-right/.

[46] Mosser, S., Pulgar, C., Reinhar, V. (2022). Modelling

agile backlogs as composable artifacts to support

developers and product owners. The Journal of Object

Technology, 21(3): 3-1.

http://doi.org/10.5381/jot.2022.21.3.a3

[47] Yourdon, E., Argila, C. (1996). Case studies in object

oriented analysis & design. Prentice-Hall, Inc., United

States. https://dl.acm.org/doi/abs/10.5555/235257

[48] Bolloju, N., Alter, S., Gupta, A., Gupta, S., Jain, S.

(2017). Improving Scrum user stories and product

backlog using work system snapshots. Systems Analysis

and Design (SIGSAND), 7.

https://aisel.aisnet.org/amcis2017/SystemsAnalysis/Pres

entations/7/.

2104

https://dl.gi.de/items/56845282-077d-41b7-ab86-a1af5847514d
https://dl.gi.de/items/56845282-077d-41b7-ab86-a1af5847514d
https://www.omg.org/spec/SPEM/2.0/

