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In the realm of hyperspectral image (HSI) classification, the selection of appropriate 

features and spectral-spatial information holds significant importance. Hyperspectral 

remote sensors offer an abundance of valuable information through numerous spectral 

bands within each pixel. Therefore, the aim of this research is to show a new approach to 

the selection of features will help identify and achieve an optimal feature set that improves 

classification efficiency. As such, this study presents a fresh viewpoint on feature selection 

for identifying the best subset of features which can improve the efficiency in classification. 

The research consists of different stages as follows: First stage is featuring extraction using 

Scale-Invariant Feature Transform (SIFT) and Gray-Level Run Length Matrix (GLRLM) 

technique then second stage is featuring selection through proposed hybrid between swarms 

by merging the outputs of two swarm algorithms binary particle swarm optimization 

(BPSO) and binary gray wolf optimizer (BGWO), it is done through AND Operator. These 

findings reveal that there is a great improvement in classification accuracy relative to full 

spectral data exceeding 1% threshold each for the Indian Pines, KSC and Botswana datasets. 

Remarkable values of 94.47, 93.48 and 81.70 are obtained for the Kappa coefficient, a 

metric for classification accuracy with regard to Botswana, KSC and Indian Pines datasets 

respectively. In this sense, these empirical results indicate that the proposed feature 

selection method outperforms other alternative methodologies discussed in this study. 
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1. INTRODUCTION

Hyperspectral imaging has garnered significant interest for 

its capability to deliver comprehensive information about the 

composition and characteristics of objects within an image. 

Unlike RGB imaging, hyperspectral imaging captures data in 

narrow spectral bands allowing for a more comprehensive 

understanding of the scene, while traditional methods often 

struggle with high-dimensionality and overfitting in 

hyperspectral image classification, this study introduces a 

novel hybrid approach combining BPSO and BGWO, which 

exploits the strengths of each method to optimize feature 

selection, improving classification accuracy across various 

datasets. 

In the classification process [1], each pixel in the image is 

assigned to classes based on its unique spectral signature. This 

signature represents the reflection or absorption pattern that 

characterizes each object or material [2]. Hyperspectral image 

classification has applications, including monitoring, land use 

mapping, agriculture, and mineral exploration [3]. However, 

hyperspectral data are complex and high-dimensional since 

they contain numerous narrow bands that were captured 

during the scanning process [4]. Addressing this problem, 

researchers have proposed several methods for feature 

selection to reduce dimensionality of data while improving 

classification accuracy [5]. The richness of the measured 

spectrum, with its high dimensionality, proves valuable for 

pixel classification, enabling the discrimination of different 

landscapes within the image scene [6]. However, land cover 

classification in hyperspectral imaging (HSI) data remains a 

prominent and challenging topic, primarily due to the “curse 

of dimensionality.” This challenge stems from the labor-

intensive process of obtaining a limited number of ground-

truth labeled pixels (training data), which must be 

appropriately distributed across various classes [7]. The 

commonly low number of collected ground-truth labels as 

compared to high spectral bands often leads to an unreliable 

estimate of classifier parameters hence make it prone to 

problems of over-fitting or under-fitting; thus, reducing 

classifier performance [8]. 

To enhance classification accuracy and efficiency, the 

remote sensing community has prioritized addressing data 

redundancy, driving the development of advanced feature 

selection techniques [9]. In data mining and pattern 

recognition applications, feature selection is essential, 

particularly for high-dimensional datasets. In order to develop 

a model, it entails choosing a subset of independent features 

[10]. 
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The goals of feature selection encompass faster training of 

classification models, reduced model complexity, improved 

accuracy, and minimized overfitting. Thus, feature selection 

serves as a valuable means of providing prior knowledge of 

hyperspectral imaging and selecting relevant similarity 

measures with estimated weights for the classification method 

[11]. 

Classification plays a vital role in remote sensing by 

distinguishing objects within imagery into various classes, 

facilitating the creation of secondary products for mapping, 

monitoring, and analyzing land cover and land use changes. In 

hyperspectral image classification, the main goal is to assign 

each pixel in the scene to a specific category, a critical step in 

applications such as identifying land-cover types for Earth 

monitoring [12]. 

Over the last two decades, numerous supervised methods 

have been proposed for hyperspectral image classification. In 

the initial stages, spectral classifiers relied solely on spectral 

information, with Support Vector Machine (SVM) classifiers 

being a typical example. However, SVM's low sensitivity to 

high dimensionality has driven the development of various 

SVM-based classifiers tailored to handle the spectral 

classification of hyperspectral imagery [13]. In light of these 

challenges and advancements in hyperspectral image 

processing, our study proposes a novel method that combines 

feature extraction algorithms, specifically Scale-Invariant 

Feature Transform (SIFT) and Gray-Level Run Length Matrix 

(GLRLM), with feature selection algorithms, Binary Particle 

Swarm Optimization (BPSO), and Binary Grey Wolf 

Optimizer (BGWO). Our strategy aims to identify the ideal 

feature set that maximizes classification efficiency. 

To evaluate the efficacy of our proposed methodology, we 

employ the Indian Pines dataset, containing hyperspectral 

images of farmland in Indiana, USA. Comparative analysis 

with other sophisticated algorithms utilizing GLRLM, SIFT 

classifiers, and Support Vector Machine (SVM) classifiers 

demonstrates the superiority of our proposed strategy, yielding 

notable gains in F1 scores across different categories. To reach 

this goal, we proposed in this research a new and more reliable 

technique in the feature selection process that helps in 

significantly improving the classification of hyperspectral 

images in various remote sensing and Earth observation 

applications. The swarm algorithms were hybridized by 

combining the outputs of two algorithms to improve the binary 

particle swarm. (BPSO) and Binary Gray Wolf Optimizer 

(BGWO), which is done through the AND operator, where the 

results showed a significant improvement in classification 

accuracy. 

 

 

2. RELATED WORK 

 

Many studies have addressed feature reduction algorithms 

in hyperspectral imaging because of their high dimensions that 

affect classification accuracy.one of this study. The 

classification of hyperspectral images has long been hampered 

by the 'curse of dimensionality,' where high-dimensional data 

complicates feature selection. Existing methods often suffer 

from poor generalization or convergence issues. In this study, 

we introduce a novel hybrid approach combining Binary Grey 

Wolf Optimizer (BGWO) and Binary Particle Swarm 

Optimization (BPSO, which addresses these gaps by 

exploiting the complementary strengths of both techniques. 

This hybrid method leads to more effective feature selection, 

significantly improving classification accuracy across a range 

of datasets. The study [14] presents a discarding-recovering 

and co-evolution feature selection strategy for hyperspectral 

imaging (HSI) datasets to find efficient feature combinations. 

The suggested method beats EA-based methods including 

GWO, PSO, GSA, and FA GSA in feature space optimization 

and speed of search. A few selected qualities give it a 

prominent OA and satisfactory stability. Performance 

improves when trustworthy co-evolution interacts with more 

representative agent information. 

Kilickaya et al. [15] suggested hyperspectral image one-

class classification method overcomes the high-

dimensionality and imbalanced classes of standard machine 

learning techniques. The proposed approach overcomes HSI 

data imbalance and dimensionality using S-SVDD. Without 

band selection or dimensionality reduction, subspace learning 

approaches translate high-dimensional data to a lower-

dimensional feature space suitable for one-class classification. 

The balanced labels of the LULC classification issue and 

extensive spectrum information make the suggested technique 

suitable for HSI data. The pipeline analyzes subspace learning 

one-class classmates to show its efficacy in addressing the 

curse of dimensionality and HSI data imbalance. Elmaizi et al. 

[16] introduce a relevance and synergy maximization 

(MRMS)-based method for hyperspectral image selection to 

reduce dimensionality and classify images. Unlike previous 

filter approaches, the suggested method manages relevance, 

spectral interaction, and synergy between selected bands. This 

experiment was tested on three benchmark hyperspectral 

datasets and found effective and robust. The suggested 

selection method incorporates geographical metrics and 

attributes to improve ground truth estimate. 

In the study by Wang et al. [17], A novel autoencoder-based 

feature selection model, leveraging latent representation 

learning (LRLAFS), is proposed for hyperspectral imaging 

(HSI) data. The model outperforms others using latent 

representation learning and an alternate optimization strategy. 

The model's usefulness is confirmed by three HSI dataset 

experiments. 

Another study by Islam et al. [18] shows that ground cover 

analysis benefits from hyperspectral imaging (HSI). 

Classification utilizing the original HSI is difficult because to 

high correlation, variable information, and processing 

expenses. Better categorization requires feature extraction 

(FE) and/or selection (FS). This paper presents an efficient FE 

technique employing normalized mutual information (NMI)-

based band grouping to generate the best features and classify 

them using kernel support vector machines. The proposed 

approach enhanced classification performance the most, with 

94.93% accuracy for the AVIRIS dataset and 99.026% for the 

HYDICE dataset. 

The study by Zhang and Wang [19] It is observed that the 

high dimensionality of hyperspectral data and the uniform 

consideration of all spectral bands pose challenges for CNN-

based hyperspectral image classification, despite 

advancements through deep learning. To address this, this 

study proposes a spatial proximity feature selection method 

integrated with a residual spatial-spectral attention network, 

which incorporates residual spatial attention, spectral 

attention, and feature selection modules. The network detects 

land-cover labels and improves classification accuracy better 

than current methods. Siddiqa et al. [20] present a dimension 

reduction strategy for high-dimensional hyperspectral image 

(HSI) classification that reduces feature size and 
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computational time. The normalized cross-cumulative residual 

entropy (nCCRE) matrix picture replaces the correlation 

matrix image, decreasing computing cost and enhancing data 

partitioning. The nCCRE metric improves selected 

characteristics using minimum redundancy. The proposed 

strategy outperforms the existing techniques in classification 

and performance assessments. Extractive subset efficiency on 

two real HSIs is assessed using the SVM classifier.t-

Distributed Stochastic Neighbor Embedding (tSNE) improves 

hyperspectral image (HSI) display and characterization PCA 

reduces HSI dimensions, preserves local and global pixel 

correlations, and produces two-dimensional data. The tSNE 

enhances visualization and classification [21]. 

Last but not least, Islam et al. [22] described a modified 

deep learning model for dimensionality reduction using non-

negative matrix factorization (NMF), information-based 

feature selection, and a 2D wavelet-based CNN, which 

achieved higher accuracy than traditional procedures. 

From previous studies, we observe the success of 

dimensionality reduction techniques in improving the 

performance of classifiers on HSI datasets, as well as making 

them more interpretable. However, determining the most 

appropriate feature selection algorithm for a given HSI dataset 

remains an open problem because each method has its 

advantages and limitations. 

 

 

3. PROPOSED SYSTEM 

 

The proposed system, illustrated in Figure 1, consists of 

three main processes: feature-extraction, feature-selection, 

and classification. This study evaluates the effectiveness of 

two feature extraction methods (GLRLM and SIFT) alongside 

a novel feature selection approach that combines two 

swarming techniques with a collective classifier to enhance 

classification accuracy. SIFT identifies key points in images 

invariant to scale and rotation, making it ideal for robust 

feature extraction across varying spectral bands. Conversely, 

GLRLM captures texture features by counting the lengths of 

consecutive runs of pixels at specific gray levels, providing 

complementary spatial information for classification. The 

representation is general for most systems used in categorizing 

hyperspectral images. 

 

 
 

Figure 1. Proposed hyperspectral image classification 

 

For instance, gray-level run length matrix (GLRLM) [23] 

algorithm is a common method used in computer vision or 

image analysis for feature extraction while Scale-Invariant 

Feature Transform (SIFT) [24] also helps achieve this 

objective. Hyperspectral images (HSI) are classified using 

these separately as well as in combination [25, 26]. These 

GLRLM and SIFT are both techniques that can be used for 

image recognition, where the former is a texture descriptor. By 

employing both GLRLM and SIFT, different areas of the 

image will be captured leading to a better representation of the 

same hence improved classification accuracy. These two 

algorithms are part of many optimization algorithms used for 

feature selection in hyperspectral image classification. BPSO 

on the other hand tries to simulate particles or small organisms 

moving around, using a simple mathematical model [27]. 

Conversely, BGWO is an evolutionary algorithm applied to 

solve mathematical problems [28]. 

Additionally, this research introduces another model that 

combines the results obtained from two swarm intelligence 

algorithms. One dimensional matrix represents sub-features 

that individual swarms are expected to find using particular 

algorithms. To ensure only effective features are selected, 

AND operation is applied between first swarm’s binary vector 

and second swarm’s vector. The integration between these 

swarm methods has been indicated by Figure 2 below. 

 

 
 

Figure 2. Proposed hybrid swarms’ structure for feature 

selection 

 
The AND operation between the binary vector of the first 

swarm (S1) and the vector of the second swarm (S2) is 

mathematically represented as: 

 

Final_features=𝑠1 ∩ 𝑠2 (1) 

 

where, Final features represent the final selected features. 

Additionally, BPSO and BGWO have their respective 

update equations. In BPSO, the position and velocity of each 

particle are updated as follows [29]. 

 

𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑡 ⊕ (𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 ⊕ 𝑥𝑖

𝑡) (2) 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (3) 

 

where, 𝑝𝑏𝑒𝑠𝑡𝒊
𝒕
 is the best position that particle I could have 

found at time t, 𝒙𝒊
𝒕 is the position of particle I at time t, 𝒗𝒊

𝒕 is 

the velocity of particle I at time t, represents the bitwise XOR 
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operation and is also used for the bitwise XOR operation 

between the particle positions and velocities. 

In BGWO, the updated equations for the position of each 

grey wolf are as follows [30]: 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 ⊕ (𝐴 ⊕ 𝐷𝑖
𝑡) (4) 

 

𝐷𝑖
𝑡+1 = 𝐶 ⊕ (𝑋∗𝑡 ⊕ 𝑋𝑖

𝑡+1𝑡) (5) 

 

𝑥𝑖
𝑡+1 = 𝑐𝑙𝑖𝑝(𝑥𝑖

𝑡+1 𝑙𝑏 ub) (6) 

 

where, Xi(t) represents the position of the grey wolf i at time 

t, 𝑋∗𝑡 is the best position found by the grey wolves, A is the 

coefficient matrix, 𝐷𝑖
𝑡  is the distance vector of the grey wolf i 

at time t, C is a random vector, lb and ub are the lower and 

upper bounds of the search space. 

The hybrid approach aims to enhance the feature selection 

process in hyperspectral image classification, leading to 

improved accuracy and performance. By combining the 

strengths of BPSO and BGWO. 

This study employed a combination of different machine 

learning methods to identify hyperspectral imaging (HSI) data. 

Specifically, a SVM, KNN algorithm, and Naive Bayes 

classifiers were utilized, as mentioned in the relevant sources 

[31-33]. By combining these classifiers, an ensemble classifier 

was created. A group of classifiers, often referred to as basis 

classifiers, are built using ensemble methods, which are 

learning algorithms. Predictions are then made on new data 

points by taking into account the weighted votes from these 

classifiers, as shown in Figure 3. 

 

 
 

Figure 3. Basic outline of ensemble classifier 

 

   Pseudo code of Proposed feature selection  

# Initialize parameters 

Initialize BPSO parameters: num_particles, max_iterations, w, 

c1, c2 

Initialize BGWO parameters: num_wolves, max_iterations, A, 

C, lb, ub 

# Initialize swarm matrices 

Initialize S1 with random binary vectors of size num_particles 

x num_features 

Initialize S2 with random binary vectors of size num_wolves 

x num_features 

# Main loop for BPSO 

for iteration in range(max_iterations): 

    for particle in S1: 

        Calculate the fitness of the particle using classification 

accuracy 

        Update best if fitness is better than previous 

        Update velocity using equation (2) 

        Update position using equation (3) 

# Main loop for BGWO 

for iteration in range(max_iterations): 

    for wolf in S2: 

        Calculate the fitness of the wolf using classification 

accuracy 

        Update the best position X^(*t) if fitness is better than 

previous 

        Update distance vector D_i^t using equation (5) 

        Update position using equation (4) and clip using 

equation (6) 

# Perform AND operation between S1 and S2 

Final_features = S1 AND S2 

# Perform classification using the selected features 

Train a classifier (e.g., SVM) using Final_features as input 

# Evaluate classifier performance 

Test the classifier on validation/testing data and measure 

accuracy 

# End 

 

 

4. RESULTS AND DISCUSSION 

 

The suggested method is implemented for testing with 

Matlab 2021b on a Windows 10 personal computer with a 2.30 

GHz CPU and 16.00 GB of RAM. 

 

4.1 Datasets description 

 

For us to evaluate our feature selection and classifier, we 

considered three different hyperspectral imaging (HSI) 

datasets in this study, which helped in bringing out the 

capability of our technique. The Botswana hyperspectral 

dataset was the first among equals during the analysis. This 

data was taken from a particular region in Southern Africa and 

covers a wide spectral range that is very important for 

capturing the subtle spectral signatures of various land cover 

classes. The Botswana dataset provides a unique environment 

on which our methodological efficacy may be tested as well as 

challenging issues whose solutions require innovative 

thinking, The Indian Pines dataset is characterized by a diverse 

range of crop types with a high level of spectral similarity, 

making it particularly challenging for classification. 

Additionally, the presence of mixed pixels and noise 

complicates the analysis. Our method demonstrated 

significant improvements on this dataset, particularly in 

reducing the misclassification of spectrally similar classes. 

Similarly, the Kennedy Space Center (KSC) dataset, which 

features both natural landscapes and man-made structures, 

presents a unique challenge due to the variety of spectral 

signatures. Our approach outperformed existing methods on 

both datasets, achieving higher accuracy and Kappa 

coefficients. 

Table 1 offers an overview of the Botswana dataset by 

giving out some of its attributes such as number of bands, 

spatial dimensions and true labels. This tabulated knowledge 

has become an anchor of subsequent analyses [34]. 

On the other hand, Figure 4, vividly captures part of 
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Botswana’s dataset. This visualization illustrates how 

different discrete land cover categories are defined by the 

complex spectral variability thus making it apparent how deep 

and detailed are hyperspectral data contained within the 

Botswana landscape. 

 

Table 1. The number of labeled samples and types of land 

cover that are available in Botswana [34] 

 
Number of 

Class 
Name of Class 

No. of Labeled 

Samples 

1 Water 270 

2 Hippo grass 101 

3 Floodplain grasses1 251 

4 Floodplain grasses2 215 

5 Reeds 269 

6 Riparian 269 

7 Firescar 259 

8 Island interior 203 

9 Acacia woodlands 314 

10 Acacia scrublands 248 

11 Acacia grasslands 305 

12 Short mopane 181 

13 Mixed mopane 268 

14 Exposed soils 95 
 Total 3248 

 

 
 

Figure 4. Botswana false-color image and ground-truth map 

[33] 
 

Our investigation was then put on the spotlight by The 

Kennedy space center (KSC) hyperspectral dataset. This 

dataset is from one of the most famous space launch sites, 

which means it contains natural landscapes and man-made 

structures in close proximity, hence a dynamic and difficult 

landscape for hyperspectral analysis. We also measured how 

adaptable it is in this environment using our methodology. 

Table 2 systematically outlines the fundamental attributes 

of the KSC dataset, spanning spectral bands, spatial 

dimensions, and ground-truth labels. This tabulated 

compendium serves as a foundational guide for subsequent 

deliberations. 

Figure 5 amplifies our understanding by visually capturing 

a distinct subset of the KSC dataset. This illustrative glimpse 

underscores the intricate spectral characteristics inherent in the 

diverse features peppered across the Kennedy Space Center 

expanse, unequivocally emphasizing the potency and 

multifaceted nature of hyperspectral imaging [35]. 

Last but certainly not least, the Indian Pines hyperspectral 

dataset, a widely regarded benchmark, enriched our 

comprehensive analysis. Collected over farmland in Indiana, 

USA, this dataset presents a captivating yet complex landscape 

teeming with spectral insights [36, 37]. The Indian Pines 

dataset served as a rigorous testing ground for meticulously 

evaluating the efficacy of our proposed methodology. 

 

Table 2. The number of land-cover classifications and 

labeled samples that are available in the KSC dataset [35] 

 
Number of 

Class 
Name of Class 

No. of Labeled 

Samples 

1 Scrub 761 

2 Willow swamp 243 

3 
Cabbage palm 

hammock 
256 

4 
Cabbage palm/Oak 

hammock 
252 

5 Slash pine 161 

6 
Oak/Broadleaaf 

hammock 
229 

7 Hardwood swamp 105 

8 Graminoid marsh 431 

9 Spartina marsh 520 

10 Cattaial marsh 404 

11 Salt marsh 419 

12 Mudflats 503 

13 Water 27 
 Total 5211 

 

 
 

Figure 5. KSC dataset false-color image and ground-truth 

map [35] 

 

Table 3. The number of land-cover classifications and tagged 

samples that are available in the Indian Pines dataset [37] 

 
Number of 

Class 
Name of Class 

No. of Labeled 

Samples 

1 Alfalfa 46 

2 Corn-no-till 1428 

3 Corn-min 830 

4 Corn 237 

5 Grass/Pasture 483 

6 Grass/Trees 730 

7 Grass/Pasture-mowed 28 

8 Way-windrowed 478 

9 Oats 20 

10 Soybeans-no-till 972 

11 Soybeans-min 2455 

12 Soybean-clean 593 

13 Wheat 205 

14 Woods 1265 

15 Bldg.-Grass-Tree-Drives 386 

16 Stone-steel towers 93 
 Total 10249 
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Table 3 delivers a concise summation of the Indian Pines 

dataset's key attributes, encompassing spectral bands, spatial 

dimensions [37], and ground-truth labels. This tabular 

scaffolding sets the stage for our subsequent exploration. 

Figure 6 takes us deeper, visually capturing a distinct slice 

of the Indian Pines dataset. This visual elucidation underscores 

the intricate spectral differentiations intrinsic to varied land 

cover categories, amplifying our appreciation for the depth and 

intricacy of hyperspectral data harbored within the Indian 

Pines dataset. 

Collectively, the comprehensive evaluation across these 

three distinct hyperspectral datasets-Botswana, KSC, and 

Indian Pines - firmly underscores the robustness and versatility 

of our proposed methodology across an eclectic array of 

landscapes and scenarios. 

 

4.2 Experiments for widely used methods of feature 

selection 

 

This section employs commonly utilized feature selection 

procedures, including CMIM, mRMR, JMI methods, and 

Relief algorithms, to assess the efficiency of the suggested 

method. Tables 4-6 present the Kappa coefficient and 

classification accuracy results for three hyperspectral imaging 

(HSI) datasets, employing various widely employed feature 

selection techniques. The tables present overall classification 

accuracy (OA) and Kappa coefficient for each category, 

obtained through the utilization of various feature selection 

strategies, The results demonstrate the superior performance 

of the hybrid approach, particularly in high-dimensional 

datasets like Indian Pines and KSC. The combination of BPSO 

and BGWO ensured that both global exploration and local 

exploitation were optimized, leading to a more accurate 

selection of features. This resulted in higher classification 

accuracy compared to other feature selection methods, 

especially in the presence of noise and spectral overlap. The 

AND operation between the swarms further ensured that only 

the most relevant features were retained, significantly 

reducing the dimensionality of the dataset without sacrificing 

classification performance. 

According to the information found in Tables 4-6, the 

proposed feature selection method showed better classification 

accuracy than full spectrum use. The Botswana dataset as well 

as Indian Pines and KSC datasets has it at more than 1%. 

Moreover, the results revealed that the Botswana, KSC, and 

Indian Pines data sets have Kappa coefficients above 94.47, 

93.48, and 81.70 respectively meaning that higher 

classification accuracy of the proposed technique gave better 

results as compared to other methods stated in this paper. 

 

Table 4. Kappa and overall classification accuracy for the Botswana dataset 

 
Class Number Full Spectral mRMR CMIM JMI Relief Proposed 

1 95.31 97.35 96.77 94.87 97.35 97.50 

2 91.87 87.76 87.76 88.21 85.47 90.95 

3 90.13 91.87 87.09 86.22 93.17 91.43 

4 81.14 42.85 70.60 54.74 42.85 83.82 

5 65.83 16.86 38.93 35.48 20.31 61.69 

6 67.02 57.31 52.94 46.63 51.97 65.56 

7 86.11 90.36 88.23 90.36 88.23 87.17 

8 98.42 89.92 94.04 86.57 86.31 98.16 

9 96.94 83.91 90.53 87.54 78.14 96.51 

10 97.15 90.56 98.25 94.13 79.57 98.53 

11 98.61 98.08 98.88 96.76 98.08 98.88 

12 96.14 95.48 89.52 90.40 97.47 99.23 

13 98 100 100 100 100 100 

14 93.96 87.65 90.21 87.46 85.90 94.45 

OA (%) 89.76 80.71 84.55 81.38 78.92 90.28 

Kappa 93.67 82.45 89.96 90.65 91.20 94.47 

 

Table 5. Kappa and overall classification accuracy for the KSC dataset 

 
Class Number Full Spectral mRMR CMIM JMI Relief Proposed 

1 94.31 96.35 95.77 93.87 96.35 96.5 

2 90.87 86.76 86.76 87.21 84.47 89.95 

3 89.13 90.87 86.09 85.22 92.17 90.43 

4 84.14 41.85 69.6 53.74 41.85 82.82 

5 64.83 15.86 37.93 34.48 19.31 60.69 

6 66.02 56.31 51.94 45.63 50.97 64.56 

7 85.11 89.36 87.23 89.36 87.23 86.17 

8 97.42 88.92 93.04 85.57 85.31 97.16 

9 95.94 82.91 89.53 86.54 77.14 95.51 

10 96.15 89.56 97.25 93.13 78.57 97.53 

11 97.61 97.08 97.88 95.76 97.08 97.88 

12 95.14 94.48 88.52 89.4 96.47 98.23 

13 99.88 100 100 99.88 100 100 

14 92.96 86.65 89.21 86.46 84.9 93.45 

OA (%) 92.16 85.12 87.98 8490 83.17 92.7 1 

Kappa 92.70 80.6 88.21 88.84 89.65 93.48 
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Table 6. Kappa and overall classification accuracy for the Indian Pines dataset 

 
Class Number Full Spectral mRMR CMIM JMI Relief Proposed 

1 29.27 0 97.6 31.71 17.07 58.54 

2 83.42 60.7 44.36 69.88 69.18 83.74 

3 72.02 56.22 30.66 99.1 29.72 69.75 

4 71.83 51.17 20.19 31.46 30.99 70.89 

5 91.49 19.54 84.6 75.4 83.91 91.03 

6 96.5 91.78 94.37 93 91.7 97.72 

7 68 40 0 40 0 68 

8 98.84 96.98 96.05 97.44 99.07 99.53 

9 55.56 0 0 55.6 16.67 55.56 

10 78.17 53.26 17.26 34 52.69 80 

11 85.6 75.1 89.54 88.37 81.08 86.33 

12 85.96 37.45 19.29 14.04 38.95 89.89 

13 94.57 90.76 92.93 90.22 77.17 95.11 

14 97.19 97.36 97.36 97.19 96.84 97.72 

OA (%) 52.16 14.99 37.18 35.73 40.63 60.23 

Kappa 79.17 55.02 56.02 65.53 56.07 81.70 

 

 
 

Figure 6. Indian Pines dataset false-color image and ground truth map [36] 

 

 

5. CONCLUSION 

 

A novel approach to hyperspectral image (HSI) 

classification feature selection that enhances classification 

efficiency is presented in this study. The researchers have used 

SIFT and GLRLM techniques for feature extraction and then 

a hybrid approach was proposed which combined the outputs 

of two swarm algorithms, BPSO and BGWO, through AND 

Operator on both scales. According to Indian Pines, KSC, and 

Botswana datasets, classification results were improved 

significantly as compared to full spectral data and have 

consistently raised above 1% threshold. For Botswana, KSC 

and Indian Pines datasets respectively, The Kappa coefficient 

as a measure of classification precision achieves outstanding 

values of 94.47, 93.48, and 81.70. These empirical results 

prove the usefulness of the proposed feature selection method 

over other methods tested within this study. 

In summary, the hybrid swarm approach combining BPSO 

and BGWO proved to be a highly effective method for feature 

selection in hyperspectral image classification. By leveraging 

the strengths of both algorithms, the method not only 

improved classification accuracy but also demonstrated 

robustness across various datasets. This approach holds 

potential for wide applications in fields such as environmental 

monitoring, where accurate land cover classification is crucial, 

and precision agriculture, where early crop health detection 

can lead to more sustainable farming practices. 
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