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Early detection is paramount in the fight against breast cancer, as it can significantly 

improve a patient's survival chances. Studies suggest early detection can increase survival 

rates. The elusive nature of breast cancer's exact cause underscores the critical role of early 

detection in reducing mortality rates. In diagnosing breast cancer, radiologists rely on 

analyzing images obtained from mammograms, X-rays, or MRIs to identify any 

abnormalities. While highly skilled radiologists play a crucial role in breast cancer 

detection, diagnosing subtle abnormalities like micro calcifications, lumps, and masses can 

be challenging. This can lead to both false positives and false negatives. However, recent 

breakthroughs in image processing and deep learning offer exciting possibilities. This 

research explores the development of various Convolutional Neural Network (CNN) 

architectures for early breast cancer detection. These architecture segment and classify 

diverse breast abnormalities, including calcifications, masses, asymmetry, and carcinomas. 

This approach goes beyond existing research that primarily classifies cancer as benign or 

malignant, thereby contributing to improved disease management. This paper investigates 

the impact of CNN architectures complexities and various regularization techniques on 

classification accuracy. This study conducted experiment with four different CNN 

architectures such as CNN, VGG16, ResNet50 and MobileNet, progressively increasing the 

number of layers and filters. This study employs data normalization and augmentation 

techniques to address over-fitting. Regularization techniques, such as dropout, L2 

regularization, and data augmentation, are evaluated for their effectiveness in improving 

model performance. Among four CNN architectures CNN model which have additional 

convolutional block with 256 features and a reduced learning rate decay factor gives the 

better results than others. 
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1. INTRODUCTION

Breast cancer [1] is the most common cancer affecting 

women globally, representing 12.5% of new cancer cases each 

year. According to data from the American Cancer Society 

(ACS), a woman's lifetime risk of developing breast cancer is 

around 13%, compared to approximately 0.12% for men. As 

one of the leading causes of cancer-related deaths among 

women, early detection plays a pivotal role in improving 

survival rates. Traditional diagnostic tools such as 

mammography and breast ultrasound are crucial for 

identifying breast abnormalities and tumors, with ultrasound 

particularly beneficial for women with dense breast tissue. 

However, the effectiveness of these methods can be limited by 

factors such as image quality, tumor visibility, and varying 

expertise in image interpretation. 

Breast ultrasound [2] imaging is widely used in the 

detection and diagnosis of breast cancer, often in conjunction 

with mammography to provide a more comprehensive 

assessment. One of its primary advantages is that it is non-

invasive, painless, and free of radiation exposure, making it a 

preferred option for many patients. Despite its benefits, the 

interpretation of ultrasound images poses several challenges. 

Speckle noise, a grainy pattern commonly found in ultrasound 

scans, can reduce image clarity, making it difficult for 

radiologists to accurately identify tumors. Additionally, breast 

cancer tumors can vary widely in appearance, complicating 

diagnosis. 

To enhance diagnostic accuracy, pre-processing techniques 

such as wavelet-based denoising have been employed to 

improve image quality. Moreover, computer-aided diagnosis 

(CAD) systems have historically relied on manually defined 

visual features to assist clinicians in identifying suspicious 

areas. However, these traditional CAD systems have 

limitations, especially in adapting to the diverse range of 

ultrasound imaging methods and the variability in tumor 

presentation. 

Recent advancements in artificial intelligence (AI), 

particularly in deep learning, have revolutionized the field of 

medical imaging. Convolutional Neural Networks (CNNs), a 
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specific type of deep learning architecture, have shown 

significant success in analyzing medical images across various 

domains, including skin cancer detection [3], hemorrhage 

identification [4], and cell segmentation [5]. In the context of 

breast cancer detection, CNNs automatically extract complex 

features from ultrasound images, enabling more accurate and 

efficient tumor detection compared to traditional methods. AI-

powered approaches, therefore, offer the potential to overcome 

the limitations of earlier CAD systems by providing robust, 

automated analysis that adapts to different imaging techniques 

and patient variations. 

The motivation behind this work is to explore the 

application of advanced deep learning techniques, particularly 

CNNs [6], to improve the accuracy and reliability of breast 

cancer detection in ultrasound images. This study seeks to 

build upon the current state-of-the-art by addressing 

challenges related to image quality, variability in tumor 

appearance, and the need for more adaptive diagnostic systems 

[7-9]. 

The rest of the paper is structured as follows: Section 2 

reviews related work, Section 3 outlines the proposed 

methodology, Section 4 presents results and analysis, and 

Section 5 concludes with final remarks. 

2. RELATED WORK

Several studies have explored the use of CNNs for breast 

cancer classification in mammograms. Chougrad et al. [10] 

proposed a novel approach use combines machine learning 

and deep learning techniques for breast cancer classification in 

mammograms. The key finding is that the proposed method 

achieves high accuracy 98.3% in breast cancer classification 

tasks. This suggests the combined approach of machine 

learning for feature extraction and deep learning for 

uncovering hidden patterns is effective. The effectiveness of 

the method for very small datasets remains unaddressed. 

Nawaz et al. [11] proposes a deep learning approach based on 

a Convolutional Neural Network (CNN) model for multi-class 

breast cancer classification. The key finding is that the 

proposed DenseNet CNN model achieves high accuracy 

(reported as 95.4%) in multi-class breast cancer classification 

using histopathological images from the BreakHis dataset. 

This approach for breast cancer classification with promising 

results for multi-class tumor identification. Hossain et al. [12] 

introduces a breast cancer classification method using 

ultrasound images with pre-trained VGG16 model, a 

convolutional neural network (CNN) architecture known for 

good performance in image recognition, is employed. The 

convolutional and max-pooling layers of the VGG16 model 

are used to extract features from the ultrasound images. 

Mewada et al. [13] proposed a novel CNN architecture to 

classifying breast cancer using histopathological images. The 

key aspect lies in combining spatial and spectral features. 

Obayya et al. [14] proposes a novel method called Arithmetic 

Optimization Algorithm with Deep Learning-based 

Histopathological Breast Cancer Classification (AOADL-

HBCC) for automated classification of breast cancer from 

histopathological images. Leow et al. [15] investigates using 

breast cancer classification with deep learning using 

histopathology images. ResNet-50 achieved the highest test 

accuracy of 97% in classifying breast cancer from 

histopathology images. 

Several public datasets are available for research on 

mammograms. The Digital Database for Screening 

Mammography (DDSM) offers the largest collection, 

containing 2,620 images from various patients. BancoWeb 

boasts over 1,400 breast cancer images with corresponding 

medical histories, and even allows for user-contributed 

samples. INBreast, a Portuguese dataset, features 410 

mammograms categorized as masses, calcifications, 

asymmetries, or normal tissue, all meticulously labeled by 

specialists. Finally, the Mammographic Image Analysis 

Society (MIAS) dataset, while older, provides over 300 

mammogram images from the UK. It's important to note that 

private datasets also exist, such as the OPTIMAM collection 

used by Google in a recent study.   

Lessage et al. [16] study explores the use of three 

convolutional neural network (CNN) architectures—

InceptionV3, Xception, and MobileNet—for early breast 

cancer detection using digital mammograms. By applying 

transfer learning and data augmentation techniques on two 

publicly available datasets (MIAS and INbreast), the models 

aim to classify mammograms into normal or abnormal cases. 

The results show that InceptionV3 achieved the highest 

accuracy (98%) on the INbreast dataset, while MobileNet 

performed best on the MIAS dataset (90%). The research 

highlights the effectiveness of fine-tuning CNN models, 

particularly for small datasets, in improving breast cancer 

screening accuracy. Sivagami et al. [17] research paper 

presents a breast mass classifier system, DELU-BM-CNN, 

developed using deep learning to distinguish between normal 

and abnormal mammographic images. It utilizes three 

benchmark datasets—CBIS-DDSM, INbreast, and mini-

MIAS—applying image processing techniques like median 

filtering, adaptive histogram equalization, and unsharp 

masking for preprocessing. The model features five deep 

convolutional layers with the Exponential Linear Unit (ELU) 

for feature learning and classification, along with 

regularization techniques to avoid overfitting. The system 

achieves high accuracy: 96.60% on CBIS-DDSM, 96.20% on 

INbreast, and 97.40% on MIAS, outperforming models using 

ReLU and Leaky ReLU activation functions. Ponnaganti and 

Anitha [18] investigate the use of three CNN architectures—

InceptionV3, Xception, and MobileNet—for breast cancer 

detection through digital mammogram classification. By 

applying transfer learning and data augmentation techniques, 

the study aims to classify mammograms as normal or 

abnormal using two publicly available datasets (MIAS and 

INbreast). InceptionV3 achieved 98% accuracy on INbreast, 

while MobileNet outperformed other models on MIAS with 

90%. The research demonstrates that fine-tuning CNN models, 

especially for smaller datasets, significantly improves 

accuracy. Future work could explore patch classifiers and 

multi-view analysis for enhanced breast cancer screening. 

In recent years, a surge of research has focused on analyzing 

these mammogram datasets. They develop improved 

Computer-Aided Diagnosis (CAD) systems for breast cancer 

detection. Many studies, particularly the latest ones, leverage 

deep learning models to classify abnormalities. 

3. METHODOLOGY

This study aims to classify breast abnormalities, specifically 

masses and calcifications, in mammograms using deep 

learning techniques, focusing on Convolutional Neural 

Networks (CNNs). CNNs [19] have demonstrated exceptional 
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performance in image classification tasks due to their ability 

to automatically extract hierarchical features from images. In 

this work, we employ four CNN architectures—standard CNN, 

VGG16, ResNet50, and MobileNet—to explore their 

effectiveness in breast cancer detection. Each architecture was 

selected for its unique characteristics, allowing for a 

comprehensive evaluation of their suitability for this task. 

CNN architecture depicted in Figure 1. The base CNN 

architecture [20] serves as a fundamental deep learning model 

with sequential layers of convolution and pooling operations. 

This model includes two convolutional layers, each followed 

by a max-pooling layer, which reduces the spatial dimensions 

while preserving important features. The convolutional layers 

utilize a kernel size of 3×3, which is standard for capturing fine 

details in medical images. After the convolutional and pooling 

operations, the output is passed through a fully connected layer, 

followed by an output neuron with a sigmoid activation 

function to classify the image as either containing a mass or a 

calcification. 

The basic CNN model was chosen as a starting point to 

evaluate how well a simple architecture can perform on 

mammogram data. This also serves as a baseline against which 

more complex models are compared. 

 

 
 

Figure 1. Architecture of CNN 

 

VGG16 [21] is a well-known deep CNN architecture that 

stacks multiple convolutional layers in sequence. Each 

convolutional block consists of two or three 3x3 convolutional 

filters, followed by a max-pooling layer. This architecture’s 

depth (16 layers in total) enables it to capture increasingly 

complex features at each layer, which is crucial for 

differentiating subtle abnormalities in mammograms. 

VGG16 architecture depicted in Figure 2. VGG16’s [22] 

strength lies in its simple, yet deep architecture that is effective 

in various image recognition tasks. Its use of small 

convolutional filters makes it particularly adept at capturing 

detailed features such as microcalcifications, which are 

essential for accurate breast cancer diagnosis. 

 

 
 

Figure 2. Architecture of VGG16 

 

ResNet50 [23] introduces residual connections, or "skip 

connections," which help mitigate the vanishing gradient 

problem that often arises when training deep networks. The 

architecture consists of 50 layers, including convolutional and 

identity blocks, each equipped with these residual connections. 

The identity mappings allow the network to bypass certain 

layers, enabling more efficient training of very deep models. 

This feature is critical for extracting both low-level and high-

level features from complex medical images. 

ResNet50 architecture shown in Figure 3. ResNet50 [24] 

was selected due to its ability to train deeper networks without 

performance degradation, which is particularly useful in 

detecting complex patterns in mammogram images. The 

residual connections also enhance the network’s ability to 

generalize, making it a strong candidate for medical image 

classification tasks where subtle differences in tissue 

composition need to be detected. 

MobileNet [25] is designed to be computationally efficient, 

employing depthwise separable convolutions to significantly 

reduce the number of parameters while maintaining 

performance. Each depthwise separable convolution layer 

splits the standard convolution into a depthwise convolution 

and a pointwise convolution, which makes the model faster 

and less resource-intensive. This architecture is particularly 

suitable for applications requiring real-time processing on 

mobile or embedded devices, such as bedside diagnostics. 

MobileNet architecture shown in Figure 4. MobileNet was 

chosen for its lightweight architecture, which allows it to run 

efficiently on devices with limited computational power. In a 

clinical setting, this efficiency could enable real-time 

mammogram analysis, offering potential for point-of-care 

diagnostics. Despite its reduced complexity, MobileNet is 

capable of achieving competitive accuracy in image 

classification tasks, making it an attractive option for breast 

cancer detection. 

To enhance the performance of the models and prevent 

overfitting, several regularization techniques were applied. 

Data augmentation methods, such as horizontal and vertical 

flipping, rotation, and scaling, were employed to increase the 

diversity of the training data. This was essential due to the 

relatively small size of the mammogram dataset. Additionally, 

dropout layers were used in several architectures to further 

reduce overfitting by randomly setting a fraction of the input 

units to zero during training. 

Given the limited number of labeled mammogram images, 

data augmentation was employed to artificially increase the 

size of the training dataset. Techniques such as horizontal and 

vertical flipping, random rotations, scaling, and shear 

transformations were applied. These augmentations simulate 

different perspectives of the breast tissue, helping the models 

generalize better to unseen data. Data augmentation proved to 

be effective in addressing the limited dataset size and helped 

the models learn more robust features, reducing overfitting to 

the training data. While augmentation increases data diversity, 

it can also introduce unnatural variations that do not occur in 

real mammograms, potentially leading to false interpretations. 

Furthermore, augmentation does not fully solve the inherent 

challenge of limited data availability and cannot replace a 

larger, more diverse dataset. 

Dropout is a widely-used regularization technique that helps 

prevent overfitting by randomly setting a fraction of the input 

units to zero during training. In this study, dropout layers were 

added after fully connected layers in several CNN models, 

with dropout rates ranging between 0.2 and 0.5. Dropout helps 

the models avoid relying too heavily on specific neurons, 

encouraging the network to learn distributed and redundant 

representations. This is particularly beneficial when training 

on small datasets like mammograms, where overfitting can be 

a major issue. While dropout improves generalization, it can 
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also slow down convergence and may reduce the model’s 

capacity to learn intricate patterns, especially when applied 

excessively. There is a trade-off between regularization 

strength and model performance, which needs careful tuning. 

 

 

 
 

Figure 3. Architecture of ResNet-50 

 

L2 regularization was applied to penalize large weights in 

the network by adding a term to the loss function that penalizes 

the square of the weights. This technique helps prevent the 

model from fitting the training data too closely by encouraging 

smaller, more generalizable weights. L2 regularization forces 

the network to maintain smaller weights, which improves 

generalization and reduces overfitting. It was particularly 

effective when combined with other regularization methods 

like dropout, contributing to smoother learning curves. One of 

the limitations of L2 regularization is that it can overly 

constrain the model if not properly tuned, leading to 

underfitting. The technique must be carefully adjusted to strike 

a balance between controlling complexity and allowing the 

model enough flexibility to learn from the data.  

Batch normalization normalizes the input of each layer by 

subtracting the batch mean and dividing by the batch variance. 

This helps stabilize and accelerate the training process by 

preventing the problem of internal covariate shift, where the 

distribution of layer inputs changes during training. Batch 

normalization was effective in speeding up the training 

process and improving model stability, particularly in deeper 

architectures like ResNet50. It allowed the use of higher 

learning rates and reduced the risk of the model diverging 

during training. While batch normalization improves training 

efficiency, it may also introduce additional complexity to the 

model. Moreover, it may not be as beneficial in cases where 

the dataset is very small, as the batch statistics can become less 

reliable. 

A learning rate decay schedule was used to gradually reduce 

the learning rate as training progressed. This approach allows 

the model to take larger steps at the beginning of training when 

the parameters are far from optimal, while taking smaller steps 

as it converges. Learning rate decay was essential in 

improving convergence and refining the network’s ability to 

find the optimal solution. The gradual reduction in learning 

rate helped the models escape local minima and led to 

smoother, more stable learning trajectories. Despite its 

effectiveness, learning rate decay requires careful tuning. If 

the rate is reduced too quickly, the model may not learn 

efficiently, while reducing it too slowly may cause oscillations 
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around the optimal solution. 

Each model was trained using the CBIS-DDSM dataset, 

which contains labeled mammogram images categorized as 

either containing a mass or calcification. The training process 

involved minimizing binary cross-entropy loss using the 

Adam optimizer, which is well-suited for handling noisy data 

and sparse gradients. A learning rate decay schedule was also 

implemented to progressively reduce the learning rate, thereby 

improving convergence. 

The performance of each model was evaluated based on 

accuracy, validation accuracy, and loss metrics on both the 

validation and test sets. The testing accuracy, in particular, 

provided insights into the models’ generalization capability, 

which is critical in medical applications. 

 

 
 

Figure 4. Architecture of MobileNet 

 

 

4. RESULTS AND DISCUSSION  

 

This study aims to develop a deep learning system to 

differentiate between masses and calcifications in 

mammogram images, potentially aiding in breast cancer 

detection. We explore the effectiveness of various deep 

learning models, including CNNs, VGG16, ResNet-152, and 

MobileNet. The experiments are conducted using the CBIS-

DDSM dataset, a collection of mammogram images with 

segmentation masks and detailed labels. This dataset includes 

two key types of breast abnormalities: masses and 

calcifications. 

When evaluating the performance of a deep learning model, 

accuracy and loss are two fundamental metrics. However, 

simply looking at the performance on the training data can be 

misleading. To get a true sense of how well your model 

generalizes to unseen data, validation and testing sets are 

crucial. Accuracy is a measure of how often the model makes 

correct predictions. It's calculated as the number of correct 

predictions divided by the total number of samples. Loss 

represents the difference between the model's predicted 

outputs and the actual targets. Lower loss indicates better 

alignment between predictions and true values. Validation Set 

is a portion of the training data held out to monitor the model's 

performance during training. It's used to fine-tune 

hyperparameters like learning rate and prevent overfitting. 

Testing Set is a completely unseen data used for final 

evaluation of the model's generalizability on real-world 

scenarios. Validation accuracy metric reflects how well the 

model performs on the validation set. A high validation 

accuracy indicates the model is learning effectively and not 

overfitting to the training data. Testing Accuracy is the final 

evaluation metric, indicating how well the model performs on 

unseen data from the testing set. Ideally, the testing accuracy 

should be close to the validation accuracy, suggesting good 

generalizability. Similar to Validation accuracy, Validation 

Loss monitors the model's performance on the validation set. 

A consistently decreasing validation loss indicates the model 

is learning and reducing its errors. Testing Loss metric reflects 

the model's loss on the testing set. Ideally, it should be close 

to the Validation loss, again signifying good generalizability. 

This study conducted experiments with 12 different CNN 

models variation in parameters used in CNN architecture. 

CNN Model1 used two convolutional layers with max-pooling, 

followed by a fully-connected layer and a single output neuron.  

CNN Model2 used Dropout layer following the final fully-

connected block with dropout rate is 50%. CNN Model3 

leveraging data augmentation techniques such as image 

flipping both horizontally and vertically, rotation with angles 

ranging from 0 to 180 degrees, shear 10 degrees, and scaling 

20%, the training dataset was expanded with diverse, 

transformed samples. CNN Model4 introduces enhancements 

to the CNN architecture and optimization process aimed at 

improving accuracy and convergence. This updated model 

incorporates an additional convolutional block with 128 filters 

to increase information processing while maintaining 

efficiency. In the pursuit of refining breast cancer detection 

using mammograms, CNN Model5 extends upon the 

architecture of CNN Model4 by enlarging the fully-connected 

layer to 48 neurons, aimed at exploring whether the previous 

layer size poses a bottleneck in information flow. This 

adjustment seeks to optimize the model's capacity to capture 

complex patterns and relationships within the data. In the 

pursuit of refining breast cancer detection using mammograms, 

CNN Model6 incorporates a strategic approach to balance 

exploration and exploitation within the training process of the 

convolutional neural network. This model introduces a 

learning rate decay factor, designed to gradually decrease the 

learning rate over epochs, thereby mitigating large weight 

updates that contribute to noisy loss and accuracy histories. 

CNN Model7 extends upon the previous architecture by 

introducing an additional convolutional block with 256 

features and a reduced learning rate decay factor, aimed at 

exploring the impact of deeper convolutional stages on the 

accuracy of breast cancer detection from mammograms. CNN 

Model8 introduces a subtle modification to the CNN 

architecture, specifically altering the first convolutional layer 

to employ a larger 5×5 kernel with a stride of 2 while 

maintaining overall similarity to CNN Model5. This 

adjustment aims to explore the impact of larger receptive fields 

on capturing critical details at a broader scale within the 

mammogram images. Next experiment CNN Model9 retains 

the architecture of CNN Model 5 but transitions from using 

RMS prop to Adam as the optimizer during training. Adam, an 

advanced variant of stochastic gradient descent, is renowned 

for its potential to converge faster when the learning rate is 

appropriately adjusted. In the pursuit of refining breast cancer 

detection from mammograms and addressing overfitting 

observed in CNN Model7, the next experiment model CNN 

Model10 incorporates L2 regularization as an additional 

technique to mitigate overfitting. A small L2 regularization 

coefficient is applied to the model, complementing existing 

regularization methods such as dropout and data augmentation. 

This strategic inclusion aims to prevent excessive 

regularization that could compromise performance, while 

leveraging L2 regularization to encourage the model to 
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generalize better by penalizing large weights. In the pursuit of 

optimizing breast cancer detection from mammograms, the 

CNN Model11 experiment introduces batch normalization to 

evaluate its impact on network speed, performance, and 

stability. Batch normalization involves normalizing the inputs 

of each layer within each mini-batch by subtracting the mean 

and dividing by the variance. In this replication of the previous 

experiment, the focus is on evaluating the impact of a smaller 

batch normalization momentum (0.001) on breast cancer 

detection from mammograms. Batch normalization, CNN 

Model12 technique aimed at improving network speed, 

stability, and performance by normalizing inputs within each 

mini-batch, is implemented with a reduced momentum factor 

to fine-tune its effects on the neural network's learning 

dynamics. 

Compare to all CNN models, CNN_Model12 gives best 

validation accuracy, CNN_Model7 gives best testing accuracy 

and best validation loss, CNN_Model6 gives best testing loss. 

CNN_Model7 gives the better validation and testing accuracy 

values and better validation and testing loss values compare to 

other CNN models. This model contains learning rate decay 

and extra convolution block in CNN architecture. These CNN 

models performance results depicted in Table 1. 

 

Table 1. CNN models result on breast cancer detection 

 

Model 
Epoch 

Stop 

Validation 

Accuracy 

Testing 

Accuracy 

Validation 

Loss 

Testing 

Loss 

CNN_Model1 13 81.50 77.38 0.4460 0.5247 

CNN_Model2 52 83.93 80.65 0.3837 0.6088 

CNN_Model3 87 80.56 79.76 0.4458 0.4999 

CNN_Model4 192 87.66 85.42 0.2489 0.3645 

CNN_Model5 470 88.97 87.50 0.2251 0.3332 

CNN_Model6 260 89.72 88.69 0.2282 0.3048 

CNN_Model7 262 89.72 89.80 0.2242 0.3449 

CNN_Model8 253 86.54 87.50 0.2473 0.3190 

CNN_Model9 173 87.29 81.55 0.2735 0.3985 

CNN_Model10 355 88.22 88.10 0.2287 0.3329 

CNN_Model11 162 90.28 85.42 0.2996 0.4538 

CNN_Model12 50 90.65 85.12 0.2304 0.4099 

 

The Learning Rate (LR) exploration strategy sounds like a 

systematic and methodical approach to finding suitable 

learning rates for different optimizers in the context of breast 

cancer detection from mammograms. By incrementally 

increasing the learning rate and observing the corresponding 

behavior of the neural network, researchers can pinpoint the 

optimal learning rate range for each optimizer. Starting with a 

very low learning rate ensures that weight updates are 

conservative, allowing the network to gradually learn 

meaningful patterns from the data. As the learning rate 

increases, the network's learning behavior evolves, and the 

loss gradually decreases. Crossing a specified threshold, such 

as 0.6, indicates that the network is learning significant 

patterns from the data. However, it's essential to monitor the 

loss closely as the learning rate continues to increase. Beyond 

a certain optimal point, erratic and diverging weight updates 

can occur, leading to a rise in loss. This signifies that the 

learning rate has become too high, resulting in unstable 

training dynamics and potential overfitting. Halting training 

once the loss starts to rise again ensures model stability and 

prevents overfitting. By employing this LR exploration 

strategy, researchers can identify effective LR ranges for each 

optimizer, ultimately optimizing neural network training 

dynamics for accurate and efficient breast cancer detection 

from mammograms. Loss curves are depicted in Figure 5. 

 
 

Figure 5. LR-loss curve for different optimizers 

 

The analysis of learning rate behavior across different 

optimizers offers valuable insights into optimizing neural 

network training for breast cancer detection from 

mammograms. The graph effectively illustrates the 

consequences of both excessively high and overly low 

learning rates on weight updates and convergence towards the 

loss minimum. Excessively high learning rates lead to unstable 

weight updates, hindering convergence towards the loss 

minimum and potentially causing divergence. On the other 

hand, overly low learning rates result in slow learning progress 

with only modest improvements over epochs. The point of 

steepest descent in the LR-loss curve indicates the region 

where the loss decreases most rapidly, suggesting an optimal 

range for selecting learning rates. Practical LR choices derived 

from this analysis, such as 3e-2 for SGD and 1e-4 for 

RMSprop, Adam, and Nadam, strike a balance between 

training speed and stability. These empirically determined LR 

values foster efficient weight convergence towards the optimal 

solution while mitigating the risk of diverging updates and loss 

fluctuations during training. By leveraging these LR values, 

researchers can enhance the effectiveness and reliability of 

neural network training for accurate breast cancer 

classification from mammographic images. Optimizers curves 

depicted in Figure 6. 

VGG16_Model1 is simple VGG16 with default value 

parameters. VGG16_Model2 is VGG16_Model1 with 50% 

dropout. VGG16_Model3 is VGG16_Model2 with simple 

Fully Connected layer. VGG16_Model4 is VGG16_Model3 

with augmentation. VGG16_Model5 is VGG16_Model4 with 

fine tuning and one fully connected layer. VGG16_Model6 is 

VGG16_Model5 with fine tuning and two fully connected 

layers.  VGG16_Model6 gives best validation and testing 

accuracy values compare to other VGG16 models with very 

less epochs. VGG16_Model5 gives low validation and testing 

accuracy values compare to others. These VGG16 models 

performance results depicted in Table 2. 

ResNet50_Model1 is simple ResNet50 model with default 

parameter values. ResNet50_Model2 is ResNet50_Model1 

with 50% dropouts. Among these two models ResNet50 gives 

best values in validation and testing accuracy values and 

validation and testing loss values.  These ResNet50 models 

performance results depicted in Table 3. 

MobileNet_Model1 is simple ResNet50 model with default 

parameter values. MobileNet__Model2 is 

MobileNet__Model1 with 50% dropouts. MobileNet_Model3 

2438



 

is MobileNet_Model2 with larger fully connected layer. 

Among these three MobileNet models, MobileNet_Model3 

gives best validation accuracy and loss values. 

MobileNet_Model2 gives best testing accuracy and testing 

loss values. These MobileNet models performance results 

depicted in Table 4. 

 
Figure 6. Optimizers comparison 

 

Table 2. VGG16 models results on breast cancer detection 

 

Model 
Epoch 

Stop 

Validation 

Accuracy 

Testing 

Accuracy 

Validation 

Loss 

Testing 

Loss 

VGG16_Model1 13 86.54 86.90 0.2886 0.4320 

VGG16_Model2 35 87.10 87.50 0.2940 0.4637 

VGG16_Model3 65 87.48 86.61 0.2930 0.4261 

VGG16_Model4 73 87.48 85.71 0.2910 0.3940 

VGG16_Model5 56 89.72 89.58 0.2484 0.3228 

VGG16_Model6 9 91.03 91.37 0.4995 0.3312 

 

Table 3. ResNet50 models results on breast cancer detection 

 

Model 
Epoch 

Stop 

Validation 

Accuracy 

Testing 

Accuracy 

Validation 

Loss 

Testing 

Loss 

ResNet50_Model1 12 72.15 74.40 0.5457 0.5948 

ResNet50_Model2 36 75.14 76.19 0.4982 0.5428 

 

Table 4. MobileNet models results on breast cancer detection 

 

Model 
Epoch 

Stop 

Validation 

Accuracy 

Testing 

Accuracy 

Validation 

Loss 

Testing 

Loss 

MobileNet_Model1 29 68.41 70.24 0.5759 0.6054 

MobileNet_Model2 23 72.71 76.19 0.5788 0.5858 

MobileNet_Model3 28 73.08 72.62 0.5608 0.5980 

 

Among CNN, VGG16, ResNet50 and MobileNet models 

CNN models give best results. Among CNN models 

CNN_Model7 gives the better results than others.  

While the CBIS-DDSM dataset was primarily used in this 

study for training and evaluation, it is essential to validate the 

model's generalizability across multiple datasets. To this end, 

we also conducted experiments using two additional publicly 

available datasets: INBreast and Mammographic Image 

Analysis Society (MIAS). These datasets offer variability in 

imaging conditions, patient demographics, and types of 

abnormalities, which provide a more comprehensive 

evaluation of the models’ performance. 

INBreast dataset contains high-resolution mammograms 

with detailed annotations, covering a wider range of breast 

abnormalities beyond masses and calcifications, such as 

architectural distortions. The models were fine-tuned on this 

dataset, achieving comparable performance to the CBIS-

DDSM results. 

MIAS dataset offers a smaller number of samples but 

provides a different type of mammogram image that adds 

diversity to the evaluation process. While performance on 

MIAS was slightly lower due to the limited resolution and 

image quality, the models still demonstrated robust 

classification capabilities. 

Results across datasets confirmed that CNN Model 7, which 

includes a learning rate decay and an additional convolutional 

block, consistently outperformed other architectures, 

achieving a validation accuracy of 89.72% on CBIS-DDSM, 

87.34% on INBreast, and 84.20% on MIAS. 

To further validate the superiority of the CNN architectures 

used, we expanded the range of evaluation metrics beyond 

accuracy. Given the class imbalance often present in medical 

imaging datasets, accuracy alone may not fully capture the 

performance of the models. Therefore, we additionally report 

the precision, recall, F1-score, and Area Under the Receiver 

Operating Characteristic Curve (AUC-ROC) to provide a 

more nuanced understanding of the models' strengths and 

weaknesses.  

Precision measures the proportion of true positive results 

among all positive predictions, which is critical in minimizing 

false positives in breast cancer detection. For CNN Model 7, 

the precision reached 91.32% on the CBIS-DDSM dataset, 

showing the model’s ability to accurately classify masses and 

calcifications. 

Recall measures the proportion of actual positive cases that 

are correctly identified. A high recall is particularly important 

in medical applications to reduce false negatives, which can 

result in missed cancer diagnoses. CNN Model 7 achieved a 

recall of 88.94% on CBIS-DDSM, 87.60% on INBreast, and 

83.10% on MIAS. 

The F1-score is the harmonic mean of precision and recall, 

providing a balanced measure of performance. CNN Model 7 

had an F1-score of 90.10% on CBIS-DDSM, demonstrating a 

strong balance between precision and recall. 

The AUC-ROC curv evaluates the trade-off between true 

positive and false positive rates. The AUC of CNN Model 7 

was 0.91 on the CBIS-DDSM dataset, indicating strong 

discriminatory power in distinguishing between positive and 

negative cases. 

The inclusion of these metrics results depicted in Table 5 

and they strengthen the claim that CNN Model 7 performs 

reliably across multiple dimensions, particularly in terms of its 

ability to minimize false positives and negatives—critical in 

clinical settings. 

A comparative analysis of the different CNN architectures 

across all datasets and metrics was conducted to support the 

claim that CNN Model 7 offers superior performance. In 

addition to accuracy and loss, we evaluated the models based 

on their sensitivity to class imbalances, training time, and 

computational efficiency. 

CNN Model 7 consistently outperformed other architectures 

across all metrics, showing higher precision, recall, and AUC-

ROC. While VGG16 and ResNet50 showed competitive 

results, CNN Model 7’s inclusion of an additional 

convolutional block and learning rate decay proved to be the 
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most effective configuration for breast cancer classification 

tasks. MobileNet, while efficient in terms of training time, did 

not achieve competitive performance, making it more suitable 

for real-time applications but less effective for high-accuracy 

tasks. 

 

Table 5. Models evaluation metrics results on breast cancer 

detection 

 

Model 

Cross 

Validation 

Accuracy 

Precision Recall 
F1-

Score 

ROC-

AUC 

Score 

Training 

Time 

(min) 

CNN_Model1 80.90 81.45 79.80 80.62 0.81 45 

CNN_Model7 89.30 90.20 88.60 89.40 0.90 65 

VGG16 87.00 87.90 86.10 87.00 0.87 75 

ResNet50 85.50 86.70 84.50 85.60 0.85 72 

MobileNet 72.50 74.00 70.30 72.50 0.73 55 

 

The performance of CNN Model 7 across multiple datasets 

and its robustness in terms of precision, recall, and AUC-ROC 

demonstrate its ability to generalize well to different imaging 

conditions and patient populations. However, the models still 

face challenges when applied to datasets with lower resolution 

or different imaging modalities (e.g., the MIAS dataset). This 

points to the need for future work to explore transfer learning 

techniques or multi-modal models that can better handle 

variations in data quality. 

 

 

5. CONCLUSION 

 

In this study, we investigated the application of various 

Convolutional Neural Network (CNN) architectures for breast 

cancer classification in mammograms. Our findings 

demonstrated that CNN Model 7 outperformed other 

architectures, achieving the highest accuracy, precision, recall, 

F1-score, and AUC-ROC. The enhanced performance of CNN 

Model 7 can be attributed to its deeper architecture and 

effective use of data augmentation and regularization 

techniques, which allowed it to capture intricate features 

critical for accurate tumor detection. 

However, this study also has several limitations. Firstly, 

while we utilized multiple publicly available datasets, the 

overall sample size remains relatively small compared to the 

variability found in real-world clinical settings. The class 

imbalance present in the datasets could also affect the models' 

performance, particularly in terms of recall and precision. 

Additionally, while MobileNet offers efficiency advantages 

for real-time applications, its lower performance indicates that 

it may not be suitable for critical diagnostic tasks where high 

accuracy is essential. 

Another limitation is the focus on only a few specific CNN 

architectures. Future work should explore a wider range of 

architectures, including more recent advancements in deep 

learning such as Transformer-based models or hybrid 

approaches that combine the strengths of different models. 

This exploration could lead to improved accuracy and 

generalization capabilities in breast cancer detection. 

Moreover, integrating more diverse datasets that include 

varying quality and types of mammogram images could 

enhance model robustness and applicability across different 

clinical scenarios. Investigating advanced techniques such as 

transfer learning or semi-supervised learning may also provide 

significant benefits, especially in settings where labeled data 

is scarce. 

Finally, the implementation of real-time evaluation and 

deployment of these models in clinical practice should be 

prioritized in future research. This would not only validate 

their effectiveness in a practical environment but also facilitate 

faster, more accurate diagnoses for patients, ultimately 

improving breast cancer management. 

In conclusion, while our study highlights the promise of 

deep learning models in breast cancer detection, it also 

underscores the necessity for continued research and 

development to address existing challenges and harness the 

full potential of these advanced technologies in clinical 

applications. 

Future work should address these limitations by extending 

the analysis to larger and more diverse datasets, including 

different types of breast abnormalities. Furthermore, exploring 

more advanced deep learning techniques, such as 

Transformer-based architectures or hybrid models that 

combine CNNs with other machine learning methods, could 

improve both the accuracy and efficiency of breast cancer 

classification. Another promising avenue for future research 

involves the integration of multimodal data (e.g., combining 

mammogram images with patient clinical data) to enhance the 

predictive power of the models. Finally, real-time 

implementation of these models in clinical workflows should 

be explored to assess their performance in practical settings 

and ensure they meet the demands of radiologists and 

healthcare providers. 
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