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Arecanut is one of the most significant commercial crops in Southeast Asia and plays a 

major role in the religious and cultural functions impacting the socio-economic life of the 

people. Arecanut is also used in Ayurvedic and Veterinary medicines. Arecanut is used to 

manufacture toothpaste, soap, tea powder, vita, and wine. Accurate segmentation of the 

arecanut bunch removing unwanted surrounding information helps monitoring its health, 

maturity, and yield. Yield estimation facilitates the farmer to plan for harvesting, storage 

and sale. Arecanut segmentation is complex because the color of the crop changes with the 

brightness quality in the outdoor field and the sharpness of the color. Another common 

problem in arecanut crop bunch segmentation and yield count is that of partial occlusion 

and overlapping of nuts. Segmentation is obtained using Simple Linear Iterative Clustering 

(SLIC) and graph cut algorithm. Segmentation of an arecanut bunch is achieved by first 

converting the picture elements into superpixels employing SLIC to lower the 

computational costs and the effect of noise. Graph cut produces accurate and precise 

segmentation considering local and global information capturing fine details and contours 

of objects. Watershed algorithm is used to count the arecanuts from a segmented image is 

presented in this paper. Segmentation resulted in 85.78% IoU and 93.15% Dice score and 

are better compared to benchmarks. Yield count resulted in 5.4% Mean Absolute Percentage 

Error (MAPE), which is very good compared to other methods. 
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1. INTRODUCTION

Agriculture is crucial to feed the population in any society 

and human existence depends directly on it. It plays a vital role 

in the economy of any country and the economy of many 

countries in the world depends solely on agriculture. India 

stands as the second largest country in the world for 

agricultural production and contributes to the nation ś 

economy with almost 58% of the GDP as a traditional 

occupation. The economy of developing countries like India 

depends mainly on agriculture, but in the advanced nation, it 

becomes business. A large increase in food production must 

be attained with the reduced farming land to cover the growing 

population across the globe, protecting the biosphere by 

ensuring viable agricultural procedures [1]. A balanced 

farming industry assures a nation of food safety, per capita and 

employment. In India, farmers grow a wide range of crops. 

Arecanut, commonly called betel nut, is one of the main 

plantations in South India. India stands first in the area (47%) 

and in production (47%) of arecanut. India ś productivity is at 

1.27 tonnes/hectare and is on par with world productivity. In 

India, it is primarily spread in Karnataka, Meghalaya, Assam, 

Tamil Nadu, Kerala and West Bengal. Karnataka stands first 

(62.69%) both in area and the produce. 

The arecanut produced in India is mostly consumed 

domestically. India exported 6,663 tonnes of arecanut worth 

Rs. 158.26 crores in the year 2021-22, which is less than a five 

percent share of the global market. The major countries to 

which India exported arecanut were Bangladesh, UAE and 

Vietnam. Both production and yield of arecanut in India 

registered increasing trends. Arecanuts plays a vital role in 

sacred, communal and cultural functions impacting the socio-

economic life of the people in India. The most common usage 

is mastication with betel leaves. Arecanut also finds its usage 

in Ayurvedic and Veterinary medicines. It is mainly 

recommended for removing tapeworms and other intestinal 

worms. Consumption of arecanut with betel leaf gives a 

natural mouth freshener and a laxative. It also helps in 

digestion, is a diuretic, strengthens heart muscles and regulates 

menstrual flow [2]. Arecanut is used to manufacture toothpaste, 

soap, tea powder, vita, and wine. There are many uses of the 

arecanut plant also. Almost every component of the tree is 

used by humans for one or more purposes including coloring 

clothes, leather tanning, and as an adhesive and safe food 

coloring agent. Arecanut leaf sheaths are used for preparing 

disposable cups, plates, tea chests, caps, packing cases, rain 
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protectors and suitcases. 

Areca trees are very tall and grows usually to heights of 30 

meters or more based on the climate, making it challenging for 

growth monitoring, disease identification and harvesting. 

Arecanut cultivation is laborious, tedious and requires regular 

observation for better yield. Crop yield estimation helps 

growers with the proper usage of resources to increase their 

income. Yield estimation facilitates the farmer to plan for 

harvesting, storage and sale. The manual process of yield 

estimation is labor-intensive, expensive and often inaccurate. 

Automated yield estimation became more useful.  

This research work aims to estimate the yield of an arecanut 

bunch. Segmentation is an important step in any machine 

vision system to interpret an image with no human mediation 

and its achievement reflects on the attainment of the entire 

vision system. Image decomposition is a perceptual alignment 

of image pixels based on similarity, vicinity and continuity, 

which emulate an image regional and or global characteristics 

[3]. An automated, accurate and robust segmentation 

technique is required as hand-operated segmentation is hard, 

laborious, is subjective and often prone to error. Segmentation 

is challenging because of variations in the crop color, 

silhouette and inter-reflection in outdoor as the daylight 

changes. Accurate segmentation of the arecanut bunch 

removing unwanted surrounding information is essential to 

find its health, maturity, and yield. Many surveys exist on crop 

segmentation and yield estimation for crops like grapes, apples, 

mangoes, almonds, and tomatoes. However, more work is 

needed for the segmentation and yield estimation of arecanut.  

The remainder of the article is arranged as follows. Review 

of the existing works related to segmentation and yield 

estimation in precision agriculture is presented in section 2. 

The methodology for arecanut bunch segmentation and yield 

count is detailed in section 3. Section 4 describes the results 

and performance details. The last division summarizes the 

work done and the future avenues. 

 

 

2. LITERATURE SURVEY 

 

A review of existing work on segmentation and yield 

estimation of crops like grapes, apples, mangoes, almonds, and 

tomatoes is directly related to segmentation and yield 

estimation of arecanut since the images are captured in the 

outdoor field with natural illumination containing complex 

backgrounds with occlusion and overlapping. Most of the 

yield assessment methods require object 

segmentation/detection. Most of the existing segmentation 

approaches concentrate on a two-class classification method, 

i.e. object and the background. Background elimination is the 

first phase and must be accomplished in a more pertinent 

manner to avoid misclassification. Rahman and Hellicar [4] 

proposed a method to segment mature grape bunch by first 

finding the edges using gradients of brightness images and 

then identifying circles using circular Hough transform. These 

circles are classified as grapes or backgrounds using a learned 

classifier. As the maximum count of grapes tends to remain in 

spatial proximity to each other, circles with no neighbor within 

two times the size of its diameter are considered detached and 

are removed. So, the rest of the circles are sorted into groups 

depending on their proximity using k-means clustering.   

Berenstein et al. [5] proposed three grape detection 

algorithms. The first one depends on the distinction in edge 

disposal among the foliage and grape cluster. Foliage regions 

contain less edges than those in grape clusters. The second one 

is using the decision tree algorithm C5.0. Images are stored 

both in RGB and HSV representation. The patches from grape 

and foliage areas are utilized to extract the mean, standard 

deviation of the gradient magnitude from each R, G, B, H, S 

and V channel. The third one depends upon comparison of 

pixels between edge representations of the input image and an 

edge filter that represents grapes.  

Font et al. [6] compared the performance of different pixel-

based approaches to identify reddish grapes: Color-based 

segmentation using RGB and HSV, Otsu threshold-based 

segmentation applied to R, G, B, I and H layers, Mahalanobis 

distance-based segmentation using the variance of each 

intensity layer accomplished by comparing the templates of 

the grape and the background, Bayesian classifier-based 

segmentation with simplified discriminant analysis using 

covariance matrices of the templates that characterize the 

grapes and the background, Linear color model-based 

segmentation choosing a part of object region in an image 

whose pixel intensity has a linear relationship that can be 

modelled with linear regression. Histogram-based 

segmentation dilate color correlation of the 3-D color 

histogram obtained from the template of grape, convolve the 

histogram along with a solid sphere and then segment using a 

zero-threshold applied to the histogram. Threshold-based 

segmentation of the H layer gave a better result for 

nonoccluded reddish grapes. 

Initially, Guru and Shivamurthy [7] proposed a framework 

to segment mango regions applying adaptive thresholding to 

each of the color bands R, G and B individually and are 

merged back later. Smoothing and binarization of the merged 

image give the position of mangoes. Texture features derived 

for each position are then compared with templates kept in the 

repository to remove noisy regions. Edges are extracted from 

the regions located and superimposed them onto the localized 

image for segmentation to correctly depict the boundaries of 

all the mangoes identified and clearly differentiate mangoes in 

case of occlusion. A method for estimating mango crop yield 

based on texture and color features proposed by Payne et al. 

[8] using the normalized difference index determined for each 

pixel from R and G layers. RGB picture was then processed 

with a 3×3 variance filter to replace every pixel by the 

neighborhood variance of R, G and B layers, correspondingly. 

The resultant image has been transformed to grayscale and 

thresholded. A binary image was then produced by 

aggregating the outputs of the preceding stages, effectively 

masking the mango regions. Lastly, determine the number of 

fragments in the binary image using lower and upper limits on 

the count of pixels in the particle considered. 

Verma et al. [9] proposed a framework for segmenting 

tomatoes based on active contour. Since tomato position 

changes as the season progresses, they proposed to 

approximate the movement among the two successive images 

by computing SIFT descriptors at contour points. Gradient 

information is then fused with region information to introduce 

an elliptic approximation of the tomato boundary. Four 

elliptical estimates have been determined using Active contour 

with an elliptical shape constraint, out of which the superior 

one has chosen as the final segmentation. Hung et al. [10] 

proposed a framework to tackle the multiple-class (crop, 

leaves and branches) issue applied to almond. This approach 

uses feature learning with a Conditional Random Field (CRF) 

to determine the rule set automatically from the data itself, an 

alternative to the fixed predefined feature descriptors. This 

2426



 

approach follows unsupervised learning to derive the most 

relevant attributes of the data automatically. This method is 

more suitable for various crops because it can handle inherent 

variance. It automatically adapts the feature sets for dissimilar 

crops. So, the method will not require domain-dependent 

assumptions and may be applied to variety of crops. 

Wang et al. [11] suggested a system for yield estimation of 

apple orchards using hue, saturation and value features for red 

apple detection and hue, saturation and intensity profiles to 

detect green apple pixels. Morphological methods were then 

used to convert apple regions into apple counts. Bargoti and 

Underwood [12] proposed a structure for segmentation and 

yield estimation in apple orchards using general-purpose 

feature learning methods: Multi-scale Multi-Layered 

Perceptrons (MLP) and Convolutional Neural Networks 

(CNN). The architectures were expanded by adding contextual 

information regarding how the image data has acquired 

(metadata) to find the relationships between meta-parameters 

and the object classes. 

Watershed segmentation and circular Hough transform 

algorithms have applied to pixel-wise segmented results to 

detect and count individual fruits. Li et al. [13] proposed in-

field cotton identification using simple linear iterative 

clustering (SLIC) and DBSCAN with Wasserstein distance to 

produce regions, followed by semantic classification using 

random forest with the derivation of histogram-based color 

and texture features of regions. 

Siddesha et al. [14] explored different techniques to 

segment arecanut bunch. Threshold-based segmentation 

neglects spatial information, and the choice of threshold value 

is critical as it may lead to over or under-segmentation. For k-

means clustering, desired count of clusters needs to be 

specified. There needs to be more clarity in selection of 

features for good results in fuzzy C-means clustering. 

Histograms may enhance the speed for fast fuzzy C-means 

clustering. Watershed segmentation suffers from over-

segmentation. It gives connected components at the cost of 

computational time. Maximum similarity-based region 

merging is computationally slow as it needs human 

intervention but gives better results than other techniques.  

Segmentation of arecanut bunch using active contouring by 

converting the input image into grayscale, then to binary 

followed by morphological operations, active contouring, and 

finally converting back to RGB presented by Dhanesha and 

Shrinivasa Naika [15]. It does the segmentation using a mask. 

Initially, the mask size equals the input image size and then 

decreases as the object’s contour. Here, the observation made 

is experimentation done with only 20 images. Further, they 

have continued and proposed segmentation by first converting 

the RGB into YCgCr model and then converting it into binary 

using threshold values 120 and 200, followed by erosion and 

closing using 4-neighbourhood connectivity. The result 

achieved is 80% for 500 images, including immature, mature 

and over-matured images [16]. Authors further extended the 

work and analyzed the accuracy of various color models: YUV, 

YCbCr, YCgCr, YPbPr and HSV [17]. They have also 

increased the database size to 1017 and demonstrated that 

YCgCr and HSV color models are better than others.  

Areca bunch is a natural cluster of arecanuts similar to a 

grape bunch that grows on a branch coming out of the stem 

with color variation during the growth. A large number of nuts 

are in the spatial vicinity of each other similar to grape clusters. 

We translated these cues into the segmentation and yield count. 

Segmentation and yield estimation are done as an off-line task 

for most of the crops. The methods proposed are specific to a 

crop. The survey concluded that more research is required to 

extract arecanut bunch for disease detection, classification, 

identification of maturity levels, and yield estimation. 

 

 

3. METHODOLOGY 

 

In this division, we discuss the methodology followed to 

segment the arecanut bunch and estimate the yield. The flow 

of the work done is depicted in Figure 1. Segmentation is 

achieved by first converting the picture elements into 

superpixels using simple linear iterative clustering (SLIC) to 

reduce computational costs and the effects of noise. The user 

must interactively mark the object and the background on the 

superpixel image as seed points [18]. A graph is then 

constructed using the superpixels as nodes and the marked 

regions as two end vertices. Graph cut is employed to obtain a 

mask image using min-cut/max-flow algorithm to solve the 

energy function. Segmented image is obtained by performing 

pixel multiplication of the mask and the input image. The 

segmented image is then fed to the watershed algorithm to 

calculate the yield count of arecanut in the image. 

 

 
 

Figure 1. Architecture of arecanut bunch segmentation and 

yield count 

 

3.1 Converting the image into superpixels using SLIC 

 

SLIC addresses two inherent problems of digital image 

processing, namely: discretization and computational 

complexity. SLIC groups pixels which are perceptually similar 

and decrease the count of primitives for subsequent algorithms, 

thereby improving the accuracy and efficiency of image 

segmentation [19]. SLIC is among the easiest and most 

vigorous methods to group the homogeneous regions of an 

image, and it adopts a new distance measure taking full 

advantage of color and spatial information to enhance the 

shape of superpixels. SLIC controls the count of superpixels 

using only one parameter, and it produces superpixels by 

grouping pixels based on the similarity of color and distance. 

SLIC uses five-dimensional space [labxy] in CIELAB color 

space, where [lab] is color vector of the picture element and 

[xy] is the pixel coordinate. So, we have to convert the given 

image into CIELAB color space. The input for SLIC is K, the 

required number of superpixels almost equal in size. Initialize 

all the K superpixel cluster centres Ck = [lk, ak, bk, xk, yk] at 

uniform grid intervals, 𝑆 = √𝑁
𝐾⁄ , N be the count of image 

elements in the input image. The spatial extent of any 

superpixel is roughly S2. The normalized distance Ds used in 

2427



 

5D space is the sum of dlab distance and dxy, xy plane distance 

given in Eq. (1) [20]. Parameter m is utilised to manage the 

size of a superpixel. A higher value results in a more compact 

cluster and is determined to be within the range [1, 20]. 

 

𝐷𝑠 = 𝑑𝑙𝑎𝑏 + (𝑚
𝑆⁄ ) ∗ 𝑑𝑥𝑦 (1) 

where,  

 

𝑑𝑙𝑎𝑏 = √(𝑙𝑘 − 𝑙𝑖)
2 + (𝑎𝑘 − 𝑎𝑖)

2 + (𝑏𝑘 − 𝑏𝑖)
2, 

𝑑𝑥𝑦 = √(𝑥𝑘 − 𝑥𝑖)
2 + (𝑦𝑘 − 𝑦𝑖)2. 

 

SLIC begins by instantiating K cluster centres, which are 

scattered evenly and make them seed points that resemble the 

lowest gradient point in a 3×3 neighbourhood. Image gradients 

are computed using Eq. (2). Each picture element is assigned 

to the nearby cluster centre, and then a new centre is 

determined by averaging all the pixels of clusters for the 

[labxy] vector. The method of assigning pixels to the closest 

cluster centre and recalculating the cluster centre is iterated 

until convergence. A few drift labels may exist at the end of 

this operation. i.e., pixels in the neighbourhood of a more 

prominent segment but not related to it. The concluding phase 

of the method must ensure connectivity by relabelling disjunct 

segments with the most prominent neighbouring cluster label.  

 

𝐺(𝑥, 𝑦) = ||𝐼(𝑥 + 1, 𝑦) − 𝐼(𝑥 − 1, 𝑦)||2

+ ||𝐼(𝑥, 𝑦 + 1) − 𝐼(𝑥, 𝑦 − 1)||2 
(2) 

 

where, I(x, y), the lab vector representing image element at (x, 

y) position and ||.|| represents L2 norm. 

 

3.2 Interactive segmentation using graph cut 

 

The fundamental idea of interactive graph cut segmentation 

is that the user marks the object and the surroundings, 

indicating that specific pixels (seeds) are a portion of the 

foreground and specific pixels are a portion of the background. 

This indication provides a hint about what the end user aspires 

to segment. Then an image is automatically segmented by 

determining a global optimal cut of all segmentations. Image 

segmentation is considered as a labelling problem in a graph. 

Image segmentation allocates labels to each element in an 

image so that elements with the same label share certain 

features or properties. Every pixel in a specific region must be 

similar concerning some attribute or property, such as color, 

intensity, intensity or texture. 

In general, an image is represented as a vector of pixels. 

This work modifies pixel-based representation to superpixel-

based representation. An input image is represented as a vector 

of the form I = (I1, I2, .. Ii, …In), while Ii represents color vector 

of the superpixels i. Each superpixel will be treated as a node, 

and the undirect graph G = (V, E) will be formed by connecting 

these nodes [21]. Here, V serve as the set of all nodes, and E 

serve as the difference between the histograms of the two 

neighbouring superpixels. All the nodes are connected to two 

endpoints, namely: source S and terminal T vertices. 

Figure 2(a) displays a case of 3x3 image with user markings 

of the object and the background. The corresponding graph 

with two terminals S and T is shown in Figure 2(b). All the 

pixels except the object are joined to T, the background 

terminal, and all the pixels except the background are attached 

to S, the object terminal. The thickness of the edges shows 

edge costs. Next, calculate the global minimal cut (Figure 2(c)), 

splitting these two terminals and giving a segmentation result 

(Figure 2(d)) which precisely represents an” object” and a” 

background” region [22]. 

In general, graph-based image segmentation divides G into 

mutually exclusive non-empty sets A1, A2, …, Ak such that Ai 

∩ Aj = ∅ (i, j ∈ {1, 2, ..., k}, i ≠ j) and A1∪…∪Ak=G. The 

criteria for segmentation are that elements within a group are 

similar and dissimilar across the group. The dissimilarity 

between two components, A and B, is considered graph cuts. 

A cut is a subgroup of edges that splits the graph into two 

separate sets A and B and the value of cut is determined as the 

sum of edge weights removed between these two sets and is 

given in Eq. (3). 

 

𝑐𝑢𝑡(𝐴, 𝐵) = ∑ 𝑤(𝑢, 𝑣)

𝑢∈𝐴,𝑣∈𝐵

 (3) 

 

where, u and v are the vertices in two distinct components. 

 

 
 

Figure 2. A simple example for segmentation of 3×3 image: 

B - background, O - object. Edge cost is reflected by its 

thickness 

 

 
 

Figure 3. Cut of a graph 

 

An S-T cut in two-class segmentation is a subset C⊂E of 

edges such that it separates terminals S and T, shown in Figure 

2(c). The objective is to determine the best cut for an” optimal” 

segmentation [23]. In graph cut, a weighted graph is split into 

disjoint sets (groups) such that similarity within a group is high 

and that across the group is low. Figure 3 shows the level of 
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dissimilarity between the two groups A and B determined as 

the sum of weights of edges removed between these two pieces. 

One can perfectly bipartition the graph and accomplish 

superior segmentation by lessen this cut value. Normalized cut 

given in Eq. (4) calculates the cut cost as the ratio of the sum 

of the edge weights removed among these two sets and the 

complete edge links to all the vertices in a graph [24].  

 

𝑁𝑐𝑢𝑡 =  
𝑐𝑢𝑡(𝐴, 𝐵)

𝑎𝑠𝑠𝑜𝑐(𝐴, 𝑉)
+  

𝑐𝑢𝑡(𝐴, 𝐵)

𝑎𝑠𝑠𝑜𝑐(𝐵, 𝑉)
 (4) 

 

where, 𝑎𝑠𝑠𝑜𝑐(𝐴, 𝑉) = ∑ 𝑤(𝑢, 𝑡)
𝑢∈𝐴,𝑡∈𝑉

 is a total connection 

from the vertices of set A to all the vertices in the graph. The 

output of the graph cut is the mask image. The final segmented 

image is obtained by pixel multiplication of the masked image 

with the input image. This segmentation output is be used as 

an input for yield count. To get the yield count, we have used 

the watershed algorithm. 

 

3.3 Yield count using watershed algorithm 

 

Watershed is a classic segmentation algorithm and is very 

much useful when extracting overlapping objects in an image. 

The main steps of yield count are as follows [25]: 

Step 1: The first step is to convert the segmented image into 

gray scale by which we can visualize the picture as a 

topographic surface in which low-intensity denotes valleys 

and high-intensity values denote peaks and hills. 

Step 2: Otsu thresholding is employed to segment the 

foreground image from the background. 

Step 3: We now apply a watershed algorithm to count the 

arecanuts: 

i. The first step is determining the Euclidean distance to the 

background pixel for every foreground pixel and then 

discovering local maxima (i.e., peaks). The distance 

between peaks is at least 34 pixels. 

ii. We then apply an 8-connected component analysis to 

obtain markers, fed to a watershed algorithm that assumes 

markers constitute valleys (i.e., local minima) in the 

distance map, the negative value of the distance map. 

iii. The output of the watershed algorithm is a matrix of labels. 

Pixels that have the same label are considered as one 

arecanut.  

iv. The final step is to loop over unique labels to extract each 

arecanuts simply. 

 

 

4. PERFORMANCE ANALYSIS 

 

The data set made available by Dhanesha et al. [16] has been 

used to assess the performance of segmentation and yield 

count. The data set consists of 1017 images, including unripe 

(629) and ripe (388) images. All the images are of 4160x3120 

resolution saved in jpeg format. Segmentation performance 

has been assessed using Intersection-over-Union 

(IoU)/Jaccard index and Dice similarity coefficient shown in 

Eqs. (5) and (6), respectively. IoU is determined as the degree 

of overlap between ground truth and prediction region. Dice is 

determined as two times the number of pixels common to two 

sets divided by the sum of the pixels in each set. There are very 

few efforts made to extract arecanut bunch which are based on 

color models [16, 17] and using deep learning techniques [26, 

27]. Table 1 summarizes the segmentation performance and 

analogy with state-of-the-art methods. The higher values of the 

above measures indicate the greater performances of the 

segmentation algorithm. Results show that the graph cut 

segmentation model illustrated greater segmentation 

performance and was robust to handle variations such as scale, 

background, illumination, inflorescence and color. 

 

𝐼𝑜𝑈 =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (5) 

 

𝐷𝑖𝑐𝑒 = 2 ∙
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (6) 

 

Table 1. Comparison of segmentation performance 

 
Author Method IoU Dice 

Dhanesha et al. [16] YCgCr  80.96% 

Dhanesha et al. [17] 
HSV 

YCgCr 

66.58% 

72.77% 

79.0% 

83.62% 

Anitha et al. [26] 
U-Net 

MRCNN 

56.34% 

63.49% 

70.61% 

75.81% 

Chikkalingaiah et al. 

[27] 
U2-Net 68.49% 81.27% 

This paper 
SLIC, Graph-

cut 
85.78% 93.15% 

 

 
 

Figure 4. Representative results for ripe images 

 

 
 

Figure 5. Representative results for unripe images 
 

Using the watershed algorithm, we can identify and count 

arecanut that overlap or touch each other. Yield count 

performance has been determined using Mean Absolute 

Percentage Error (MAPE) given by (7) on counting areacnuts 

for 20 images. MAPE has been determined to be 5.34% for 

ripe images (Table 2) and 5.47% for unripe images (Table 3). 

The model performance is slightly better for ripe images 

compared to unripe images. The model performance is 

compared with methods applied to other crops as there were 

no benchmarks and is better compared to apple crop load 
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estimation [28, 29] with 21.1% and 15% of MAPE, 

respectively. The sample segmentation and yield outputs 

achieved are presented for both ripe and unripe images in 

Figure 4 and Figure 5, respectively. 

 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∑

|𝑛𝑎−𝑛𝑏|

𝑛𝑎

𝑁

𝑖

 (7) 

 

where,  

na: Actual number of arecanuts in a bunch 

nb: Number of arecanuts detected by the algorithm 

N: Number of sample images considered 

 

Table 2. Yield count error for segmented ripe images 

 
Image Actual Detected Error (%) |na-nb| 

1 46 44 4.34 

2 26 26 0 

3 35 38 8.57 

4 42 39 7.14 

5 21 25 19.04 

6 25 24 4 

7 31 34 9.67 

8 41 39 4.87 

9 34 33 2.94 

10 14 14 0 

11 40 41 2.5 

12 33 33 0 

13 45 44 2.2 

14 46 42 4.34 

15 26 26 0 

16 70 68 2.85 

17 32 36 12.5 

18 24 26 8.33 

19 35 32 8.57 

20 40 42 5.0 

MEPE 5.34 

 

Table 3. Yield count error for segmented unripe images 

 
Image Actual Detected Error (%) |na-nb| 

1 36 36 0 

2 42 46 9.52 

3 49 47 4.08 

4 35 34 2,85 

5 35 35 0 

6 44 41 6.81 

7 38 40 5.26 

8 38 37 2.63 

9 44 40 9.09 

10 32 29 9.37 

11 38 36 5.26 

12 21 23 9.52 

13 42 42 0 

14 44 43 2.27 

15 48 43 10.41 

16 21 20 4.76 

17 22 24 9,09 

18 44 45 2.27 

19 24 22 8.33 

20 38 41 7.89 

MAPE 5.47 

 

 
5. CONCLUSIONS 

 

SLIC and graph cut techniques are used to segment the 

arecanut bunch and watershed algorithm to count the arecanuts 

in a bunch presented in this paper. Results show that graph cut 

model illustrated greater segmentation performance resulted in 

85.78% IoU and 93.15% Dice score. Yield count using 

watershed also demonstrated very good performance resulted 

in 5.4% MAPE, which is very good in contrast with the state-

of-the-art methods. Both segmentation and yield count 

methods are robust to handle variations such as scale, 

background, illumination, inflorescence and color. Here, the 

challenges are more due to inflorescence and occlusion. The 

performance could be improved by removing the inflorescence 

(male flowers) and automating the selection of seed points for 

segmentation. Segmentation and yield estimation are done as 

an off-line task. They may be extended as an on-line work. The 

methods implemented is tested for arecanut. It may further 

extend to generalize for different crops. 
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