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Effective waste classification is critical in addressing the rising environmental pollution and 

waste volume. Conventional sorting methods are labor-intensive and error-prone, 

particularly with the increasing diversity of waste materials. This study presents an 

innovative approach using deep reinforcement learning for waste object detection and 

classification to automate waste management processes. The proposed system aims to boost 

operational efficiency, enhance resource recovery, and reduce waste going to landfills by 

leveraging deep reinforcement learning. The Deep Q Network model proposed achieved an 

accuracy of approximately 73%. By employing DQN, an advanced reinforcement learning 

algorithm, the system ensures improved waste object image classification to handle 

complex tasks with distributional characteristics. This study can be further extended to 

design and develop an autonomous waste sorting system. 
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1. INTRODUCTION

Increasing pollution concerning biodiversity, 

environmental degradation, and waste management is a 

significant area of research. The global waste issue requires 

innovative approaches to reduce environmental pressures, and 

more resources are needed. Automatic and proper waste 

classification is at the heart of the problem, as traditionally, 

waste classification is done manually and is a dirty and 

complex job. In addition, different waste quantities require 

precise recycling and disposal sorting [1]. Here is an automatic 

garbage classification method that adopts a new image 

classification method based on deep reinforcement learning to 

generate automatic garbage classification. The motivation 

behind this research comes from the utmost need to perform 

better waste management and the environmental burden is 

reduced. With increasing urbanization and consumption, 

traditional sorting methods are becoming unmanageable in the 

face of increasing types of waste. Automated sorting methods 

will increase operational efficiency and enable better 

segregation, resulting in better recovery and waste diversion 

from landfills. 

Deep reinforcement learning (DRL) [2, 3] is a powerful 

capability for rapidly handling complex classification tasks. 

Apart from the fact that DRL is a machine learning approach, 

it has several unique advantages compared to traditional 

machine learning approaches. DRL combines deep learning 

and reinforcement learning techniques by which an agent can 

learn optimal strategies while interacting with a certain 

environment. Regarding the classification task, DRL deals 

with unstructured high-dimensional data; images, text, and 

audio are no exceptions [4]. In such cases, it may be 

challenging for the traditional methods to capture the intricate 

patterns and relationships. Among the main strengths of DRL 

in this classification task is its ability to learn hierarchical 

representations of data. Classification tasks are further 

implemented via the available deep neural networks, which 

automatically extract the desired features from raw inputs. 

Thus, the DRL models can distinguish subtle differences 

between classes. Consequently, the DRL models improve 

classification accuracy and enhance their invariance to 

variations and noise in data. 

This study introduces a new method combining 

reinforcement learning with computer vision to realize 

autonomous waste sorting [5]. Unlike the previous tradition-

based methods using handcrafted features or supervised 

learning, our method directly learns from raw image data and 

interactions with the waste sorting environment. Through RL, 

we model the waste sorting problem as a sequential decision-

making problem in which our system autonomously 

recognizes and sorts the objects of waste into the most fitting 

bins. The innovation of this work lies in the application of RL 

to the field of waste management, where we face the 

challenges involved in the real sorting environment. Moreover, 

the proposed method has several advantages over traditional 

methods. Using RL helps adapt dynamically to changes in 

conditions and various waste items to achieve high accuracy 

and efficiency in sorting. In addition, since our model learns 

from interaction with the environment, it is efficient in 

generalizing unseen waste materials and variations of sorting 

setups. Hence this study integrates deep learning and computer 

vision to establish the waste classification model, however, 

most of the existing research focuses on the supervised 

learning approach that constrains model flexibility in changing 

circumstance. There is scarce literature on RL methods 

especially DQLNs, applied to waste classification problems. 

This study aims to fill the gap with a reinforcement learning 

structure with feature extraction on a CNN and the DQLN for 
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battle field decision. This general approach of employing 

machine learning-based methods means that the model 

iteratively provides ocular classification enhancement by 

engaging with a simulated environment and doing so across 

variably-type wastes and across difficult classes of wastes 

such as in the case of classing cardboard and paper. Further, 

we propose a form of structure in the reward function so that 

the model is capable of learning the best classification policies 

apart from the training process making the classification 

training general enough to do well in new data sets. 

The main contributions of this study are threefold: Three 

contributions follow: (1) the combination of reinforcement 

learning with CNN-based classification to achieve an adaptive 

learning process in the context of waste segregation; (2) a 

reward-based approach in order to classify and segregate 

waste objects that improves model accuracy and insensitivity 

to variation in waste characteristics; and (3) a comprehensive 

analysis towards the effectiveness of RL in coping with 

complex and ambiguous waste types compared to most 

common supervised methods. Altogether, these contributions 

enhance the novelty of the approach outlined herein and reflect 

the utility of the proposed method to the real-world automated 

waste segregation systems, where flexibility and a high level 

of accuracy play a determining role in environmental care. The 

study aims to design and deploy an autonomous waste sorting 

system using deep reinforcement learning to classify images. 

The implementation is based on principles where the system 

learns to make informed decisions using the cues and feedback 

from the environment to increase the rate of sorting and 

minimize errors, resulting in improved effectiveness in 

managing waste. The study focuses on the feasibility and 

efficacy of reinforcement learning in the waste management 

domain. Extensive experimentation and evaluation are 

conducted on a comprehensive waste dataset to illustrate our 

approach's effectiveness in automating waste sorting tasks. 

Therefore, this paper lays the foundation for intelligent and 

sustainable waste management systems using deep 

reinforcement learning techniques. 

 

 

2. RELATED WORK 

 

For effective waste management and classification, 

reinforcement learning methods are prevalent. Weerasekara et 

al. [6] suggested using deep reinforcement learning for 

inventory management in disassembly systems, targeting 

issues caused by time-variant inventory fluctuations and high 

costs. The demonstrated experiments in the disassembly of 

televisions have confirmed that DRL reduces inventory 

buildup by 21% and unmet demand by 12%, outperforming 

other benchmarks, including Multiple Elman Neural Networks. 

In one study, Rakesh et al. [7] present segregation and 

collection of medical waste and notification using Internet of 

Things (IoT) based smart dust bins. In another study, Okafor 

et al. [8] presented a comparative model-free deep 

reinforcement learning system for cooperative object sorting 

in cluttered environments. It combines primitive policies 

(pushing, grasping, placing) using lightweight deep neural 

networks, exploring results from 12 custom instances with 

pixel-wise Q-valued critic networks (PQCN), utilizing 

backbone networks such as DenseNet121 or MobileNetV3, 

suggesting that combining these backbones with fully 

convolutional networks (FCN) and training through dual 

transfer learning yields the most optimal performance, notably 

in generalization during testing. This research sets a 

benchmark for evaluating DRL algorithms in sorting tasks 

across various industries like manufacturing, construction, and 

waste management. 

A robotic system is used for grasping and recognizing 

objects in cluttered environments, achieving high success rates 

through object-agnostic grasping and cross-domain image 

classification [9]. A study in Coimbatore, India, highlights 

insufficient electronic waste recycling and stresses the 

importance of public education, identifying factors 

influencing recycling behavior and emphasizing legal support 

for promoting recycling and behavioral change [10]. In 

another research, machine learning improves municipal trash 

management by addressing sorting, routing, and real-time 

monitoring, recognizing materials, forecasting waste 

production, and identifying operational problems [11], 

requiring integration with other initiatives and legislative 

support for sustainability. 

One of the studies presents an approach for efficiently 

utilizing reinforcement learning; the paper introduces two 

policy networks, CPNet and FPNet, to handle object detection 

in large images without modifying the detector's architecture. 

were trained to balance accuracy and maximize low-resolution 

image usage with a coarse detector. Experiments on xView 

satellite images show a 2.2×runtime efficiency increase and a 

70% reduction in high-resolution image dependency [12]. 

Additionally, the approach achieves a 40% runtime increase 

on the Caltech pedestrian dataset. A novel deep reinforcement 

learning approach enhances object detection on low-quality 

images without retraining. It uses detection results to create a 

reward function, improving image quality and recognition. An 

image enhancement tool chain (IETC) [13] offers flexible 

algorithm selection. Experimental results validate 

effectiveness in various challenging environments. 

Another approach uses a novel technique that efficiently 

selects relevant experiences for training agents, enhancing 

exploration-exploitation trade-off and accelerating learning 

convergence [14]. Filtering experiences based on state 

similarity and a hyper-parameter improves future returns 

across diverse environments. A study presented a goal 

exploration process - policy gradient (GEP-PG), a novel 

strategy for reducing exploration inefficiencies in continuous 

action domains that combines two forms of DDPG with the 

goal exploration process. Unlike gradient-descent-based 

techniques like DDPG, which are efficient in fine-tuning 

policies, evolutionary methods are not as robust in their 

exploration [15]. Combining these methods, GEP-PG 

performs better than DDPG variations on the more significant 

Half-Cheetah benchmark and low-dimensional misleading 

reward tasks. Another research involves efficient training of 

agents in multi-agent reinforcement learning (MARL) 

environments by sampling past experiences from a replay 

buffer. Filtering samples based on the currently observed state 

enables quick convergence and mimics human learning 

processes of generalization [16]. The method generalizes 

MARL algorithms and analyzes their performance at different 

samples taken in the learning process. In a multistep 

progressive image rectification scheme for fisheye images, the 

problem is treated as a Markov decision process and Deep Q 

Networks is used as the solution [17]. 

Most of the conventional supervised learning techniques, as 

well as basic RL techniques, make decisions in isolation, 

meaning that a given decision may depend more on previous 

decisions than on a single input data sample [18]. However, in 
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comparison to standard deep learning techniques, RL has the 

advantage of being able to learn over the abstract and the more 

concrete level, so the model gains a hierarchy view on the 

classification task. This is important in segregation of waste 

where, within similar categories of waste, variations can be 

very high and specific static labels do not guarantee good 

segregation. Another replacement that works well as a special 

type of a neural network is a Deep Q Learning (DQL), which 

het well on simple classic problems of binary classification, 

but is not hierarchical enough to properly tackle the distinction 

between different classes of waste. As for the weaknesses of 

DQL, the approach tends to work more on immediate rewards 

than on disadvantageous long run outcomes and the 

deficiencies associated with other dependencies cannot 

accommodate exceptional systematization of tasks for 

breaking down of primary tasks or events, thus making it unfit 

for complex scenarios that require tiered decisions. On the 

other hand, RL provides a taxonomy of sub-goals that 

corresponds to both short-term decision and long-term 

improvements of accuracy. Few advantages of RL techniques 

are as follows: 

• Hierarchical Structuring of Decisions [19]: RL 

provides structural layers of decision making to the 

classification model, which makes sense as the 

hierarchical structure of a classification problem is 

often as complex as it is in the real world, e.g. above 

simple metal and non-metal classification, there are 

sub categories of materials that definitely require 

recycling but do not fall under any general or special 

category of recycling mentioned in the paper. 

• Enhanced Adaptability [20]: Since sub-goals are used, 

the model is better suited for changes in waste 

materials so that in cases where a simple texture or 

color distinction is not enough, it will have a better 

accuracy. 

• Improved Computational Efficiency: Focusing the 

learning in the model at multiple levels may lead to 

improved convergence and decreased computational 

complexity, thanks to the fact that the learning of 

more general patterns at higher levels precedes the 

fine learning in lower levels. 

However, RL is somewhat harder for the implementation 

than the standard RL or supervised learning because of the 

high-timely structure of RL that needs simultaneous tuning of 

sub-goal policies to avoid suboptimal decisions. Furthermore, 

DRL may occasionally fail to meet the temporal complexity of 

balancing learning between successive layers, especially with 

limited data for specific sub- objectives and may take time in 

training the network. Lastly, the attainment of consistent 

convergence in HRL is slightly more arduous and might call 

for optimal structures of rewards that correspond with the 

broad category label. 

 

 

3. DEEP REINFORCEMENT LEARNING FOR WASTE 

IMAGE CLASSIFICATION 

 

Deep Q-Learning (DQL), a type of deep reinforcement 

learning (DRL) is employed, along with Convolutional Neural 

Networks (CNNs) for waste object classification [1, 5]. DQL 

is a type of Q-learning where Q-value approximations are used 

to estimate action-value functions and these approximations 

can be used in deep neural networks, so DQL is good for high 

dimensional state spaces like images. It is particularly 

beneficial where the task comes with many visual inputs since 

CNN takes charge of dig out relevant features from images 

then DQL component of the model is charged with extracting 

optimal classification actions from the derived features. 

 

3.1 Deep Q-Learning (DQL) 

 

DQL is supposed to gain the maximum end cumulative 

reward through estimating a Q- function that bring out 

relations between states, images of wastes. For still image 

classification, DQL is highly appropriate since it updates the 

model decisions via exploration-exploitation trade-off policy 

of epsilon-greedy [21]. This policy is beneficial in the first 

stages of learning classification of images by the model to 

begin with before the model refines the strategies that work 

and avoid those that do not work. In the long run, DQL 

concentrates more on exploitation, using the actions that have 

provided the highest rewards in the previous experience. 

Together with replay memory, this approach is useful in 

stabilizing the learning process and eliminating high 

correlation between training samples such that the model 

generalizes appropriately for different image inputs. 

 

3.2 Convolutional neural network (CNN) 

 

CNNs are connected with DQL because they showed 

promising results in an image classification problem. CNNs 

use convolutional and pooling layers to minimize image 

complexity while retaining characteristics that differentiate the 

various sorts of waste materials [22]. This architecture has 

multiple convolution layers for obtaining low and high 

abstraction level representations, with which DQL will 

improve classifications over time. 

DQL is particularly useful for image classification tasks 

because it incorporates feature extraction, decision making as 

well as iterated learning through reinforcement in a single 

model, CNN-DQL. Compared to traditional supervised 

learning, DRL works on a reinforcement learning structure in 

which it is awarded a certain sum of reward after each trial, 

conventionally an integer or a real number; this makes it well 

suited to a problem that requires a model to gradually fix its 

mistake as it is tested iteratively. This characteristic becomes 

particularly helpful for the tasks, such as waste classification, 

where the contents of classes may have shared visuals and a 

simple classification method may fail. The DRL model is 

contextual and learn through the interactions with actual 

environment hence can improve the classification 

performance of data inputs that are always unique in real-

world applications. This is true since the combination of DQL 

with CNNs and the hierarchical structure offers significant 

capabilities for waste classification based on images, while at 

the same time ensuring that feature-driven image processing is 

complemented by adaptive learning processes that allow the 

model to improve its decision-making without a constant 

reference to the additional data. This choice of algorithm 

improves model performance in visually complicated 

environments; therefore, it is suitable and effective when 

pursuing this work’s goals. 

 

3.3 Deep Q-Networks (DQN) 

 

In reinforcement learning, DQNs are a powerful class of 

algorithms used to solve problems where an agent engages 

with an environment to optimize or maximize performance in 
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terms of cumulative rewards [23]. Traditionally Q-learning 

relies on keeping account of all state-action pairings' Q-values 

in a Q-table. However, the enormous amount of memory 

required for continuous state or action spaces renders this 

method infeasible. By approximating the Q-value function 

using deep neural networks DQNs overcome this constraint 

[24]. The DNN learns to predict Q-values rather than explicitly 

storing them. For image-related tasks, the images must first be 

represented in a form suitable for neural networks. This 

involves the traditional preprocessing of images, such as 

resizing them to a fixed size and then normalizing the pixel 

values. 

The architecture of a DQN has input layers, hidden layers, 

and output layers. The DQN architecture consists of a 

convolution neural network and one or more fully connected 

layers. CNNs are effective for processing spatial data like 

images as they can capture patterns and spatial hierarchies [25]. 

The input layer takes the state representation of images as 

input. The multiple layers of neurons in hidden layers learn to 

approximate the Q-values. The output layer is responsible for 

producing the Q-values for the possible actions. 

The training process for a DQN is focused mainly on the 

replayed memory, the temporal difference error, and the 

bellman optimality equation. The agent saves experiences 

(state, action, reward, next state) in a replay memory buffer 

[26]. At every time step, the agent selects a batch of 

experiences from this buffer for training. The loss function for 

DQN is based on the temporal error. TD error represents the 

difference between the predicted Q-value and the Q-target, 

computed using the Bellman equation. The Q-target estimated 

using the Bellman equation is represented in the Eq. (1) as. 

 

𝑄(𝑠, 𝑎) = 𝑟 +  𝛾 𝑚𝑎𝑥 𝑄(𝑠′, 𝑎′) (1) 

 

where, 

(s): current state 

(a): chosen action 

(r): immediate reward 

(s’): next state 

The highest Q-value for the next state is obtained by 

forwarding it through the DQNs that can handle continuous 

state spaces efficiently by approximating the Q-value function 

using the function approximation [27]. The storing 

experiences in a replay buffer helps stabilize training. Once the 

DQN is trained, the network can classify new images by 

inputting them, analyzing the output, and selecting the class 

with the highest probability output. 

 

 
 

Figure 1. Computation of state-action values [28] 

 

A calculation enhancement was suggested, where the Deep 

Q-network (DQN) agent, as illustrated in Figure 1, computes 

all the action values for a state at a given moment. Then, by 

combining it with a ϵ-greedy policy, the neural network that 

predicted the Q-values for each state-action pair can be utilized 

to explore the environment arbitrarily and greedily, training a 

DQN that can predict the values of the state actions. 

Primarily, an environment is sampled to collect 

"experiences" for the DQN. Inspired by psychology research, 

these sampled events are called episodes attached to a replay 

memory [29]. Replay memory episodes are retrieved, and a 

loss function generated from the equation is constructed to 

update the Q-value estimate as shown in Eq. (2). 

 

𝐿(𝑠, 𝑎, 𝑟, 𝑠′) = (𝑟 + 𝛾𝑚𝑎𝑥𝑎𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) (2) 

 

where, following action an in-state s’, the agent arrives in state 

𝑠. We suppose that in the loss, the Q-value estimation is 

predicated on choosing the best course of action, with the next 

state being determined by taking the most significant state-

action value among the feasible options. 

As the agent keeps assessing the network and the old, less-

useful replay memories decay, the training replay memory is 

continuously fed fresh sampled events. When the memory fills 

up, the earliest episodes are removed, simulating a first-in, 

first-out queue to guarantee that only pertinent and recent 

memories are present in memory for the agent to be taught 

from. Prioritized experience replay [30] is another innovation 

that involves prioritizing transitions depending on various 

measures according to their relevance, such as temporal 

difference error that they experience, rather than sampling 

them at random for replay memory during training. 

 

 

4. METHODOLOGY 

 

The dataset and the proposed methodology for waste 

classification using deep RL are explained in this section. 

 

4.1 Dataset description 

 

The dataset used in this study is “Garbage Classification” 

dataset [31]. This dataset has been obtained from the Kaggle 

repository which contains images of different waste materials 

labeled into six classes: cardboard, biological waste, plastic, 

paper, trash, and metal. All of these come from distinct types 

of waste that people encounter in their daily lives. It selects a 

diversified and inclusive dataset where all the images are high-

resolution. Images are taken under different environmental 

conditions and settings. The sample image from every class 

can be seen in Figure 2. Each image is annotated with its 

corresponding waste class label. The multi-class classification 

of waste ensures comprehensive training and model evaluation, 

ensuring robustness and generalization across diverse types of 

waste. Throughout the study, a total of 2532 images were used. 

Below is the breakdown of each class and its characteristics, 

along with the number of images in each category: 

1) Cardboard (393 images): The images of cardboard 

material, which is generally recyclable and has a 

specific smooth surface and almost brown hue and 

has some marks that can easily be identified, like 

folds and wrinkles. 

2) Glass (491 images): Images of glass dictate wastes 

that contain recycle capacity but have explicit risks 

of handling due to their fragility. Possible Glass items 

in the dataset are glass bottles and jars having 
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translucent or colored body and reflective surfaces in 

addition to varying translucency which aids in 

differentiation. 

3) Metal (400 images): The metallic wastes consist of 

waste containers such as cans, tins and any 

manufactured metallic item. These images tend to 

take on the characteristic of metals and include 

mirrored aspects, more specifically, they possess 

metallic textures that make their surface differ in 

color as well as in reflectiveness depending on the 

metal type. 

4) Paper (584 images): Paper waste involves newspaper, 

magazines and any other paper products. This class 

has the largest number of images, this showing the 

scale and variety of paper waste. Despite the fact that 

paper can be easily mistaken for cardboard, it is 

usually smoother in thickness and is not as rigid, as 

cardboard is. 

5) Plastic (472 images): The images of the plastic class 

are of bottles, bags, and containers and other products 

manufactured from the plastic. The plastic materials 

are ubiquitous in waste and if not sorted appropriately, 

they are difficult to recycle. Plastic items in images 

can be of different colors, sizes, even shapes, but the 

material always has some special shiny appearance 

and flexibility. 

6) Trash (127 images): The trash class consists of 

different items that are usually unfit to be recycled or 

are composite waste items that could not be sorted 

into any of the other classes. Other waste products 

may include food packaging, used products, and any 

other waste products that cannot be recycled. A lower 

number of images is attributed to this class due to the 

difficulty experienced in categorizing samples of 

non-recyclable or mixed material waste. 

 

 
 

Figure 2. Image classes from the dataset 

 

Every class is designed in such a manner that has given the 

model an understanding of the differences in the form and 

texture of wastes to enable it classify them properly. This data 

structure helps the model develop recognition of the difference 

between recyclable items (Cardboard, glass, metal, paper, 

plastic) and general waste, which in a certain perspective may 

require a different method of disposal or recycling. The idea 

to balance the class distribution, although bins have different 

numbers of examples, guarantees that the model sees enough 

samples during the training while retaining the real 

presentation of such material in usual waste flows. All images 

were rescaled to 100×100 pixels and then normalized to 0 and 

1 to allow the training stage to run faster. 

 

4.2 Combined algorithmic approach 

 

This study leverages a multi-algorithm system that 

integrates CNN and DQLN in a reinforcement leaning system. 

Each of these has particular tasks which in turn help the model 

to learn, classify, and improve on decisions pertaining to waste 

object classification. 

 

4.2.1 Convolutional neural network (CNN): Feature extraction 

[32] 

As in most CNNs, the CNN part in the proposed network 

acts as a feature extractor, which extracts special and rich 

features from raw image inputs and helps the classification 

network to classify the inputs. The CNN structure uses 

convolutional layers to search for spatial hierarchies of the 

input image features. This process obtains features for 

different classes of waste, including the texture, shape, and 

color, which are necessary for classification between such 

classes as glass, metal, paper, and plastic. It optimizes the 

extraction of the features by ensuring that computation time is 

not exceedingly spent. The last set of layers of the CNN flatten 

the image representations into vectors that is taken to the fully 

connected layers. These layers give output values in form of 

probability values corresponding to each respective class, 

which is then fed to the DQLN. This specific CNN plays a 

pivotal part in the program because it helps translate high-

dimensional image data into a format that the DQLN can use 

to learn from through reinforcement techniques. 

 

4.2.2 Deep Q-Learning network (DQLN): Decision-making 

and action selection [1] 

The DQLN is a reinforcement learning algorithm utilized to 

decide about optimal actions (or classifications) in line with a 

learned policy. This component allows the model to engage 

the environment, test the classification action and modify 

policy in relation to experience gained. 

In the case of waste classification, concerning decision-

making, the agent chooses actions, which are in our case the 

classes, that yield the maximum cumulative reward. 

Reinforcement learning enables the model to act at the given 

environment by making a classification, and then it receives 

reinforcement against the classification made which either 

encourages (by a reward) or discourages (with a penalty) the 

model to perform better next time. When training, the use of 

an epsilon greedy policy is implemented where actions are 

made randomly with a certain probability of epsilon and based 

on the learnt Q-values with a probability of (1-epsilon). This 

approach aids the model to learn the right categorization 

approach instead of limiting its abilities to a few unproductive 

early categorization techniques while searching for the better 

approach. The DQLN earns a reward of +1 if a classification 

is accurate and the nodes lose -1 if the classification is wrong. 

In the long run, this reward system teaches the agent to always 
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select action that yields the maximum cumulative reward thus 

“learning” the right classification. 

Compared to other deep learning networks incorporated in 

the model, the learning from the rewards characteristic 

contributes to the flexibility of the data inputs in real-life waste 

classification instances for instance, the object on-grade may 

differ over some specific time which was not endemic in the 

means that were used in a static setting. 

 

4.2.3 Integrated CNN-DQLN approach 

The interplay between CNN and DQLN brings synergy into 

the system by allowing feature extraction to be followed by 

reinforcement-based decision making. Both of them 

contributes its function in order to form the idea of interaction 

learning for high-dimensional image data in the model. 

Compared to traditional supervised CNNs, this integrated 

CNN-DQLN model provides unique advantages: 

• Enhanced Generalization: By exploring the DQLN 

the model learns classification by experimenting 

without being directly supervised and thus learns on 

its own. It makes it possible for it to generalize to new 

images because by looking at the extracted features it 

learns how it can estimate the feature values for a new 

image. 

• Efficient Learning with Feedback Loops: 

Incorporation of reward mechanism in DQLN makes 

the model to be constantly updated from experience 

and classify appropriately based on total experience. 

This feedback loop affords robustness against minor 

perturbations in waste objects and also when the 

object is different from the training set. 

• Improved Handling of Ambiguous Classes: When 

classes possess similar visual features, they can 

overlap (for example, cardboard with paper), and the 

capability of learning to navigate and refine itself 

within the DQLN can prevent an incorrect 

categorization of classes. 

 

 

4.3 Model implementation 

 

4.3.1 Initialization 

The environment is initialized with the preprocessed data. 

The DQLN Agent is initialized with the shape of the state 

(image) and the number of actions (classes). 

 

4.3.2 Experimental design 

Through the trajectory, each episode is executed, for each 

episode, the training loops work as follows: The environment 

is reset to an initial state using the reset method, randomly 

selecting an image from the training data. The state is 

expanded to include a batch dimension and is then passed to 

the agent. The agent selects the action by analyzing the current 

state using the act method. The agent takes a step based on the 

action performed using the step method, which returns the next 

state, reward, and whether the episode is done. The next state 

is expanded to include a batch dimension and stored in the 

agent’s memory along with the current state, action, reward, 

and done flag. The agent replays experiences from memory 

and updates Q-values using the replay method, as shown in 

Figure 3. 

 

4.3.3 Environment 

The reset method randomly selects an image from the 

training data as the initial state. The step method accepts an 

action (class label) and returns whether the episode is finished, 

the next state, and the reward. In this simplified example, the 

reward is 1 if the action matches the label of the image and 0 

otherwise. The episode is considered done after each step. 

 

4.3.4 Agent 

The act method takes an action (class label) depending on 

the current state. The replay method updates the agent’s Q-

values based on experiences stored in its memory. 

 

4.3.5 Action space 

The number of possible actions the agent can take defines 

the action space. The action space consists of the dataset's 

number of classes or labels. 

 

 
 

Figure 3. Proposed deep Q-learning framework 
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4.4 State representation and transition 

 

The input pre-processed images represent the states. Each 

image represents a scenario of the environment at a given time. 

The state is then passed to the agent as input to the neural 

network model. The environment class provides the relation 

between the agent and the environment. To initialize the 

environment to an initial state, the reset method is used, and 

the step method is used to perform an action and transition to 

the next state based on the agents’ action. When the reset 

method is called, the environment is initialized to an initial 

state, and an image from the dataset is randomly selected as 

the initial state. An action is carried out by the agent in the 

environment when the step method is called. The input is the 

action, which is the class label. The reward is determined 

based on whether the action matches the current state image's 

label; hence, the episode is considered done after each step. 

 

4.5 Training procedure 

 

DQN is a value-based deep reinforcement learning system 

that uses a convolutional neural network (CNN) front end with 

a fully connected layer at the end to translate the visual input 

sequence to the action value functions. The neural network 

architecture comprises fully linked layers after various 

convolutional layers. The input layer is the convolutional layer, 

which has 32 filters with ReLU activation functions and 3×3 

kernel sizes. It takes coevolutionary inputs in the shape of 

100×100×3 to take the RGB images converted to having a size 

of 100×100 pixels. The model architecture defined consists of 

three convolutional layers each having 32, 64 and 128 filters 

and a 2x2 max pooling layer with a ReLU activation function 

after each convolutional layer to reduce the spatial dimensions. 

After feature extraction, the model has two dense layers with 

256 neurons and ReLU activation, followed by 128 neurons 

with ReLU activation function and a dropout of 0.5 to avoid 

overfitting. The output is flattened into a one-dimensional 

vector. The dense layer's activation function is ReLU, which 

contains 64 units. The linear activation function and the 

number of actions is represented in units in the output layer. 

The last layer contains 6 neurons, which represent the classes 

of waste that the model can classify. 

Key hyperparameters used are; the learning rate of 0.001 

with Adam optimizer controlling how fast learning happens, 

gamma equal to 0.99 to balance between immediate and future 

rewards, epsilon for exploration. The epsilon, or exploration 

rate, is set to initial epsilon of 1.0 and decreases by the factor 

of 0.995 every episode while the minimum epsilon is set to 

0.01 in order to eventually promote exploitation over 

exploration as learning goes on. Also, fixed-size replay 

memory of 10,000 experiences is used to store and sample 

experiences, with the batch size of 32 for each update, to 

improve learning stability by removing sample correlation. 

The model underwent training for 1000 episodes in which 

replay was incorporated so as to randomly draw from the 

agent’s prior experiences so that learning is stabilized. 

 

 

5. RESULTS AND DISCUSSIONS 

 

This section describes the results obtained from the 

experiments where a reinforcement learning environment is 

utilized to train the agent for waste object classification. 

Considering the classification task, the evaluation metric used 

is accuracy. The accuracy metric below shows what proportion 

of negative and positive classes are accurately classified and is 

calculated using the Eq. (3). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑝 + 𝑇𝑁

𝑃 + 𝑁
 (3) 

 

5.1 Models performance overview 

 

The model yielded an accuracy of 73.09% on the training 

set and an accuracy of 72.70% on the test set as shown in Table 

1. From these results we can understand that the model does 

not overfit to the training data and appears to generalize when 

tested on the validation data with relatively small difference 

between the training and validation accuracy. 

The agent transitioned from exploitation to exploration 

from episodes out of the first couple of hundred, indicating a 

subsequent enhancement in performance and hence the 

observed convergence of the localization accuracy on the 

validation and test sets. The model yielded the best results on 

clearly separable classes such as glass and plastic in all 

probability due to disparities in terms of visual attributes. But 

when it came to classes such as paper and cardboard which are 

much more similar in appearance, it had a problem. 

 

Table 1. Training and test accuracy 

 
Metric Value 

Training Accuracy 73.09% 

Test Accuracy 72.70% 

 

5.2 Training and convergence behavior 

 

In this section, the training and convergence behavior of the 

model is explained through an analysis of the learning curve 

and epsilon decay effect. 

Figure 4 plots the training and test accuracies across 

multiple episodes. It shows how the model's performance 

changes for the training and testing phase. The learning curves 

show an initial steeply rising segment for accuracy, which then 

levels off. This pattern is commonplace in reinforcement 

learning and other model training frameworks prevalent in 

artificial intelligence, where early exploration leads to slow 

incremental gains, which tend to flatten out as the model 

moves to exploitation. 

 

 
 

Figure 4. Training and testing accuracies through episodes 
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Figure 5. Exploration rate decay 

 

The exploration rate epsilon decays throughout the episodes 

for further exploration and exploitation and the decaying value 

can be analyzed by the visualization in Figure 5. The epsilon 

greedy policy with the decay of exploration was by far the 

most influential factor in the learning process. Exploration at 

the initial stage (large epsilon) enabled the agent to exert a 

broad and deep search for action space and gather a larger 

number of samples in the experience replay memory. The 

lower epsilon was, the higher was the focus on exploitation, 

the confidence interval decreased and accuracy of the model 

increased. 

 

5.3 Reward accumulation and agent behavior 

 

Figure 6 shows the total reward achieved by the DQN agent 

for classifying the waste object images. It gets a reward of +1 

for correct classification and -1 for incorrect classification. 

Throughout the 1000 episodes, the agent’s reward value is 

around 100. In the long run, the agent produces more 

cumulative rewards per episode, implying that images were 

classified with higher frequency and accuracy. The fact that 

total rewards have risen also corresponds with the 

improvements that have been observed in the accuracy of the 

model. Action Analysis of the action frequency revealed that 

with learning, the agent's behavior became selective, and the 

agent selected the actions that were most in accordance with 

the classification. This shift underlines the agent’s ability to 

memorize specific characteristics of each class and choose 

actions correspondingly. 

 

 
 

Figure 6. Action selection frequency over episodes 

5.4 Model complexity and overfitting mitigation 

 

The model’s higher accuracy of some classes indicates that 

selective discriminative features relating to specific types of 

waste were learned. The high accuracy on classes such as 

metal or glass shows that the identified patterns were unique 

texture and color for these material types. The lower accuracy 

in similar classes, including paper and cardboard, is attributed 

to what the authors described as a tough problem because the 

two materials are often similar in color and texture. This 

misclassification tendency could be challenged by including 

further preprocessing steps such as converting a feature 

selection step or data augmentation. The use out of dropout 

layers at the fully connected layers was also effective in 

preventing overfitting to the training data set. Standard 

supervised models may entail high regularization, but the 

reinforcement learning structure of the DQLN neither 

significantly overfit nor overly generalize during its 

performance. However, the given model profited from a high 

overall accuracy; there exists possibility of bringing its 

accuracy to a higher level by using further enhancements such 

as refining deep convolutional layer sizes, or enhancing 

memory base for experience replay. 

 

5.5 Practical application to real-world waste segregation 

systems 

 

The findings of this research can be used as a basis for 

establishing an automated waste segregation system utilizing 

DRL. Exploiting the classification model designed in this 

research, a helpful tool must be designed for sorting waste 

items in recycling stations, factories, or waste disposal areas. 

The subsequent interaction with new data is also a strength of 

the model since real-world conditions may differ and can 

complicate the classification of waste materials and can be 

used as: 

1). Integration with Physical Systems: To operationalize 

this model into a practical application, an integration with a 

robotic system that can sort, collect, and segregate waste 

according to the DRL model would be required. Incorporating 

a camera system, images of incoming wastes would be taken 

and analyzed based on information processed by the model to 

detect waste categories. Items could then, for instance, be 

sorted by classification by use of robotic arms or conveyor 

belts, thus minimizing the need for humans to be involved in 

the segregation of wastes. 

2). Real-Time Processing Requirements: In actual usage, 

these predictions must be made as the waste is being processed 

and to cater to large throughput facilities. While our model 

showcased a high degree of success in a simulated setting, if 

the program were to be deployed, there would be further 

improvements that can be made to the code, including the 

speed of image processing and/or the design of the prediction 

algorithm. This may encompass techniques to remove 

unrequired model dimensions, employing different worth 

processors, generally known as accelerators (e.g., GPU or 

TPU), or adopting slim architectural designs that offer 

desirable levels of both precision and velocity. 

3). Adapting to Variable Waste Conditions: Waste materials 

in real-life scenarios may be contaminated with dirt, blurry, or 

only partially covered, and this presents a formidable task for 

classification. To overcome this issue, the model could 

incorporate other approaches to learning, such as incremental 

learning, whereby the model is updated after some time by 
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training it with data from new waste items. Moreover, such 

strategies as data augmentation (for instance, the generation of 

occlusions or distortions) and feature adaptation, transferring 

the model from one set of conditions to another, deepened the 

understanding of robustness. 

The potential challenges and solutions for the real-world 

system could be: 

1). Data Diversity and Generalization: One 

implementational issue associated with this model is that 

wastes produced vary widely in regions or facilities. However, 

the real waste streams can contain material that may not fall 

under these classes and, hence, may be classified wrongly. 

Possible controls could be to increase the scope of ‘learning’ 

so that many more materials are within the training set or add 

an ‘other/unknown’ designation so that materials not part of 

the known classes on the system could be sent to the manual 

check. 

2). Model Drift and Continuous Learning: Waste 

characteristics change because of changes that are 

occasionally made to the content or packaging material, and 

because of these reasons, variations would affect the model. In 

response to this, it would be possible to implement a 

continuous learning framework to enable the model to retrain 

with new data gathered from the deployment environment 

regularly. _feedback mechanism of reinforcement learning 

would also help the model to modify its judgments over time 

and remain informative and accurate. 

3). Hardware and Energy Constraints: Training DRL 

models would pose a challenge to facilities with fewer 

computational resources and which may require significant 

resources to deploy the models at scale. Possible solutions are 

choosing edge computing devices that are compatible with 

deep learning, like Nvidia Jetson or Google Coral, in order not 

to involve central servers at the classification stage. The 

model's applicability in hardware with limited resources 

would also be achieved by compressing the model by reducing 

its size or complexity using advanced techniques such as 

quantization and pruning. 

Although the use of DRL applied in segregation of wastes 

may offer promising solutions in accuracy and efficiency in 

operations in sorting facilities, it has great opportunity to offer 

its rated contribution to sustainability by increasing the 

number of recycles and minimizing contamination in wastes. 

Possible extensions of this work could consider applications 

for a higher classification by recyclability grades or for 

categorizing waste in terms of environmental harm, to extent 

efforts to integrate waste management. 

 

5.6 Limitations and challenges 

 

It is critical to acknowledge certain limitations although the 

present work offers important contributions to understanding 

the applicability of deep reinforcement learning to garbage 

sorting. The really essential component is that we rely on the 

dataset for the testing and training of DQN models. The 

current dataset used lacks the number of classes which shows 

the total number of variations possible in waste collection in 

the real world. For instance, the differences between paper and 

cardboard images can be somewhat challenging for the model 

to make, meaning the classification is not going to be 

completely accurate all of the time. For future work, a more 

diverse and wide range of waste images should be 

incorporated, along with more waste classes and image 

variations. There may be an issue of longer training time the 

application of reinforcement learning because of the 

requirement of successive interaction as well as exploration. It 

can be a little time-consuming at times due to the heavy 

computation involved. 

 

 

6. CONCLUSION 

 

The research shows how deep reinforcement learning can 

be used for detection and classification of waste objects into 

different categories. The system can self-process and identify 

correct waste objects by simulating the waste sorting process 

as sequencing of decision outcomes. This would lead to higher 

sorting rates and lower errors. The study underlines the 

capacity of deep reinforcement learning to spark the waste 

revolution recognized with intelligence and sustainability in 

the face of environmental challenges. The Deep Q Network 

(DQN) model's effectiveness, with an accuracy of around 73%, 

demonstrates the model’s ability to manage the complexity of 

various waste types. Using the approach that involves 

extended experimentation and assessment as a base, there are 

successes achieved: high relative waste sorting accuracy and 

efficiency. It presents an optimistic outlook for a future that is 

more sustainable. There can be an increase in public 

knowledge of waste management and responsible 

consumption by promoting the use of clever garbage sorting 

systems. By delving further into the application of deep 

reinforcement learning in this field, meaningful progress 

towards a circular economy can be achieved, where waste is 

not seen as a problem, but as a valuable asset ready to be 

repurposed. Collecting and categorizing this data may be a 

challenging job. Furthermore, waste compositions can differ 

depending on location and can also change daily, which 

requires our model to be flexible in order to manage these 

variations without requiring significant retraining. Future 

studies could explore some more complex environments with 

multiple linked episodes and by applying data augmentation to 

increase robustness by increased training of model on various 

images. 

In the future, this field could involve research into 

improving the above-mentioned deep reinforcement learning 

model and its applicability to waste commodity detection and 

classifying. Experimenting with this kind of depth functions as 

transfer learning and meta-learning could help achieve higher 

performance when handling heterogeneous waste substances 

and environmental circumstances. Additionally, applying 

advanced techniques of reinforcement learning like double 

DQN or dueling DQN may enhance the model’s performance 

and accuracy. Moreover, implementing sensor systems that 

can access real-time data and artificial intelligent systems can 

help the system adjust to dynamic waste compositions and 

resolve sorting problems. 
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