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This study proposes a portable Visible/Near-Infrared (Vis/NIR) spectroscopy-based 

approach to detect and evaluate the quality of ship coatings. Vis/NIR spectroscopy offers 

an accurate, non-destructive method for identifying coating conditions through spectral 

data acquisition, combined with machine learning analysis to improve detection 

performance. In this study, using a device with a wavelength of 410-940 nm, spectral 

transformations such as scatter correction, baseline correction, smoothing, and derivative 

were applied to improve data quality, followed by feature selection using PCA and IFS. 

SVM, Random Forest (RF), and LDA classification algorithms were then used to model 

spectral data. The coating quality consists of four classes, with 40 samples for each. The 

initial results of modeling without treatment were improved with an average accuracy of 

83.90%. Then, applying the combination of Nippy and IFS significantly increases average 

accuracy results by 96.86%. Incorporating spectral transformation and feature selection 

methods can optimally utilize spectral information and improve the model's overall 

performance with an increase in accuracy of 12.96%.  
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1. INTRODUCTION

Coating on ships is essential in the shipping industry to 

protect ship structures from corrosion, abrasion, and the 

growth of marine organisms [1]. Good quality coating can 

extend the ship's life, reduce maintenance costs, and improve 

operational efficiency. Given the harsh marine environment, 

regular inspection and monitoring of coatings is necessary to 

maintain the integrity of the vessel and prevent further damage 

[2]. Suppose coating quality is not taken care of. In that case, 

the impact can be devastating, including increased risk of 

corrosion, structural damage, and the growth of marine 

organisms, leading to increased operational costs [3]. This 

highlights the importance of standards and regulations such as 

those set by the International Maritime Organization (IMO) 

and the Indonesian Classification Bureau (BKI), which require 

regular inspection of coatings as part of the ship's certification 

and maintenance process [4]. Coating failure can cause serious 

structural damage and decrease the ship's performance [5]. 

Therefore, it is necessary to develop more sophisticated and 

accurate coating detection methods to ensure effective 

protection and maintain ships' safety and operational 

efficiency [6]. 

The commonly used methods of ship coating inspection so 

far include visual inspection, thickness measurement using a 

coating thickness gauge, and adhesion test to assess the 

adhesion of the coating on the surface of the ship [7]. Visual 

inspections are carried out to detect visible damage such as 

cracks, peeling, or rust, while thickness measurements ensure 

the coating has an adequate thickness as per the standard [8]. 

However, this method has limitations, such as the inability to 

detect micro-damage or delamination under the coating 

surface and reliance on the inspector's skill. In addition, these 

methods tend to be time-consuming and prone to human error, 

especially in subjective visual inspections [9]. Therefore, new 

technologies are needed that can overcome these constraints 

and offer a faster, more accurate, and non-destructive 

approach. 

Visible/Near-Infrared (Vis/NIR) spectroscopy has 

developed as a promising alternative to non-destructive 

analysis. This technology can detect the chemical and physical 

properties of the coating layer without damaging it, allowing 

for the detection of micro-damage, delamination, or structural 

changes that conventional methods may not detect [10, 11]. In 

addition, Vis/NIR spectroscopy allows for fast measurements 

and can be applied in hard-to-reach areas, making it a more 

practical solution than conventional methods [12]. This 

approach has also been widely applied in various fields, such 

as materials analysis [13, 14], food [15], and pharmaceuticals 

[16]. However, the application of Vis/NIR spectroscopy in 

ship coating analysis is still relatively rarely studied, especially 

for micro-damage detection or delamination. When combined 

with machine learning analysis, this approach can improve 

accuracy and consistency in assessing coating quality, making 

it an effective solution in the shipping industry [17]. 

Despite its potential, Vis/NIR data processing often faces 
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challenges such as noise, scatter, and baseline shift, which can 

affect the accuracy of predictive models [18]. Spectral 

transformation is an important stage in NIR processing 

because it can improve model performance [19]. The use of 

the best spectral transformation method is often determined 

through trial and error. Spectral transformations aim to 

eliminate all sources of informative variance from the spectral 

[20]. Several studies compare different spectral 

transformations to produce optimal model inputs [21]. 

Spectral transformations, such as clipping, scatter correction, 

smoothing, and derivatives, have been shown to improve data 

quality by eliminating distractions [22-24]. In addition to 

spectral transformation, feature selection is a crucial step in 

Vis/NIR data modeling and is able to improve relevant 

information signals [25]. Principal Component Analysis 

(PCA) plays a role in reducing the dimensions of data without 

sacrificing important information [26]. Iterative elimination 

feature selection has a fairly effective performance in 

improving the performance of meat quality prediction models 

[27]. The combination of spectral transformation and feature 

selection can improve the performance of machine learning 

models in detecting, classifying, and predicting material 

quality based on Vis/NIR data, making it a relevant approach 

in accurately detecting coating quality.  

Until now, there are still limitations in fast, accurate, and 

non-destructive coating inspection methods, especially in 

detecting micro-damage or delamination that is not detected 

by conventional methods. The novelty of this study lies in the 

combination of portable Vis/NIR spectroscopy with machine 

learning analysis equipped with spectral transformation and 

feature selection to improve prediction accuracy. This research 

aims to develop a method that is able to detect micro-damage 

and evaluate coating quality quickly, accurately, and non-

destructively. The specific goal of this study is to achieve an 

increase in detection accuracy of up to 10-15% compared to 

the basic method of processing Vis/NIR data without spectral 

transformation and feature selection while maintaining time 

efficiency and practicality of application in the field. With this 

approach, this research not only offers more sophisticated 

solutions but also contributes to developing more reliable and 

efficient coating inspection methods to support ships' safety 

and operational efficiency.  

2. DEVICE HARDWARE AND SOFTWARE 

DEVELOPMENT

The tool used to acquire data in this study is the result of 

assembling. The main sensor used is the Sparkfun AS7265x 

[28] with specifications as shown in Table 1, while the main

board used is a single board computer from Raspberry, namely

the Raspberry Pi Zero W with specifications shown in Table

2. The schematic design of the tool assembly can be seen in

Figure 1. The AS7265x sensor is connected to a Raspberry Pi

using four cables with the I2C communication protocol [29].

The number of pages for the manuscript must be no more 

than ten, including all the sections. Please make sure that the 

whole text ends on an even page. Please do not insert page 

numbers. Please do not use the Headers or the Footers because 

they are reserved for technical editing by editors. 

I2C (Inter-Integrated Circuit) communication is a serial 

protocol widely used to connect microcontrollers with 

peripheral devices such as sensors. The Raspberry Pi is 

connected to the AS7265x sensor via I2C communication in 

the image. The red wire connects the 3.3V pin of the Raspberry 

Pi to the VCC pin of the AS7265x sensor, providing a 3.3V 

power supply, while the black wire connects the GND pins to 

ensure a common ground reference. The blue wire connects 

the SCL (Serial Clock) pins to transmit the clock signal, which 

synchronizes data transfer between the Raspberry Pi and the 

sensor. The green wire connects the SDA (Serial Data) pins for 

bidirectional data communication. 

Table 1. AS7265X sensor specification 

Specification Description 

Sensor Type Multi-spectral sensor system 

Spectral 

Bands 

UV (410 nm, 435 nm), VIS (460 nm, 485 nm, 

510 nm, 535 nm, 560 nm, 585 nm), NIR (610 

nm, 645 nm, 680 nm, 705 nm, 730 nm, 760 nm, 

810 nm, 860 nm, 900 nm, 940 nm) 

Optical 

Interface 
I2C and UART communication 

Operating 

Voltage 
3.3V (typical) 

Table 2. Raspberry Pi Zero W specification 

Specification Description 

Processor BCM2835, ARM11 core, 1 GHz 

RAM 512 MB LPDDR2 SDRAM 

Wi-Fi 802.11 b/g/n 

Operating System Raspberry Pi OS Headless 

Power Supply 5V via Micro-USB 

Figure 1. Schematic of the design of the tool 

In this setup, the Raspberry Pi acts as the master, controlling 

the communication by generating the clock signal and sending 

or receiving data through the SDA line. The AS7265x sensor 

acts as the slave, responding to the master's requests. The 

communication process begins with the Raspberry Pi sending 

a start condition and the address of the AS7265x sensor to 

identify it on the I2C bus. Once the sensor recognizes its 

address, data is transferred via the SDA line in synchronization 

with the clock signal on the SCL line. The communication 

concludes with a stop condition. This setup demonstrates the 

advantages of I2C communication, including its simplicity in 

requiring only two data lines and its capability to connect 

multiple devices on the same bus, provided each device has a 

unique address. The configuration shown provides an efficient 

way to read data from the AS7265x sensor using the Raspberry 

Pi. 

The calibration and validation of the spectral measurements 

were conducted using a Raspberry Pi Zero W microcontroller 

paired with the AS7265x spectral sensor, which operates via 

the I2C communication protocol. For calibration, a known 
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light source with a stable and well-characterized spectral 

output was employed. The AS7265x sensor readings were 

compared to the reference values from a calibrated 

spectrometer to ensure accuracy. Adjustments were made by 

applying calibration coefficients to correct for sensor-specific 

deviations. For validation, the sensor was tested against 

various light sources, including natural sunlight, LED lights, 

and fluorescent bulbs, to verify the consistency and accuracy 

of the spectral data across a range of conditions. These 

procedures ensured reliable and reproducible spectral 

measurements for the intended applications. 

The data generated by the sensor is in the form of 

spectroscopy with a wavelength of 18 pieces, as shown in  

Figure 2. The 18 data consists of three groups of reflectance 

types represented by their respective colors. Blue is for the 

ultraviolet (UV) light group, red is for the visible light group 

(VIS), and green is for the near-infrared (NIR) group.  

The programming language used for data acquisition 

application development is Python with the AS7265x library 

from Github [30]. At the same time, the main programming 

language for modeling is Python, with some additional 

libraries such as Numpy, Pandas, and Matplotlib. 

Figure 2. Wavelength range 

3. MATERIALS AND METHODS

3.1 Ship coating sample 

The assessment of the condition of the coating of the ship in 

the context of the Condition Assessment Program (CAP), 

which is regulated by the Indonesian Classification Bureau 

(BKI), includes several categories that describe the condition 

of the coating system on the structure of the ship. This 

category consists of four main classifications [31], namely:  

(1) Very Good Condition, the coating system is in optimal

condition and does not require maintenance or repair. The 

allowable corrosion margin is more than 50%.  

(2) Good Condition: The coating system is in good

condition with maintenance and documentation, without the 

need for repairs. The remaining corrosion margin is between 

25% to 50%.  

(3) Class Condition: the coating system is in poor condition,

but the corrosion protection system still functions well. 

Maintenance and documentation are considered satisfactory, 

but the allowable margin of corrosion remains less than 25%.  

(4) Poor condition: the coating system is in poor condition,

and the corrosion protection system is also in poor condition. 

Maintenance or repair is required to restore serviceability, 

as the allowable corrosion margin has been exceeded. In this 

study, as many as 40 coating samples were taken from each 

coating class representing the four categories. Sampling was 

conducted on Roll-on/Roll-off (RoRo) and Ferry ships, which 

were selected for their unique operational characteristics and 

exposure to marine environmental conditions. RoRo vessels 

often operate at high frequencies and face variations in 

mechanical loads that can affect coating conditions, especially 

in ramp areas and vehicle decks. 

Meanwhile, ferries, which generally serve inter-island 

routes with tight schedules, are also exposed to high humidity, 

saltwater spray, and significant temperature variations. This 

makes both types of vessels representative in evaluating 

coating performance in challenging marine environments 

while providing relevant data to develop more reliable and 

accurate inspection methods. Prior to sampling, the areas that 

the experts have determined are then marked and cleaned to 

ensure accurate and representative results. The coating 

materials used include epoxy and polyurethane-based coatings, 

which are commonly used in the marine industry. 
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3.2 Spectral acquisition 

 

Portable Vis/NIR spectroscopy devices are pre-calibrated 

before being used to collect reflectance spectral data from the 

ship's marked coating points. The integration time was set at 

100 ms, and each sample was measured three times, with the 

average of the three measurements used for further analysis.  

Each measurement is performed under controlled lighting 

conditions in a shaded area to minimize the effects of ambient 

light and improve the reliability of spectral data. The device is 

placed perpendicular to the coating surface to avoid 

measurement bias due to angular reflectance variations. 

Environmental conditions during data collection, such as 

temperature (25-30℃) and relative humidity (60-75%), are 

monitored and maintained within a consistent range. The 

process of acquiring this data is illustrated in Figure 3. 

 

3.3 Proposed methods 

 

In this study, an approach that combines spectral 

transformation and feature selection before modeling is 

proposed to improve the accuracy of the classification of ship 

coating conditions. Spectral transformation is applied as a first 

step to improve data quality by reducing noise, eliminating 

baseline effects, and amplifying relevant spectral information. 

Feature selection is carried out to identify the most significant 

wavelengths in separating the different coating classes. By 

combining spectral transformation and feature selection, it is 

hoped that the classification model built can work optimally in 

detecting and classifying coating conditions more accurately. 

The process of developing a classification model can be seen 

in Figure 4. 

3.3.1 Spectral transformation 

Spectral transformations are applied to improve spectral 

data quality before being incorporated into the classification 

model. In this study, four spectral transformation methods 

were used, namely:  

(1) scatter correction, which functions to correct light 

scattering that may appear during measurement;  

(2) normalization aimed at equalizing spectral data into a 

uniform range;  

(3) baseline correction to eliminate unwanted baseline 

effects from spectral data;  

(4) smoothing and derivation using the Savitzky-Golay 

(SAVGOL) method. This SAVGOL uses several parameters, 

namely 'filter_win', 'poly_order', and 'deriv_order'.  

This transformation aims to reduce noise in spectral data 

and extract more subtle spectral features that are relevant for 

modeling. More details on the transformations used can be 

seen in Table . 

 

 
 

Figure 3. Spectral data acquisition 

 

 
 

Figure 4. Proposed coating classification model 

 

Table 3. Methods, operations, parameters, and values of spectral transformations 

 
Method/Operator Parameter Values Impact 

SNV   Removes light scattering effects by normalizing the spectral with its standard deviation. 

RNV iqr 
75-25, 90-

10 

Corrects scattering using the interquartile range, reducing outliers appearing at spectral 

edges. 

MSC   
Adjusts spectra by reducing baseline effects and linear scaling to correct scattering 

variations. 

NORML   
Standardizes spectral intensity within a uniform range, improving consistency across 

samples. 

BASELINE   
Removes unwanted baseline components from the spectral, enhancing the detection of 

small but relevant features. 

SAVGOL filter_win 5, 7, 11 
Controls the filter window size to suppress noise; larger windows smooth more but may 

reduce spectral detail. 

 poly_order 3 Sets the polynomial degree for fitting, enhancing flexibility in capturing spectral patterns. 

 deriv_order 1, 2 
The first derivative highlights intensity changes, while the second derivative emphasizes 

inflection points for specific features. 
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3.3.2 Feature selection 

Feature selection is applied to reduce the spectral data 

dimensions and improve the performance of the classification 

model. The two feature selection methods used are principal 

component analysis (PCA) and iterative elimination feature 

selection (IFS). PCA is a dimensionality reduction technique 

that projects data into key components that maximize variation, 

resulting in a more concise representation of data without 

significant information loss. This method is used to capture 

important patterns in the spectra that can affect model 

performance, especially in datasets with multicorrelation 

between wavelengths [32]. 

IFS is based on line simplification with an angular 

elimination system [27]. The collected spectroscopy data is 

converted into a line shape, and then the line is simplified by 

removing the corners from the line. This process starts from 

the smallest corner to the largest corner. Each iteration of the 

simplification process will eliminate one corner, reducing one 

column of data in the corresponding dataset. This approach 

aims to reduce the risk of overfitting, speed up the training 

process, and improve the model's generalization on the test 

data. 

3.3.3 Modelling 

In this study, several classification algorithms are applied to 

model spectral data and predict the quality of ship coatings, 

namely: 

(1) Support Vector Machine (SVM) with linear kernel. The

linear kernel on the SVM allows the modeling of the linear 

relationships between features in spectral data [33].  

(2) Random Forest Classifier (RF) is a decision tree-based

ensemble method. The RF algorithm randomly selects a subset 

of features and data samples at each iteration of tree formation, 

aiming to improve resistance to overfitting and improve 

prediction accuracy [34].  

(3) Linear Discriminant Analysis (LDA) works by looking

for linear projections of features that maximize separation 

between classes.  

This algorithm maximizes the ratio between variation 

between classes and variation within classes in the projected 

feature space. These three algorithms are implemented by 

dividing training and testing data with a ratio of 80:20 using 

5-fold cross-validation to evaluate the model's performance.

3.3.4 Model evaluation 

Classification accuracy describes the percentage of 

correctly classified samples of the overall sample and is used 

as the primary metric to measure model performance [35]. 

However, when the distribution of the number of samples 

between classes is unbalanced, the confusion matrix provides 

a more comprehensive picture of the performance of the 

classification model by providing information about the 

correct classification and the model's predictions for a 

particular category [36]. For example, if the poor class is 

identified as positive, then the very good, good, and class 

classes are set as negative. In this context, True Positive (TP) 

refers to samples that are indeed positive and correctly 

classified as poor. True Negative (TN) is a negative sample 

that is correctly classified as a class other than poor. False 

Positives (FP) occur when a negative sample is incorrectly 

classified as poor, while False Negative (FN) occurs when a 

positive sample is incorrectly placed into another negative 

category, for example, when a sample that should be classified 

as good is incorrectly classified as very good or class. The 

performance evaluation of this classification model mainly 

uses classification accuracy measured based on the confusion 

matrix, in the case of ship coating classification. 

4. RESULTS AND DISCUSSION

4.1 Spectral acquisition results 

Spectral data collection in the field produced spectral data 

of 40 very good classes, 33 good classes, 37 class classes, and 

38 poor classes, as shown in Figure 5 and Table 4. The average 

spectral of the ship's coating data without spectral 

transformation is illustrated in Figure 5. Spectroscopy Data 

Plotting has 18 different wavelength points in the wavelength 

range of 410–940 nm with several peaks and valleys of the 

wave. When NIR radiation hits a sample, the phenomenon of 

absorption, reflection, and transmission occurs, where the 

phenomenon depends on the chemical elements that make up 

the sample [37]. The visualization results of the spectral data 

that were acquired late can be seen in Figure 5. 

Table 4. Data distribution 

Coating Class Amount of Data 

Very Good 40 

Good 33 

Class 37 

Poor 38 

Total 148 

Figure 5. Spectroscopy data plotting
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Figure 6. Flow determination of the best spectral transformation according to modeling 

4.2 Spectral transformation 

Machine learning was used to determine the best spectral 

transformation strategy by testing combinations of 6 

transformation operators and related parameters (Table 3), 

resulting in a total of 84 combinations. This process involves 

automated learning and systematic tuning of hyperparameters. 

The collection and evaluation of spectral transformation 

operator combinations are carried out based on the 

performance of the generated model, where the comparison of 

the effects of different operator combinations is assessed from 

the model performance (Figure 6). This combination of 

spectral transformations is evaluated using the highest 

accuracy on classification algorithms such as LDA, SVM, and 

RF for the classification approach. 

Table 5 shows a comparison of the performance of several 

spectral transformation methods using three classification 

algorithms: SVM, RF, and LDA. From these results, the Nippy 

spectral transformation method results in the highest 

performance for all algorithms, with the highest accuracy 

values on SVM (94.55%), RF (96.64%), and LDA (97.33%). 

In contrast, the approach without spectral transformation 

(None) showed lower performance, especially in SVM 

(70.13%). The use of the First and Second Derivative methods 

also gives lower yields on SVMs but remains strong on RF and 

LDA. Other spectral transformations such as MSC, SNV, 

Baseline Correction, and SAVGOL provide a variation in 

results, with SAVGOL and MSC showing competitive 

performance on RF and LDA. 

Table 5. Spectral transformation performance comparison 

Spectral Transformation SVM RF LDA 

None 70.13% 89.10% 92.48% 

MSC (multiplicative scatter correction) 76.96% 84.45% 92.50% 

SNV (standard normal variate) 74.96% 81.65% 91.21% 

First dan Second Derivative 49.24% 92.52% 92.55% 

Baseline Correction 68.29% 89.10% 92.48% 

SAVGOL ('filter_win': 5, 'poly_order': 3) 65.33% 93.17% 92.48% 

Nippy 94.55% 96.64% 97.33% 

(a) 

(b) 
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(c) 

Figure 7. Spectral after transformation, (a) SVM, (b) RF, (c) LDA 

 

The results of data processing with spectral transformation 

using the Nippy module show that the combination of different 

transformation operators can significantly improve the 

accuracy of the classification model. In the SVM algorithm, 

the best operator combination is SAVGOL with parameters 

{'deriv_order': 1, 'filter_win': 5, 'poly_order': 3} and 

BASELINE. In the LDA algorithm, the best operator 

combination is SAVGOL with parameters {'deriv_order': 1, 

'filter_win': 11, 'poly_order': 3}, BASELINE and NORML. 

Meanwhile, for the RF algorithm, the combination of RNV 

operators with parameters {'iqr': [75.0, 25.0]} and SAVGOL 

with parameters {'deriv_order': 2, 'filter_win': 5, 'poly_order': 

3. An illustration of the spectral after transformation can be 

seen in Figure 7.  

 

4.3 Feature selection and combined methods 

 

Table 6 shows the performance comparison between the use 

of feature selection and the combination of feature selection 

with spectral transformation on SVM, RF, and LDA 

algorithms. Across all algorithms, the application of IFS 

showed a significant performance improvement over PCA, 

with the highest accuracy in SVM (96.62%), RF (91.10%), and 

LDA (94.57%). The combination of spectral transformations 

using the Nippy module with a selection of features further 

improves the model's performance. The combination of Nippy 

and IFS provides the best results, especially on RF (96.64%) 

and LDA (97.33%) algorithms, and maintains optimal 

performance on SVM (96.62%). 

 

Table 6. Comparison of feature selection performance and 

spectral transformation 

 
Methods SVM RF LDA 

PCA 92.48% 90.43% 89.24% 

IFS 96.62% 91.10% 94.57% 

Nippy+PCA 94.55% 93.86% 95.26% 

Nippy+IFS 96.62% 96.64% 97.33% 

 

Table 7 shows the standard deviation values of three 

different methods: SVM, RF, and LDA. The standard 

deviation value is obtained from the results of combining 

Table 5 and Table 6. The smaller standard deviation values 

indicate that the method has a smaller and more consistent 

variation in results. Therefore, the LDA method with the 

smallest standard deviation shows the most consistent results 

compared to SVM and RF. It is important to consider in the 

selection of the right method according to the needs of the 

analysis. 

 

Table 7. Standard deviation comparison of algorithms 

 
Algorithms SVM RF LDA 

Standard Deviation 0.153 0.044 0.024 

 

The bar graph in Figure 8 shows that the Nippy and IFS 

methods significantly improve the mean accuracy compared 

to the None method. The combination of the two methods 

(Nippy+IFS) produced the highest mean accuracy of 96.86%. 

This shows that the merger of methods can have a synergistic 

impact in improving classification accuracy. Individually, the 

Nippy method recorded the most significant improvement 

compared to IFS, with a mean accuracy of 96.17% and 94.10%, 

respectively. 

 

 
 

Figure 8. Comparison of mean accuracy by methods 

 

This indicates that the Nippy approach-based method has an 

advantage in perfecting the classification results. However, 

even though IFS provides lower performance than Nippy, the 

combination of the two has proven to produce the highest 

accuracy. 

These findings emphasize the importance of the exploration 

and development of a combined approach in classification 

algorithms. By leveraging the strengths of each method, 

Nippy+IFS is able to deliver superior results, demonstrating 

the potential for synergy in the combination of complementary 

techniques. 
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4.4 Discussion 

 

Spectral transformation has proven to play an important role 

in improving the accuracy of classification models. Nipp's 

method that applies machine learning to find the best operator 

quickly and consistently gives the best results among all 

algorithms, according to research by Khumaidi et al. [17, 38], 

which shows that spectral transformation is able to optimize 

spectral information better than other methods. In contrast, the 

no-transform approach gives lower yields, especially on 

SVMs, which shows that the model cannot effectively capture 

data variations without spectral adjustments. Interestingly, the 

first and second derivative transformations show a significant 

performance degradation in SVMs, which may be due to 

overfitting to more subtle spectral changes. This indicates that 

the selection of the right transformation is highly dependent on 

the characteristics of the data and the classification algorithm 

used. The spectral transformation operators that improve 

performance on all three classifiers are SAVGOL and 

BASELINE. 

Feature selection is crucial in improving classification 

accuracy, especially when combined with spectral 

transformation. The use of IFS consistently performs better 

than PCA, suggesting that iterative feature selection 

elimination is more effective in identifying the most relevant 

features [27]. In addition, the combination of spectral 

transformations with Nippy shows significant performance 

improvements across all algorithms, especially when 

combined with IFS, which provides the highest accuracy on 

RF and LDA. This shows that incorporating spectral 

transformation and feature selection methods can optimally 

utilize spectral information and improve the model's overall 

performance. 

To improve understanding of the limitations and 

applications of the technology in real-world scenarios, it is 

important to conduct thorough testing and gather feedback 

from practical implementations. It is also important to consider 

several factors that can affect the performance of spectral 

transformation in a practical context. One of the main 

limitations is the complexity of selecting the right 

transformation operator, which is highly dependent on the 

specific characteristics of the data and the classification 

algorithm used. For example, although Nippy was shown to 

deliver the best consistent results in this study, in real-world 

applications, data processing at large scales or varying 

environmental conditions can introduce challenges in 

selecting the optimal transformation. In addition, spectral 

transformations such as first and second derivatives that cause 

performance degradation in SVMs may reveal overfitting 

problems in real data with wider variation or higher noise, 

which is not necessarily resolved by the tested method. 

Pointing to future research, these findings open up several 

opportunities for further exploration, particularly in 

developing more robust techniques to address these challenges 

and improve practical outcomes. Further research can be 

focused on developing classification algorithms that are more 

resistant to overfitting on subtle spectral variations, as well as 

feature selection methods that are more adaptive to changes in 

data conditions. Exploring the use of deep learning techniques 

or hybrid approaches between spectral transformations and 

neural network-based models can provide a deeper 

understanding of how to optimize spectral data processing in 

real-world applications. In addition, future research may 

examine the application of spectral transformation in a broader 

domain, such as environmental monitoring or image-based 

disease detection, to test the sustainability and generalization 

of the findings. 

 

 

5. CONCLUSION  

 

This study shows that the combination of spectral 

transformation methods and machine learning-based feature 

selection has great potential in improving the accuracy of ship 

coating quality detection using portable VIS/NIR 

spectroscopy. The proposed approach not only addresses the 

challenges in spectral data processing, such as noise and signal 

variation but also optimizes the performance of the 

classification model. The results of the comparison between 

SVM, Random Forest, and LDA algorithms indicate that the 

right strategy in spectral processing and analysis is essential to 

achieve reliable prediction results. This method offers an 

effective solution for applications in the shipping industry, 

opening up further opportunities to develop fast, accurate and 

non-destructive inspection systems. Applying this solution in 

the shipping industry can result in significant efficiencies in 

terms of time and cost. Faster and more accurate inspection of 

coating quality will minimize ship downtime, improve safety, 

and extend the vessel's service life. In addition, this approach 

has great commercial potential, allowing for the development 

of portable inspection tools that can be used extensively by 

various parties in the shipping industry. This can create new 

business opportunities in the field of developing more 

advanced and reliable ship inspection and maintenance 

technology. 
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