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Supervised learning is typically required to train a Deep Neural Network (DNN) to 

identify satellite cyclone images with noise and blur in the visible and infrared spectrum. 

This requires input-target pairs of noisy images and corresponding blurry photos. In this 

research, we propose a self-supervised learning method to train a Deep Neural Network 

(DNN) employing only real-time images from the visible and infrared spectrums. The 

suggested technique, which serves as a self-supervision tool, can identify convective 

activity, the eye of the storm, and wall clouds in the tropical cyclone cloud distribution. 

Our approach involves two stages: Offline pre-training on Cyclonic Storm (CS) images 

over the Indian sub-continent, North Indian Ocean, Arabian Sea, and Bay of Bengal was 

followed by real-time testing of the localization on INSAT-3D satellite images. This 

allows for efficient testing of the model. Satellite cyclone images of recent tropical 

cyclones from 2018 to 2023 are used to assess the algorithm's efficacy thoroughly. An 

analysis of performance metrics is attempted with graphical plots and a precision and 

recall matrix. Furthermore, according to the experimental results, our suggested 

algorithm outperforms the state-of-the-art models in terms of both classification 

accuracy and localization learning models' test-time performance.  
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1. INTRODUCTION

Recent years have witnessed a rapid advancement in the 

field of Remote Sensing (RS) technology. Many satellite 

cyclone images with varying spatial, spectral, and temporal 

resolutions have been acquired over the world's surface. Many 

thanks to the expansion of Remote Sensing platforms and the 

advancement of monitoring capabilities. These images 

constitute a substantial source of information that can be used 

to sway decisions in a variety of applications, such as land-

cover/land-use classification, weather forecasting, urban 

planning, agricultural surveying, natural disaster detection, 

and geographic space object perception retrieval. In this 

manner, it is imperative from a social and economic 

perspective to analyse these images. Remote Sensing (RS) 

image classification is an important technique that divides RS 

scenes into groups based on the cloud distribution they 

contain. The RS literature contains numerous articles that 

address this issue, especially variants of Convolutional Neural 

Networks (CNN) models are used in recent state-of-the-art 

techniques to identify RS patterns and learn rich feature 

representations of them. The majority of this art work 

incorporates elements that completely capture the RS scene 

having convective cloud distribution. However, frequently 

only one component of that image can be used to determine 

which form it is part of, while the remaining constituents are 

either useless or belong to a diverse class. Therefore, cyclone 

cloud distribution elements that are necessary are considered 

under atmosphere storm class and remain as non-cyclonic 

storm class. In Figure 1, a typical RS image from the "Cyclonic 

Storm" class, we can see the area inside the red rectangle 

represents the most significant part of the picture, while the 

background is furnished with clutter that could potentially 

come from other forms. 

Figure 1. Satellite imagery of Jawad tropical cyclone over 

east coast of Andhra Pradesh and Odissa (December, 2022) 
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Natural language processing, object detection, image 

recognition, multimodal reasoning and matching, and speech 

recognition have all benefited from the practical application of 

deep learning. Moreover, these practical applications have 

typically made use of the attention mechanism, which remains 

steadfastly the fundamental concept of concentrating fiercely 

on particular input segments. Some proposed works that use 

attention are precisely applied for Remote Sensing 

applications such as object detection, picture segmentation, 

and scene classification. Figure 1 shows tropical cyclone 

Jawad formation over east coast of India. 

Figure 2. Satellite imagery showing non-cyclogenisis activity 

over India 

Figure 3. Convective activity over North India, coastal parts 

of India and over Bay of Bengal 

Figures 2 and 3 show convective activity in clouds over the 

north and east coasts of India. Convective activity in clouds is 

often accompanied by heavy precipitation and thunderstorms 

(TS), leading to huge loss of human life and cattle, along with 

infrastructural damage and sometimes flash floods in 

waterlogged areas and hill areas. This will cause great havoc 

to human life, the inhabitants and animals in the forest. Hence, 

there is a need for automation for the recognition of convective 

activity in clouds, especially during cyclone formation. A 

cyclone is formed by wall clouds in a ring shape with 

convective cloud development while it changes to a severe 

Cyclonic Storm and even an extremely severe Cyclonic Storm. 

Also, this cyclone is accompanied by gusting winds and 

turbulence. Winds usually have speeds of more than 28 knots 

and may further increase during cyclone formation. In reality, 

a neural network is just a function approximation, and so 

understanding the function of activation functions in the 

context of deep learning requires considering this during the 

phase of design. Its architecture determines how well it can 

mimic specific function classes. The only way that input or 

feature vector elements interact with one another in a typical 

neural network is through addition. A sequence of matrix 

multiplications and element-wise non-linearities are used to 

accomplish this. The mask produced by heat map mechanisms 

is multiplied by features. This seemingly innocuous expansion 

has important consequences: Neural networks can quickly 

model a much wider range of functions, leading to completely 

new applications. In the classification of tropical cyclone 

images, it is important to identify the storm's eye and classify 

the cyclone's stage during its formation. Automating the 

recognition of tropical cyclones using a model could assist 

forecasters and meteorologists in taking necessary steps before 

issuing alerts to the public. This can help in estimating the 

location of landfall and predicting the expected precipitation 

in specific geographical areas. Self-supervised learning is a 

promising avenue for using unlabeled data and reducing 

dependence on costly labeled datasets; it has its challenges. 

The approach may falter in scenarios involving poor data 

quality, inappropriate pretext tasks, computational limitations, 

a lack of generalizability, domain-specific challenges, and 

issues surrounding model interpretability. 

Supervised learning is still the preferred method in 

situations where there is a lot of high-quality labelled data, 

tasks have specific metrics for evaluation, interpretability is 

critical, computational resources are limited, domain expertise 

is important, and urgency and efficiency are required. 

2. BACKGROUND

The following are the main characteristics of a cyclone, 

according to the World Meteorological Organisation: a low-

pressure system with winds rotating anticlockwise (clockwise) 

in the northern (southern) hemisphere and a minimum 

sustained wind speed of 34 knots (62 kmph). For example, a 

Tropical Cyclone (TC), is a synoptic disturbance that spans 

over 100 km and is non-frontal, meaning it does not have a 

sharp temperature gradient. It primarily occurs over tropical or 

sub-tropical waters and is characterised by organised 

convection and distinct cyclonic surface wind circulation. The 

four stages of the life cycle are as follows: 

(i) Formation phase (a few days)

(ii) Immature phase (1/2 day to 2-3 days)

(iii) Mature phase (1/2 day to 2-3 days)

(iv) Decaying phase (2-3 days)

Cyclogenesis is assumed to have started at the onset of

depression. A cyclone's interior pressure steadily drops during 

its formative and immature phases as surface wind speed rises. 

A cyclone's top diameter increases as it forms. Throughout the 

mature stage, the intensity (wind and interior pressure) remains 

constant. However, size may increase. Moreover, during the 

Decaying stage, intensity decreases (wind and central pressure 

rise and fall). Degradation is caused by landfall, a colder sea, 

unfavorable atmospheric conditions, and interactions with 

other Tropical Cyclones (TC). Over the northern Indian Ocean, 

cyclones usually last five days. tropical cyclones are 

atmospheric disturbances brought on by the release of latent 

heat from the upper layers of tropical oceans. The horizontal 

temperature gradients in the atmosphere provide the energy 

source for mid-latitude cyclones. 

Tropical cyclones originate from the barotropic process, 

which creates a small horizontal temperature gradient, whereas 

mid-latitude cyclones originate from the baroclinic process, 

which produces a large temperature gradient. The strongest 

winds are found closest to the surface in tropical cyclones and 

8 to 12 kilometers up in the upper troposphere in mid-latitude 
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cyclones. Mid-latitude cyclones have cold core systems, while 

tropical cyclones have warm core systems. The following are 

important variables that affect the development of Tropical 

Cyclones (TC): High relative humidity levels in the lower and 

middle troposphere; conditional instability through a deep 

atmospheric layer; weak vertical shear of the horizontal winds; 

supply of heat and moisture through transport channels; a deep 

thermocline and high sea surface temperatures that exceed 

26℃. 

Figure 4 was utilized to apply graphical analysis and 

patterns to determine the T-number of cyclones. To ascertain 

the stages of cyclone development, this method is frequently 

employed during the tropical cyclone formation phase. 

 

 
 

Figure 4. Tropical cyclone development analysis using T-

Number and Curved patterns (Image courtesy-IMD) 

 

Some studies of Cyclone Tracks over Bay of Bengal and 

Arabian Sea 

 

 
 

Figure 5. Climatological tracks of all cyclones developed 

over Bay of Bengal, North Indian Ocean and Arabian Sea 

 

Mohapatra et al. [1-4] have discussed the formation of 

tropical cyclones in the Indian Ocean, tracking, and their 

development. Alhichri et al. [5] have discussed the 

classification of images using satellite imagery, but 

localization was not performed for eye detection in storms. 

Various algorithms used for classification were discussed [6-

10]. Wang et al. [11] discussed the classification of low-

intensity tropical cyclones very well but attained lower 

accuracies on distorted and blurred image data. Various 

algorithms mentioned in the studies [12-18] have discussed 

about intensification and identification of tropical cyclones 

and their analysis. But they have not discussed eye localisation 

in Cyclonic Storms. Algorithms from various fields [19-32] 

have discussed hyper spectral image classification in weather 

phenomenon. Dvorak [33] has discussed tropical cyclone 

intensity analysis using patterns and graphical plots. Following 

algorithms discuss about usage of CNN models and their 

variants for image classification, localization and analysis [34-

44]. 

Further various tropical cyclone climatological tracks are 

shown in Figure 5 for understanding and analysis purposes. 

Tropical cyclones can cause a variety of potential damages, 

including flooding of coastal areas, injuries and fatalities, 

beach erosion, loss of power and communications, damage to 

structures, land subsidence, destruction of crops, vegetation, 

and livestock, flooding of inland areas, and loss of soil fertility 

due to saline intrusions. The reduction of cyclone disasters is 

contingent upon multiple factors, such as vulnerability and 

hazard assessments, planning and preparation, early warning 

systems, and mitigation. According to a survey done for the 

South Asian region, early warning is a crucial element. Early 

warning components comprise the following points 

• the ability to monitor and predict cyclones,  

• effectively generate and disseminate warning 

products,  

• coordinate with emergency response units 

 

Case study 1: Extreme Severe Cyclone Storm (ESCS)- 

MOCHA, May-2023 

 

 
 

Figure 6. Typical track and intensity forecast issued on 11th 

May-2023 morning of Extreme Severe Cyclone Storm 

(ESCS) Mocha 

 

Life History of “MOCHA”:  

On May 6, 2023, in the early hours of 0830 IST/0300 UTC, 

a cyclonic circulation developed over the Southeast Bay of 

Bengal (BoB) and its environs. Its influence caused a low-

pressure area to form in the morning hours of May 8, 2023, 

0830 IST/0300 UTC, over the southeast BoB and the nearby 

south Andaman Sea. 
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Figure 7. Satellite INSAT-3D visible imagery during ESCS 

Mocha (09th to 14th MAY 2023) over Indian sub-continent 

 

 
 

Figure 8. INSAT-3D enhanced coloured imagery during 

ESCS Mocha (09th to 14th MAY 2023) 
 

It was located over the same area as a Well-Marked Low 

Pressure Area (WML) in the early hours of May 9, 2023, at 

0530 IST/0000 UTC. That same evening, at 1730 hours 

IST/1200 UTC, it concentrated into a depression over 

Southeast BoB, with its centre located roughly 510 kilometers 

southwest of Port Blair. It started off moving west-northwest 

and strengthened into a Deep Depression (DD) over southeast 

BoB early on May 10, 2023, at 0530 IST/0000 UTC. Its centre 

was approximately 540 km west-southwest of Port Blair. After 

that, it headed north-northwest and strengthened into Cyclonic 

Storm (CS) "Mocha," also known as "Mokha," over southeast 

BoB early on May 11, 2023, at 0530 IST/0000 UTC. Starting 

at 8:30 a.m., it began to move northward on May 11 at 08:30 

IST/0300 UTC and strengthened into a Severe Cyclonic Storm 

(SCS) over the same area in the evening of May 11 at 17:30 

IST/ 1200 UTC. Later on, in the early hours of May 12 (0000 

UTC/530 IST), it began to gradually recurve north-

northeastward and strengthened into a Very Severe Cyclonic 

Storm (VSCS) over central BoB. As it continued to move 

north-northeast, it strengthened into an Extremely Severe 

Cyclonic Storm (ESCS) over east-central BoB at midnight on 

May 12 (2330 hrs IST/ 1800 UTC). It continued to intensify 

until the early hours of May 14th, moving north-northeast. 

Peak intensity occurred over the east-central BoB between 

midnight on the 13th and early morning on the 14th, with gusts 

reaching 240 kmph. 

 

 
 

Figure 9. Cox’s Bazar radar images, Bangladesh during 

landfall of ESCS Mocha dated 14 May, 2023 

 
Next, it weakened slightly and moved across the coasts of 

north-eastern Bangladesh and north-western Myanmar 

between Kyaukpyu, Myanmar, and Cox's Bazar, Bangladesh, 

near Sittwe, Myanmar. It was an ESCS with a maximum 

sustained wind speed (MSW) of 180–190 kmph, gusting to 

210 kmph between 1230 and 1430 hours IST on May 14, (0700 

UTC to 0900 UTC). After that, it weakened into a VSCS over 

west-central Myanmar in the evening (1730 hrs IST/ 1200 

UTC), a SCS over the same area in the night of May 14 (2030 
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hrs IST/ 1500 UTC), and a CS over west-central & adjoining 

northwest Myanmar in the early hours of May 15 (0230 hrs 

IST of May 15/ 2100 UTC). It continued to move north-

northeastwards after that. After that, on May 15, early in the 

morning (0530 hrs IST/0000 UTC), it moved west-

northwestward and quickly weakened into a depression over 

northwest Myanmar. The observed track of the system is 

presented in Figure 6, Figure 7 and Figure 8 shows satellite 

imagery of MOCHA cyclone. 

Radar imagery of ESCS MOCHA is shown above in Figure 

9 during the landfall phase on May 14, 2023. Further, these 

images were used for nowcasting during the landfall. These 

images were also helpful in finding convective activity in 

cloud distribution and for precipitation assessment in a 

particular location of choice. Figures 10 & 11 (a-b) show 

damage caused after landfall of cyclone. 

 

 
 

Figure 10. (a) Extensive damage to huts in Rakhine state of 

Myanmar, (b) Collapsed roof tops, Rakhine (c) damaged 

houses at Basra camp, Sittwe, Myanmar (Radio Free Asia, 

and (d) damaged buildings & trees in Rakhine, Myanmar 

 

 
 

Figure 11. (a) Damaged home at Saint Martin Island in Cox's 

Bazar, Bangladesh (b) Rescue workers clearing roads in 

Teknaf 

 

According to reports from the Myanmar media (Associated 

Press Television News, May 19), 145 people died in Myanmar 

as a result of the ESCS MOCHA. In Myanmar, it resulted in 

extensive damage to buildings, cell phone towers, trees, and 

other infrastructure, as well as widespread flash floods and 

power outages. A few images showing damage are located in 

Figure 10. The effects of "MOCHA" were also felt in southeast 

Bangladesh's neighbouring regions. The combination of high 

winds and persistent rain caused damage to numerous houses 

and the fall of trees. Nevertheless, Bangladesh did not report 

any deaths. Figure 11 displays a few related damage photos 

from Bangladesh. In India, no damage has been reported from 

Andaman & Nicobar Islands. However, Mizoram state 

received the burnt from “ESCS MOCHA”.  

 

Case study 2: Extreme Severe Cyclone Storm (ESCS)- 

Michuang, December, 2023 

 

 
 

Figure 12. Severe Cyclonic Storm "Michaung" was tracked 

over the Bay of Bengal, December, 2023 

 

 
 

Figure 13. Doppler weather radar imagery of DWR-Chennai, 

showing activity of Severe Cyclonic Storm (SCS) 

MICHAUNG on 04th December, 2023 

 

Life History of “MICHAUNG” 

Early on November 26, at 0830 IST /0300 UTC, a cyclonic 

circulation formed over the South Andaman Sea and the South 

Thai border. Early on November 27, at 0530 hours IST/0000 

UTC, a low-pressure area developed over the South Andaman 

Sea and the nearby Malacca Strait due to its influence. It was 

located in the early hours of November 29 (0530 IST/0000 

UTC) over the Southeast Bay of Bengal and the South 

Andaman Sea as a well-marked low-pressure area. It moved 

westward and, early on December 1, 2023, at 0530 hours 
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IST/0000 UTC, concentrated into a depression over Southeast 

and the Southwest Bay of Bengal. Early in the morning, it 

moved west-northwestward and strengthened into a Deep 

Depression over Southwest Bay of Bengal. It developed into a 

Deep Depression over Southwest Bay of Bengal in the early 

hours of December 2, 2023, at 0530 hours IST/0000 UTC, 

after moving west-northwestward. Proceeding in the same 

direction, on December 3, 2023, early in the morning (0530 

hours IST/0000 UTC), it strengthened into a Cyclonic Storm 

"MICHAUNG" (pronounced as MIGJAUM) over the 

southwest Bay of Bengal. Figures 12 & 13 show the track of 

cyclone and radar images tracked during formation and 

landfall of cylone. 

Then, in the forenoon of December 4th (0830 hours 

IST/0300 UTC), it moved northwestward and intensified into 

a Severe Cyclonic Storm over the Westcentral & adjoining 

Southwest Bay of Bengal off the coasts of south Andhra 

Pradesh and adjacent north Tamil Nadu. 

After that, on December 5, 2023, between 12:30 and 14:30 

IST (0700-0900 UTC), it moved almost exactly northward, 

almost parallel to the coast of south Andhra Pradesh, and 

crossed it between Nellore and Machilipatnam, near Bapatla. 

At that time, it was classified as a Severe Cyclonic Storm, with 

a maximum sustained wind speed of 90–100 kmph gusting to 

110 kmph. Following landfall, it proceeded to move almost 

straight north before weakening into a Cyclonic Storm. It was 

centred over south coastal Andhra Pradesh, roughly 15 km 

west of Bapatla, at 15:30 IST/1000 UTC on December 5. After 

that, it headed north-northeast and weakened, first into a 

Depression and then into a Deep Depression over coastal 

Andhra Pradesh at around midnight on December 5 (2330 IST/ 

1800 UTC). Further into a Depression in the early hours of 

December 6th (0530 IST/0000 UTC) over northeast Telangana 

and surrounding regions of south Chhattisgarh, south Odisha, 

and coastal Andhra Pradesh. In the forenoon of December 6th 

(0830 IST/ 0300 UTC), it weakened into a clearly defined low 

pressure area over the same region. In the morning of 

December 7, it weakened into an upper air cyclonic circulation 

over Odisha, and on December 8, it became less noticeable. 

 

 
 

Figure 14. Submerged cars in flooded Chennai during 

MICHAUNG cyclone Tamil Nadu, India 

 

Media reports state that 17 people died in various 

"Michaung"-related incidents in Tamil Nadu and two in 

Andhra Pradesh. Over 41,000 individuals were evacuated and 

temporarily relocated, comprising 32,158 in Tamil Nadu and 

9,500 in Andhra Pradesh. Chennai experienced flooding and 

heavy rain, forcing the closure of schools and offices, as shown 

in Figure 14. Field flooding in Andhra Pradesh and Odisha has 

resulted in reports of crop damage and losses, which are shown 

in Figure 15. The images of the damage from Andhra Prades, 

Tamil Nadu, Odisha were displayed. 

 

 
 

Figure 15. Damaged crops in Malkangiri district of Odisha, 

India 

 

Water becomes a hazard when there is too much, or too 

little, or if the quality is poor. During a cyclone, there is too 

much water, damaging almost everything that encounters it. 

And after the event, it leaves the water resources contaminated, 

making them unusable. Considering the above two case studies 

and the goal of reducing the fatalities of humans and animals, 

there is a need for automation in the prediction of satellite 

images with the growth of Tropical Cyclone [TC] cloud 

distribution in the atmosphere over the Indian Subcontinent. 

Zheng et al. [18] have employed the attention mechanism 

for cloud detection, adopting the Cloud-AttU model on the 

Landsat-8 dataset provided by the National Aeronautics and 

Space Administration (NASA). The Cloud-AttU model 

accomplished an overall accuracy of 97.05%. The model has 

achieved good performance in detecting clouds based on snow 

and ice in the upper atmosphere and failed to recognize 

convective clouds. Other algorithmic models include Cloud-

net, U-Net, FCN (Full Convolution Network), FMask 

(Function of Mask), and CNN (Convolution Neural Network), 

which all have achieved general accuracies of less than 

96.13%. Rajesh et al. [32] adopted the DLR-FH model 

(dichotomous logistic regression fuzzy hypergraph) for 

satellite cyclone cloud classification, and an accuracy of 98% 

was achieved. The localization of cloud distribution was not 

performed while implementing this algorithm. Shakya, 

Kumar, and Goswami [20] have utilized Sequential CNN, 

NasNet Mobile, and MobileNet for satellite cloud recognition 

and classification but have achieved an accuracy of 97% only 

and haven’t performed localization on clouds. Similarly, Jiayi 

Li et al. [22] used the VGG-16 model and achieved 77% 

precision. Pang et al. [17] used DCGAN and YOLO-v3 models 

for satellite cloud recognition and achieved a validation 

accuracy of 98%.  

In this study, we present a deep learning approach for 

categorizing the distribution of satellite clouds in the visible 

and infrared spectrum. Our method integrates the newly 

developed Efficient-Net model with a heat map mechanism. 

Specifically, we introduce the EfficientNet-B3-Attention 

CNN, a modified version of the EfficientNet-B3 CNN that 

incorporates an additional branch for learning a set of weights 

for combining convolutional features in the intermediate layers 
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of the network. The selection of the optimal intermediate layer 

is based on the results of our experiments. 

The following are some of the paper's significant 

contributions: 

1) Based on the Gradient class activation heat mapping and 

the EfficientNet-B3 CNN model, we suggest a method to 

categorise satellite Cyclonic Storms during classification. 

2) To assess the efficacy of the proposed EfficientNet-B3 

model, we test it using data from recent cyclones that occurred 

in the North Indian Ocean, Bay of Bengal Arabian Sea. 

3) Localisation of Cyclonic Storm images is done using the 

model so obtained. 

4) Prediction of satellite images for the presence of Spiral 

Cyclonic Cloud distribution with convective activity and gale 

winds. 

The remaining sections of the paper are arranged as follows: 

The family of Efficient-Net CNN models is described in 

Section 2, along with the suggested technique in Sections 2.6 

and 2.7. We then give the datasets used and the outcomes of 

the experiments in Section 3. Section 4 presents the findings 

and potential directions for further investigation. 

  

2.1 Steps of proposed method using Deep Neural Networks 

 

The basic steps of algorithm have been shown in below 

Figure 16 which gives information about workflow. 

Step 1: Feature extraction of images.  

Step 2: Training & Testing of real-time satellite images. 

Step 3: Evaluating the performance metrics on the dataset of 

tropical cyclones. 

Step 4: Plotting the curves and Tabulation of performance 

criteria.  

Step 5: Prediction of tropical cyclone cloud distribution in 

the images of infrared and visible spectrum. 

 

 
 

Figure 16. Block diagram of proposed algorithm 

 

2.2 Basic structure of CNN (Convolutional Neural 

Networks) 

 

 
 

Figure 17. Convolutional Neural Network (CNN) structure 

 

Convolutional Neural Networks (CNN) is a type of deep 

learning model for processing grid-patterned data and images, 

and has been shown in Figure 17. From low-level patterns to 

high-level ones, the goal is for it to automatically and 

adaptively learn the spatial hierarchies of features. 

Convolution, pooling, and fully connected layers are the three 

main types of layers (or building blocks) that make up a CNN 

in mathematics. The final layer handles classification, while 

the first two—the convolution and pooling layers—perform 

feature extraction. A convolution layer is crucial to CNN. 

Convolution is one type of linear operation among many 

mathematical operations that make up CNN. 

 

2.3 Using Residual Neural Network (ResNet -50) 

 

Convolution, batch normalization, and pooling operations 

make up the majority of the ResNet architecture shown in 

Figure 18. These operational blocks are repeated for each input 

image that is processed for a classification task. The layer's 

width and height don't change during this process. Usually, 64, 

128, 256, and 512-pixel images were subjected to 3*3 

convolutions. The ResNet model merely employs skip 

connections in the signal processing phase, and stride 

movement is utilized to achieve layer reduction. The 50 layers 

of the ResNet 50 model use average pooling, normalization, 

and 48 convolutional blocks. The ResNet-50 architecture was 

obtained by replacing a 3-layer bottleneck block for each of 

the 2-layer blocks in ResNet 34. The residual blocks with skip 

connections that make up the majority of the model play a vital 

role in classification. Using ‘Imagenet’ weights, categorical 

cross-entropy as the loss function, "softmax" as the activation 

function, and a learning rate of 0.01 is the optimization process 

carried out by the Adam optimizer. 

 

 
 

Figure 18. Block diagram of Residual Neural Network 

(ResNet-50) with 50 layers 

1415



 

2.4 Using Vision Transformer (Vi-T) neural network  

 

Linear embedding, transformer encoder, and multi-layer 

perceptron are parts of Vision Transformers (Vi-T) [21]. The 

input images from satellite are split up into equal parts of 

small, identically sized patches. These patches are then 

flattened and transformed for lower-dimensional linear 

embedding values. During the classification task, the 

transformer encoder receives these embedding values for 

comparison. Ultimately, the Transformer is optimised for the 

classification of images. After training the model for 50 

epochs, a training loss of 2.2262 exponential -09 is achieved, 

and a training accuracy of 100% is obtained. The period of 

computation is 117 minutes, and during the testing phase, a 

validation loss of 0.464 is obtained with a validation accuracy 

of 98%. Categorical cross-entropy as a loss function, Adam 

optimizer, and RELU (rectilinear unit) as activation functions 

were used during training and testing with a batch size of 2048. 

The encoder is shown in Figure 19. 

 

 
 

Figure 19. Encoder used in Vision Transformer (Vi-T) neural 

network 

 

2.5 Using hybrid features and random forest classifier 

 

In this section, we look at the HSV and LUV colour spaces 

and talk about how to extract a colour feature vector. To create 

a hybrid colour feature vector that is used to train and test a 

classifier, these colour features are extracted from each image 

and concatenated. The three channels in the HSV colour model 

are hue, saturation, and value, or intensity. The "colour" can 

be represented by the Hue channel. For example, the colour 

"red" is a colour. Red, both light and dark, is not a colour. The 

saturation channel is used to measure the degree of colour 

distinction. The brightness and intensity of a colour (light 

green or dark green) match. 

The luminance component is represented as "L" in the LUV 

colour space, which is an analogue representation of colour 

space. The U,V Chroma components are created by 

subtracting the channels from the original image. The final step 

is to combine the two colour spaces to create a hybrid feature, 

which is then converted to a numerical value to create a feature 

vector. The classifier is trained using this feature vector. 

Satellite cyclonic cloud distribution images are given class 

labels of 1, and images with no cyclonic cloud distribution are 

given class labels of 0. Additionally, a pixel matrix is created 

by taking into account all 1000 images in the dataset. Each 

image is combined with a class label to create a raw image 

vector. It is a tree-based ensemble learning algorithm. To build 

the decision trees that comprise the Random Forest Classifier, 

a randomly selected subset of the training data was used. To 

determine the final class of the test object, it aggregates the 

votes from multiple decision trees. The number of 

classification trees used depends on the number of estimators 

used in the classifier. The benchmark dataset is split into 

training and testing samples and validated using 10-fold cross-

validation in order to obtain the assessment metrics. Below is 

a list of a few benefits of the Random Forest classifier. 

a. It is among the most accurate learning algorithms 

available. It results in greater accuracy for different datasets. 

b. Performs admirably on large datasets. 

c. It has a greater capacity for variable evaluation. 

d. When categorising, it enables the estimation of important 

variables. 

 

2.6 Using EfficientNet-B3 models 

 

In addition to examining the connection between CNN 

models' breadth and depth, Tan and Le [19] have produced a 

workable technique for developing CNN models with fewer 

parameters and improved classification accuracy. In their 

initial research, they proposed seven of these models under the 

heading of "Efficient Net CNN models," which they called 

EfficientNet-B0 through EfficientNet-B7. Tan and Le [19] 

show that the Efficient Net CNN models outperform all 

previous models in terms of parameter count and Top-1 

accuracy when applied to the ImageNet dataset. The 

architecture of the EfficinetNet-B3 model, which consists of 

multiple layers for processing input images for classification, 

is depicted in Figure 20. 

 

 
 

Figure 20. Architecture of EfficientNet neural network – B3 

model for satellite tropical cyclone image classification 

 

Squeeze optimisation, excitation protocols, and Mobile 

Inverted Bottleneck Convolution (MBConv) make up the 

EfficientNet architecture. MBConv uses the 1×1 convolution 

method to expand the channel before applying a deep 

convolution operation to each image. Deep convolution is 

converted into a feature map by applying a convolution 

method with d×d cores to each image channel. Every layer 

passes through the Swish function of the enable function. 

Unlike the Swish, Tanh, and Sigmoid functions, it prevents the 

gradient value from saturating near zero during the learning 

process. The extracted feature map is replicated using a feature 

map that excludes the compression and excitation layer in 
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order to highlight significant features. Lastly, the channel's 

scale is decreased using a 1×1 convolution process. 

 

2.7 Using EfficientNetV2-s neural network 

 

 
 

Figure 21. Structure of EfficientNetv2s model 

The EfficientNetV2s models were examined within the 

expanded search space that included new operations like 

Fused-MBConv. While being six times smaller, 

EfficientNetV2s shown in Figure 21, models train data 

significantly faster than state-of-the-art models. Scaling and 

training-aware neural architecture search (NAS) work together 

to maximise both parameter efficiency and training speed. 

The original MBConv in EfficientNet-B4 is gradually 

replaced by Fused-MBConv. Fused-MBConv can increase 

training speed in stages 1-3 while incurring a minimal 

overhead in terms of parameters and FLOPs. Both MBConv 

and the recently introduced fused-MBConv are heavily utilised 

in the early layers of EfficientNetV2. For MBConv, 

EfficientNetV2 favours smaller expansion ratios because they 

typically result in lower memory access overhead. Thirdly, 

although EfficientNetV2 favours smaller 3×3 kernel sizes, it 

increases the number of layers to offset the smaller kernel 

size's decreased receptive field. Finally, the final stride-1 stage 

in the original EfficientNet is eliminated entirely in 

EfficientNetV2, possibly as a result of its high parameter size 

and memory access overhead. 

 

 

3. DATASET 

 

The different cyclones, formation times, and number of 

images taken into consideration for dataset formation during 

experimentation are shown in Table 1.

 

Table 1. Dataset comprising names of various cyclones and period of formation 

 
S.No. Names of Cyclones Period Total Number of Images 

1 

Michuang (SCS), Biparjoy (ESCS), 

Tej (ESCS), Mocha (ESCS), Tej (SCS), 

Mandous, Asani (SCS), Yaas (VSCS), 

Tauktae (ESCS) 

Gulab (CS), Jawad (CS), Sitrangi (CS) 

Nivaar (CS), Shaheen (SCS) 

2018-2023 

(last 6 years) 
3950 images of INSAT-3D Visible and IR spectrum images 

SCS – Severe Cyclonic Storm, CS-Cyclonic Storm, ESCS-Extreme Severe Cyclonic Storm VSCS-Very Severe Cyclonic Storm, CS-

Cyclonic Storm, BoB-Bay of Bengal, AS-Arabian Sea, DD-Deep Depression; 

3.1 Evaluation metrics 

 

Through 10-fold cross-validation against a dataset of 

satellite images, the performance of neural network 

classification is assessed using a confusion matrix (2*2 

matrix). The provided dataset is divided into ten parts for 10-

fold cross-validation; nine of these parts are used to improve 

the model and one is implemented for testing. Accuracy, 

sensitivity, precision, sensitivity/recall, and F1-score are 

computed from the true-positive (TP), false positive (FP), true-

negative (TN), and false negative (FN) values in the confusion 

matrix. The formulas listed at the end are employed to 

calculate these parameters. Eqs. (1)-(4) show the metrics for 

binary classification of INSAT 3D and 3DR satellite imagery, 

respectively. Table 2 compares evaluation metrics with 

various classifiers.

 

Table 2. Hyper-parameter values using Vi-T neural network  

 

Learning Rate Number of Epochs 
Training 

Accuracy 
Validation Accuracy Loss Period of Computation 

0.01 50 100% 98 % 0.464 117 minutes 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 

Recall/Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

F1-Score = 
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

3.2 Advantages of the model 

 

The model was used to predict the presence of tropical 

cyclone clouds and cyclone image classification which was 

evaluated with a testing accuracy of 98%. In the prediction 

phase, the created model withstood the presence of noise, 

rotation and shift in cyclone images. The proposed method 

generated more accurate results in less time and an image 

dataset was used to plot the precision and recall matrix. 
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Further, higher sensitivity and precision were achieved during 

training and testing on satellite image datasets with validation 

of 20%. Also F1-score (Harmonic mean of Eq. (2) and Eq. (3) 

of 0.97 is achieved on real-time satellite imagery of INSAT-

3D. Model robustness and efficiency are verified thoroughly 

on new images and outcasts the state-of-the-art methods in 

deep learning. 

 

3.3 Software and Hardware used 

 

The algorithm was computed using an i5 processor with 8 

GB of RAM and an NVIDIA 1050 graphics card. Python 

programming is used to create algorithms, and the Numpy, 

Scipy, and Matplotlib libraries were used for mathematical 

analysis. The Jupyter Notebook IDE implemented the 

algorithm using deep learning frameworks like Tensorflow & 

Keras as the platform. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Using ResNet-50 and U-Net 

 

The ResNet-50 model achieves a 96% Validation accuracy 

rate with "Adam" acting as the optimizer, "ReLu" as the 

activation function, and a learning rate of 0.01 on the satellite 

imagery dataset. Moreover "Imagenet" weights were chosen 

during the cyclonic image training and validation processes. 

Categorical cross-entropy is used as a loss function. An 

additional split of the train test is made as 80% & 20% for 

evaluation. The soft-max layer performed classification on the 

satellite imagery during the categorization of tropical 

cyclones. Adam Optimizer performed well while calculating 

the gradient and it avoided the vanishing gradient problem and 

the presence of noise in satellite imagery. The primary 

advantage of this algorithm is that it took less number of 

epochs i.e.,6 with input image dimension as 224*224. F1-

Score (geometric mean of precision & recall) 0.95 was 

obtained and has well localized the Eye of Tropical Cyclones 

using the Grad-CAM technique further, the inference time 

obtained is less than 20 milliseconds. Both ResNet model and 

U-Net performed well with respect to training accuracies but 

have shown lower F1-score after validation on satellite 

imagery. 

 

4.2 Vision transformer (Vi-T) neural network 

 

 
 

Figure 22. Precision and Recall matrix obtained on satellite 

imagery using Vi-T network (Vision Transformer neural net) 

 

Vision Transformer attained good validation accuracy when 

compared with other networks but at the cost of training which 

conducted more time for training i.e., for 50 epochs. 

Significantly, it has to be fine-tuned for more number of 

parameters (85 million) when compared to ResNet-50. Around 

97% of validation accuracy is obtained with a batch size of 

2048, learning rate of 0.001, MLP (Multi-Layer Perceptron) 

size of 3072, and hidden size of 768. Further lesser inference 

time is obtained for the Vi-T neural network. The F1-Score 

obtained is appreciably good of value 0.98. Table 2 shows 

evaluation metrics of classification using Transformer. 

Precision and Recall matrix obtained on satellite imagery 

using Vi-T network shown in Figure 22. 

 

4.3 Using random forest algorithm and hybrid features 

 

Image classification with the random forest algorithm 

attained good accuracy during the evaluation phase with 5-fold 

cross-validation; further, the inference time was lower 

compared with other algorithms during the testing phase, 

which is an advantage, but it took more time for the training 

phase. Figure 23 shows the confusion matrix which is obtained 

after random forest classifier usage on the image dataset. 

 

 
 

Figure 23. Confusion matrix obtained during evaluation with 

hybrid features & random forest classifier 

 

4.4 Using Efficient-Net B3 & Efficient-Net-v2S models 

 

The precision and recall matrixes for the Efficient-B3 and 

Efficient-V2S models at the classification evaluation stage are 

displayed in Figures 24 and 25. Regarding the accuracy of 

validation against the existence of distortion and blur in 

satellite imagery, they both fared well. Moreover, Efficient-

V2S required less time in the prediction stage than the other 

models that were employed in the investigation. Efficient-Net 

models make extensive use of depth wise separable 

convolutions, which help to reduce model size and 

computational cost while maintaining the ability to learn rich 

feature representations. This enables the network to extract and 

generalise critical features from two different classes of 

satellite images, including complex image scenes of cloud 

distribution. Transfer learning and fine-tuning improve 

Efficient-Net's generalisation ability even more. Pre-trained on 

a large dataset such as ImageNet, Efficient-Net models have 

learned a diverse set of features applicable to a wide range of 

image classes. When fine-tuned on a specific dataset with two 

classes, these models adapt quickly and improve their ability 

to distinguish between those classes only. Further, re-training 

is not required while performing generalization process. 
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Table 3. Compares all deep neural networks using performance metrics obtained during the evaluation phase 

 

S.No. Algorithm 
Training 

Accuracy 

Testing-

Accuracy 

F1-

Score 

Inference 

Time 

Avg Time -Computational 

Efficiency per Each Step 

1 ResNet-50 99% 96% 0.82 900 milli sec 85s 

2 U-Net 98% 94% 0.81 950 milli sec 90s 

3 Efficient-Net-B3 98% 94% 0.94 390 milli sec 125s 

4 Efficient-NetV2s 99% 97% 0.95 750 milli sec 95s 

5 Dense-Net 97% 95% 0.90 700 milli sec 90s 

6 Vision Transformer (Vi-T) 99% 97% 0.94 500 milli sec 100s 

7 
Hybrid features + Random 

forest 
98% 97% 0.96 600 milli sec 80s 

 

 
 

Figure 24. Precision and Recall matrix obtained after tropical 

cyclone classification using the efficient Net B3 model 

 

 
 

Figure 25. Precision and Recall matrix obtained on 

EfficientNetV2s neural network after classification 

 

 
 

Figure 26. Training vs validations accuracies plots & loss 

plots 

 

(------------Training curve and ----------Validation curve) 

 

Figure 26 shows plots of models obtained during training 

and validation phases on a satellite imagery dataset using 

Tensorboard, and Table 3 depicts a comparison of various 

algorithms used in this paper with respect to F1-Scores and 

accuracies and inference times. 

The models' predictions during the validation phase and 

their resilience to different attacks, such as blurring and adding 

noise to input images during the evaluation phase, are 

displayed in Figures 27 and 28. As a result, in the validation 

stages, the models that were acquired after training have 

demonstrated improved performance against image distortion. 

The models have an average accuracy of 98% in predicting the 

convective growth of tropical cyclones. 

 

 

 
 

Figure 27. Model prediction outputs after training on dataset 

indicating labels of cyclone and non-cyclone 

 

 
 

Figure 28. Comparison of accuracies on image deformations 

 

Figure 29 shows a comparison of accuracies after training 
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and testing using various algorithms. Table 4 lists several 

algorithms for classifying satellite imagery. It is quite obvious 

that the suggested algorithm outperforms the other cutting-

edge techniques in terms of classification accuracy and 

Tropical Storm Eye localization. As a result, the suggested 

Efficient-Net algorithms are highly suitable for identifying the 

emergence of convective clouds in tropical cyclones and 

regions of precipitation, which is very beneficial for 

forecasting. Additionally, the suggested approach is tested and 

trained on graphics hardware. 

 

Table 4. Comparative analysis with state of art methods for Tropical Cyclone (TC) Image classification 

 

S.No. Method Author Metrics Dataset 
Cyclone Eye 

Localisation 

1 Adhoc CNN 
Sharma et al. 

[16] 
Accuracy: 99% 

ERA interim,CAM5.1,NCEP-

NCAR 
No 

2 U-Net 

Kumler-

Bonfanti et al. 

[29] 

Accuracy: 99% GFS(mod) No 

3 Adhoc CNN 
Shakya et al. 

[20] 
Accuracy: 97% 

KALPANA-I (sat) & MOSDAC 

(sat) 
No 

4 
RetinaNet & Polynomial 

Regression 

Shakya et al. 

[20] 
RMSE: 5%-15.55% 

KALPANA-I (sat) & MOSDAC 

(sat) 
No 

5 DeepLabv3+ 
Prabhat et al. 

[43] 
IOU: 0.2441 CAM5.1(mod 25km) No 

6 DCGAN and YOLO v3 
Pang et al. 

[17] 

97.78% and 

Map@IoU=0.5: 

81.39% 

Satellite Images from NII (Visible) No 

7 

Dichotomous Logistic 

Regression Based Fuzzy 

Hypergraph model 

Rajesh et al. 

[32] 
98.59 % Satellite images 10 to 100 No 

8 Efficient Net Our Study Accuracy 98% 
INSAT 3D Satellite imagery using 

Visible and IR Spectrum 
Yes 

 

 
 

Figure 29. Comparative analysis of deep learning algorithms 

using accuracies 

 

4.5 Localisation using gradient mapping 

 

 
 

Figure 30. Localisation of Eye - Tropical Cyclone (TC) 

YAAS image using proposed Model and Grad – CAM 

technique 

Grad-CAM (Gradient class activation mapping) creates a 

coarse localization map by utilising the gradients of any image 

of Tropical cyclonic cloud distribution flowing into the final 

convolutional layer in order to predict the eye of the storm. The 

Class Activation Map (CAM) is produced by Grad-CAM 

method using the activations from the final convolutional 

layer. By applying methods such as Guided Back-propagation, 

the visualization is improved to produce high-resolution 

detailed visualisations and localization that is discriminative 

based on class, which facilitate the interpretation of neural net 

decisions. Figure 30 shows localization of cyclonic storm eye. 

 

 

5. CONCLUSION AND FUTURE SCOPE  

 

A comprehensive assessment of the classification and 

detection approach for satellite tropical cyclone cloud 

distribution detection is provided in the results section and 

graphing of performance metrics against image dataset, 

including multiple Deep Neural Networks (DNN) is shown 

with respect to plots. Further using EfficientNetV2 Deep 

Neural Network an accuracy of 98% was attained on average 

by the algorithm during testing phase. Future iterations of the 

work will also include the identification of tropical cyclones 

using advanced deep learning techniques in conjunction with 

GPU capabilities of cloud computing. 

Further research could concentrate on incorporating 

physics-based principles directly into the learning process of 

Deep neural networks, resulting in more accurate and 

physically realistic predictions, particularly in convective 

cloud development, climate modeling, Furthermore, 

combining data-driven approaches with physics-informed 

neural networks (PINNs) could result in hybrid models that 

outperform traditional CNNs in areas where they may struggle, 

improving generalization in complex scenarios. Furthermore, 

incorporating physics-based transformations into data 

augmentation techniques can provide a new level of robustness 
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and generalization, allowing networks such as Efficient-Net to 

generalize more effectively across a variety of real-world 

scenarios.  

Using neural networks Cyclone forecasters can analyze 

massive amounts of historical weather data, satellite images, 

and other meteorological inputs to identify patterns that 

indicate the formation and progression of cyclones. Numerous 

factors influence cyclone development, including sea surface 

temperatures, atmospheric pressure, and wind patterns. Neural 

networks outperform traditional statistical methods in 

modelling the non-linear relationships between these 

variables, resulting in more accurate predictions of cyclone 

paths, intensity, and landfall. Cyclone forecasting and warning 

systems benefit significantly from neural networks because 

they improve prediction accuracy, allow for real-time data 

processing, and support effective early warning systems. They 

help to reduce the impact of cyclones on people and property, 

resulting in more resilient communities. 
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