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The need for Big Data platforms in recent years is increasing steadily, given the amount of 

data produced or consumed every second by millions of users and machines, and this huge 

volume of data has to be processed, managed, or stored. Several constraints must be taken 

into consideration when allocating this data and processing it on big data platforms, and 

among the major concerns of big data clients who are always looking to reduce their costs 

remains time and budget. We can say that time is among the major factors that determine 

the performance of a processing model of a big data platform and which has a direct effect 

on other allocation constraints. In this paper, we conducted an analytical study of the 

performance of MapReduce which is the processing model of the Hadoop platform. Our 

study shows that the estimation of MapReduce performance remains difficult and depends 

not only on the scheduler used but also on other factors including the type of workload 

itself.  
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1. INTRODUCTION

Big data includes all the technologies and utilities that 

constitute a solution for huge data and an alternative to the 

traditional database. It refers to processing and analyzing a 

complex and large data set to uncover valuable information 

that can be useful for businesses and organizations. It is an IT 

solution that offers big data management, processing and 

storage, distributed computing, analytic tools, and data 

infrastructure, it further promotes custom development, 

queries, and systems scalability. The use of big data is 

widespread in many fields due to its advantages compared to 

traditional databases, especially for large amounts of data 

which put more pressure on clusters and data management 

systems. A major concern for the clients of big data platforms 

in general is how to estimate the processing time of their 

workloads, which allows them to predict an approximate 

allocation budget on a particular platform, and helps them to 

make a good decision by selecting the most suitable platform 

for their workloads based on the time/budget ratio, or in 

another sense, knowing in advance the execution time of the 

workloads will allow the clients to deduce an approximate 

allocation budget on a given platform, and to make cost 

comparisons between platforms to choose the one that 

provides a reduced allocation cost or the one offering the best 

cost/performance compromise. However, scheduler 

performance may be subject to various factors that may have 

an effect on the processing time of workloads. 

Given the importance of big data and the need for it, 

especially in recent years, if we take into account the large 

volumes of data that need to be processed or stored, and also 

the difficulty of managing data of this magnitude via 

traditional systems, the number of studies and research 

conducted in this field is constantly increasing, the objective 

is always to provide studies or solutions that can contribute to 

improve the data processing and storage at the Big Data 

platform level, and to increase systems effectiveness in 

different sides. 

In this context, our work is an analytical study of the 

performance of MapReduce in processing different types of 

workloads on Hadoop Framework, and how the following 

factors can have an effect on the performance of schedulers in 

Hadoop MapReduce: 

• The scheduler used.

• The nature of workloads.

• The setup configuration (CPU speed, Memory Size,

Number of slots, …).

The objective of our work is to give a performance study of 

MapReduce and the factors that affect it, the contributions of 

the study can be summarized as follows:  

• Identify the main factors that affect the processing time of

workloads on Hadoop MapReduce, and being aware of

these factors that can affect the efficiency of the

processing model can help to improve the performance of

Big Data platforms.

• Show that the adaptation between the scheduler used and

the workloads can have an impact on the processing time,

and therefore on the necessary allocation budget, which

can be useful to big data clients to make good decisions

regarding the allocation of their workloads.

• Provide a study that can be useful to researchers in this

field of big data or that can serve as a basis for further

studies, the aim of which is always to improve the

performance of the Hadoop system.
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The results of our study have shown that the accurate 

estimation of the actual processing time for a given workload 

remains apparently difficult and depends not only on the 

scheduler used, but it differs according to many factors 

including the type of the workload itself.  

The organization of the remaining sections is as follows. In 

Section 2, we reveal the background and present the related 

work. In Section 3, we introduce our experiments and detail 

their environment. In Section 4, we present and discuss the 

results obtained. Finally, in Section 5, we conclude the paper 

and highlight some future work. 

2. BACKGROUND AND RELATED WORK

In this section, we provide an overview of the Hadoop 

Framework, and MapReduce processing model, and discuss 

the related work.  

2.1 Hadoop 

Apache Hadoop is an open-source software framework for 

distributed processing and data intensive management based 

on Java, used to process and analyze huge amounts of data. It 

allows big data analytical processing tasks to be divided into 

smaller tasks that can be executed in parallel mode using a 

processing model (such as the MapReduce model) and 

distributed across a Hadoop cluster. Knowing that this kind of 

cluster is a collection of computing machines called nodes, 

networked to perform parallel calculations on large sets of data. 

Unlike other computing clusters, Hadoop clusters are 

specifically designed to host and analyze massive volumes of 

structured and unstructured data in a distributed computing 

environment.  

Hadoop ecosystems include open-source software 

frameworks and a range of complementary tools for big data. 

They are also distinguished from other types of computing 

clusters by their specific structure and architecture. Hadoop 

clusters consist of a network of master and subordinate nodes 

that leverage high-availability, low-cost generic hardware, as 

well as linear scalability, so that it is easy to add or remove 

nodes depending on demand. The master nodes orchestrate 

and manage the resources, worker nodes are dedicated to 

processing tasks and storing data. Master nodes include a 

NameNode, a secondary NameNode, and a JobTracker. 

Worker nodes that offer the DataNode and TaskTracker 

services that store data and process tasks. The Hadoop 

architecture is described in Figure 1. 

Hadoop is popular because it is both accessible and easy to 

learn. Economical and practical, it offers modules with many 

options. Hadoop can easily scale and be deployed across 

multiple machines to accommodate virtually any dataset size. 

Additionally, its method of storing and processing data 

presents an attractive enterprise solution in the context of 

growing storage, and also for its accessibility and flexibility in 

the use of the Hardware, especially when we are talking about 

the storage of a large volume of data which constitutes a real 

problem, because it entails high maintenance costs in terms of 

resources and hardware in order to be able to manage the 

workload. The Hadoop framework is resilient to failures. Data 

stored on one server is automatically replicated to other nodes. 

When one node in the Hadoop cluster fails, others take over to 

perform calculations or data analysis. Hadoop has various 

applications including data warehousing, big data analytics 

and cloud computing. 

Figure 1. Hadoop architecture 

2.2 MapReduce 

MapReduce is a model for parallel processing of large 

quantities of data on multiple machines organized into a 

cluster, it’s designed and deployed by Apache Foundation, it 

is a component of the Hadoop framework along with HDFS, 

the storage system, and YARN, the resource management 

module, and Hadoop Common, which includes utilities and 

libraries used and shared by other Hadoop modules. 

MapReduce contains two main phases, named map and 

reduce. The mappers take a set of data and convert it to a series 

of key-value pairs. Those intermediate data will then be sorted 

and merged. The reducers receive them as input and combine 

them into a smaller set of tuple pairs as the final output, and 

store it in the HDFS system. Among the advantages of 

MapReduce are its flexibility, security, fault tolerance, and its 

scalability in data processing.  

Data processing in the MapReduce model goes in general 

through several successive stages one after another, and these 

phases are shown in Figure 2, which explains as an example 

the process of treating the WordCount application by 

MapReduce. 

Figure 2. MapReduce processing example for Hadoop 

WordCount 

• Input Phase: reading and translating a block of data

to an input for the mappers. 

As shown in the example in Figure 2, which allows us to 

count the number of occurrences of each word in the input file, 

we divide the input into three parts (Green, Yellow, Blue); 

(Yellow, Green, Green); (Blue, Yellow, Blue, Green). 

• Mapping Phase: processing the input data by a

mapper function and generating a sequence of key-value pairs. 
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Assign a hard-coded value (1) to each of the tokens or words. 

The reason we assign a hard-coded value of 1 is that each word, 

by itself, will appear once, and so for example, for the first line 

(Green, Yellow, Blue) we get 3 key-value pairs (Green, 1); 

(Yellow, 1); (Blue, 1). 

•  Shuffling Phase: It consists of merging and sorting 

the output of the mapping, and it produces a sequence of 

combined key-value pairs. 

So, each reducer will receive a unique key and a sequence 

of values corresponding to that same key: Green, (1,1,1,1); 

Yellow, (1,1,1); Blue, (1,1,1). 

• Reducing Phase: applying a Reducer function to the 

output of the shuffling phase, and returning a single output 

value. This result is stored in the HDFS system. 

In this phase, each reducer counts the number of ones in the 

list it received, as shown in the figure, the first reducer for 

example receives the list green, (1,1,1,1) and returns the 

key/value green, 4. 

YARN has greatly increased the potential use cases of the 

Hadoop framework by decoupling resource management and 

scheduling from MapReduce's data processing component. It 

also allowed Hadoop to support more applications and 

different types of processing. YARN architecture consists of 

two daemon services: the Resource Manager (Master) which 

is the master daemon (main program), It manages the 

allocation of resources such as CPU, memory and network 

bandwidth, and the Node Manager (Slave) which is the slave 

daemon (secondary program), and it reports the resource usage 

to the resource manager. These two daemons are responsible 

for negotiating resources and working jointly to execute and 

monitor tasks, and they also manage the parallel processing 

and fault tolerance components of all MapReduce tasks. 

Resource Manager and Node Manager combine together to 

form a data-computation framework. 

Both HDFS and MapReduce run on the same set of nodes, 

resulting in very high overall bandwidth across the entire 

cluster. All Hadoop components are synchronized to enable 

improved utilization of the cluster. 

 

2.3 Related work 

 

Time is one of the important criteria that evaluates the 

performance of MapReduce and determines its efficiency, and 

has a significant influence on other allocation constraints 

including budget, and as we know, the budget remains a 

criterion of utmost importance to big data clients when 

allocating their workloads. Generally, in the domain of Big 

Data, being aware of the job timespan remains essential for 

later decisions, here are some researches that were done in this 

context: 

In the study [1], the proposed model allows for predicting 

the processing time of a job and estimating the number of 

resources that a job requires to be finished within a deadline, 

the task execution history is the basis of this model which aims 

to estimate the job runtime using the locally weighted linear 

regression (LWLR) technique. 

Paper [2] proposes a two-phase regression (TPR) method to 

estimate precisely the completion time of the executed tasks, 

an analysis report is used to give detailed data of each job. The 

TPR algorithm is based on the following steps: data 

preprocessing, data smoothing, data regression, and data 

estimation. 

The research study given by Gohil et al. [3] shows 

experimental results of MapReduce performance with some 

applications in Cloud based Hadoop. 

In the study [4], we present a new method that can predict 

the job runtime in the case where the job starts running for the 

first time with no history about it, by using mathematical 

expressions to formulate each stage of MapReduce process 

and calculate the job runtime, or when the job has previous 

running and its profile or history becomes available, in this 

case, we refer to the job’s profile or history in the database in 

processing time estimation. 

The model presented in the study [5] can estimate the total 

job runtime by using Amdahl’s law regression method with 

respect to input size variation, this model requires code instead 

of a trace-base simulator. Also, the paper evaluates and 

analyzes the performance of WordCount application under 

variant types of processors. 

Paper [6] presents a model for predicting the performance 

of Hadoop MapReduce, this model consists of two modules, a 

job analyzer and a prediction module, the first one collects 

information around processed jobs to serve the prediction 

module, and the second one will use this data to predict the job 

performance. 

In the research [7], we give a benchmarking approach that 

allows us to build a MapReduce performance model which 

will attempt to estimate the procession time for a MapReduce 

workload by combining the job profiling and the derived 

platform performance model. 

Paper [8] compares different job scheduling techniques and 

discusses their performance impact on Hadoop multi-cluster 

environment, and their efficiency in terms of certain hardware 

specifications.  

In the study [9], we present a simulator called MRPerf that 

facilitates performance analysis for the MapReduce model, 

and it can be used as a planning tool for evaluation and fine-

tuning Hadoop systems. 

The performance study conducted by Jiang et al. [10] 

allowed us to determine the main factors that can impact the 

performance of MapReduce, and showed that by a careful 

setting of those factors we can improve the performance. 

Paper [11] presents an analytical model to estimate the 

performance of MapReduce for a Hadoop workload, through 

a combination of a priority graph model and a queuing 

network model with the aim of predicting the processing time 

of tasks. 

The benchmark suite for Hadoop called HiBench 

introduced by Huang et al. [12] brings together a set of Hadoop 

programs encompassing both synthetic microbenchmarks and 

real-world applications, it is used to assess and identify the 

performance of Hadoop workloads. 

Paper [13] provides a detailed analytical study and 

performance characterization for Hadoop K-means using a set 

of processors.  

In the study [14], we present a comprehensive analytical 

study of the impact of configuration settings on Hadoop 

performance in query processing. 

We conducted an experimental study of the Hadoop system 

[15] using a set of input files. The study included the volume 

of data bytes read and written by Hadoop and MapReduce, and 

analyzed the behavior of the map and reduce functions as the 

number of files and the volume of bytes read and written 

increased.  

In the research [16], we provide an analysis of Hadoop 

performance of the Hadoop and the issues that affect it on 

heterogeneous clusters, and suggest some guidelines to 

overcome these obstacles, the aim of which is to improve the 
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performance of Hadoop framework. 

The previous studies aimed to provide an analysis of 

Hadoop MapReduce performance or to study some operational 

shortcomings, especially those affecting the processing time, 

but most of them did not give a global view of MapReduce 

performance and the different factors that impact it, they 

focused on a specific factor or parameter, they also ignored to 

study the effect of workload and its adaptability with the 

scheduler on the performance of the MapReduce model. 

 

 

3. EXPERIMENTS 

 

In the current section, we introduce the environment setup, 

and reveal the objective of the experiments and their 

conditions. 

In our experiments, we used a Hadoop cluster containing 1 

master node and 10 slave nodes (homogenous machines with 

the same hardware and software specifications), all nodes are 

in the same rack. The configuration of the cluster is detailed in 

Table 1, the installed version of Hadoop in the system is 3.3.1, 

the data block size in HDFS system was set to 64 MB and the 

replication factor was set to 3, each node as a Task Tracker 

was configured with 2 maps and 2 reduce slots. In the runtimes, 

we use typical MapReduce applications such as WordCount, 

Grep, and QuasiMonteCarlo, with different dataset sizes of 5, 

10, 15, and 20 GB respectively. The results of each experiment 

are averages of 10 to 15 executions for each application with 

each dataset size, in order to accurately measure the execution 

time of each application. The total number of executions is 

about 700 for all experiments. 

 

Table 1. Cluster configuration 

 
Nodes Quantity Configuration 

Master Node 1 
2 single-core 2.6Ghz 

4GB RAM 

Slave Node 10 
2 single-core 2.6Ghz 

4GB RAM 

 

Table 2. Specifications of schedulers 

 
Scheduler Advantages Disadvantages 

FIFO 

Scheduler 

- Easy implementation 

- simple to execute 

- Long wait for jobs 

- Starvation 

Fair 

Scheduler 

-  Resource allocation 

according to jobs priority 

-  Reduced waiting time 

for small jobs 

-  Complex 

configuration 

Capacity 

Scheduler 

-  Good for working with 

multiple users 

-  Maximizing the 

throughput and the 

utilization of the cluster 

-  Not easy to 

configure 

-  Complexity 

 

The purpose of our analysis is to study how certain factors 

can affect the performance and efficiency of the schedulers in 

Hadoop MapReduce, by benchmarking the performance of 

these schedulers in processing different types of workloads 

and under various conditions. These factors may be related to 

hardware configuration, software, or the workload itself. The 

schedulers studied in these experiments are: the FIFO 

scheduler, the Fair scheduler and the Capacity scheduler 

(Some specifications of the schedulers used are shown in 

Table 2). We would add more schedulers to the study in future 

work. 

For workloads, we chose the usual applications 

(WordCount, Grep, QuasiMonteCarlo) to calculate and 

compare the processing time under the studied schedulers. 

Table 3 shows the descriptions of the applications. Each 

application on Hadoop has typically its own characteristics 

and resource requirements. For example, some applications 

are CPU-bound, memory-bound, etc. CPU-bound applications 

are those that require a significant amount of computing 

resources, they involve performing complex calculations, data 

processing and CPU-intensive algorithmic operations. 

Memory-bound applications require a lot of data in memory, 

so most of their execution time is spent reading and writing 

data. The data processing in MapReduce as shown in Figure 2, 

goes through several stages, in order to simplify the 

calculations in this study, we will only consider the three main 

stages (mapping phase, shuffling phase, and reducing phase), 

the total job processing time can be calculated using the 

following equation: 

 

𝑇𝑗
𝑇𝑜𝑡𝑎𝑙 = 𝑇𝑚

𝑇𝑜𝑡𝑎𝑙 + 𝑇𝑠ℎ
𝑇𝑜𝑡𝑎𝑙 + 𝑇𝑟

𝑇𝑜𝑡𝑎𝑙 (1) 

 

where, 

• 𝑇𝑗
𝑇𝑜𝑡𝑎𝑙: the total processing time of the entire job. 

• 𝑇𝑚
𝑇𝑜𝑡𝑎𝑙: the total processing time of the mapping phase. 

• 𝑇𝑠ℎ
𝑇𝑜𝑡𝑎𝑙: the total processing time of the shuffling phase. 

• 𝑇𝑟
𝑇𝑜𝑡𝑎𝑙: the total processing time of the reducing phase. 

 

Table 3. Applications description 

 
Application Description 

WordCount 

A simple application which is used to 

count the number of occurrences of 

each word in a given input file. 

Grep 

a function that extracts matching 

strings from text files and counts how 

many times they occurred. 

QuasiMonteCaro 

It is a program that estimates the 

value of pi using a quasi-Monte Carlo 

method. 

 

 

4. RESULTS AND DISCUSS 

 

In this section, we try to analyze and discuss the different 

results of the experiments and come up with some 

interpretations and conclusions.  

As part of our analytical study of the MapReduce 

performance and in order to identify factors that influence it, 

we started our experiments by comparing the schedulers' 

performance in terms of processing the applications 

(WordCount, Grep, QuasiMonteCarlo) to find out how well 

they handle different types of workloads, the results of this 

experiment are shown in Figure 3. 

According to the output in Figure 3, it appears clearly that 

there is a variation in the results of schedulers in job processing 

time, and they do not always perform with all workloads in the 

same way, but their performance depends on the type of the 

workloads and differs from one job to another. For example, if 

we observe in Figure 3, the results of the Fair scheduler in 

processing WordCount and Grep applications, it performs 

better than the Capacity scheduler in processing the same 

applications, but in the case of the QuasiMonteCarlo job, we 

notice that the Capacity scheduler is much better than the Fair 
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scheduler, with more than 40% difference between the results 

of the two schedulers in terms of processing time. These 

outcomes lead us to question the existence of a certain 

relationship of influence between the performance of 

schedulers and the type of workload, according to the results 

of Figure 3, which shows that the performance of schedulers 

is not all the time stable and that it changes depending on the 

type of workload. 

To  answer this question and to have a clearer idea of how 

workload itself impacts the performance of the schedulers, and 

to validate the interpretation of the results obtained in Figure 

3, we conducted a performance comparison of the previous 

schedulers, this time by running a single WordCount 

application per each scheduler with different types of datasets. 

The results of comparing schedulers in terms of processing 

time are shown in Figure 3. The goal of these experiments is 

to see how each scheduler handles a specific type of workload 

each time. 

Figure 3. Comparing jobs processing time by every 

scheduler 

Figure 4. Processing time of WordCount application with 

different datasets 

From the result in Figure 3, we can clearly observe that there 

is a variation in the performance of the schedulers, for example, 

fair scheduler performs well for the job 1 and 2 compared to 

the Capacity scheduler, but if we take jobs 3 and 4, Capacity 

scheduler was better than Fair scheduler. From the result of 

Figures 3 and 4, it can be deduced that scheduler can perform 

well for certain types of workloads but this is not always the 

case with other types, which makes it difficult to accurately 

estimate the timespan for a given workload in Hadoop 

MapReduce. We can infer that the performance of MapReduce 

depends not only on the scheduler used, but also on the type 

of workload itself which becomes like an impact factor. 

The variation in scheduler performance under different 

workloads may also be related to the design of these 

schedulers, for example for a FIFO scheduler where the 

processing order of jobs is consistent with their arrival order, 

small jobs will remain pending for a long time, which may lead 

to system performance degradation, and as a solution to this 

shortcoming, the fair scheduler proposes to share cluster slots 

fairly among jobs, but in the case where sequences of small 

jobs dominate the workloads, the FIFO scheduler may 

outperform the fair scheduler [17]. 

When we talk about big data, we are talking about enormous 

quantities of data to be processed, and the processing time 

becomes a critical criterion in this case, especially if we take 

into account its impact on allocation costs, and hence as shown 

in the results, selecting the most appropriate scheduler for a 

given workload, not just the highest performer, remains very 

important when allocating data across Hadoop platforms to 

improve data processing time results. In another sense, having 

some sort of adaptation between the scheduler used and the 

workload to be executed guarantees better performance of 

MapReduce. 

As mentioned before, workloads are of different types: 

CPU-bound, memory-bound, I/O-bound, ..., and hence 

processing CPU-bound workloads like WordCount 

application which depends on CPU speed will definitely be 

different from processing memory-bound workloads where 

memory speed or size becomes an important factor, or 

processing I/O-bound workloads which are limited by I/O 

speed (like reading/writing from storage device, or from 

network, ....), and these differences in characteristics between 

different workloads can lead to variation in Hadoop 

MapReduce performance. 

Among the factors that can affect the performance of 

MapReduce is the Hardware it runs on, particularly the CPU 

and memory which are considered as the main hardware 

components, and also the number of map and reduce slots per 

node. To assess the impact of the hardware configuration on 

MapReduce performance, we conducted experiments to find 

out the effect of the processor frequency and memory size and 

the number of slots on the data processing time results, firstly, 

by examining the schedulers’ performance with another CPU 

frequency, the results are shown in Figure 5, secondly, by 

testing the performance of MapReduce in processing the 

WordCount application under different memory sizes. The 

results obtained are shown in Figure 6, and finally, by 

changing each time the number of map and reduce slots and 

comparing the MapReduce performance, the results are 

presented in Figure 7. 

As shown in Figure 5, increasing the CPU frequency 

optimized the processing time results, which proves that CPU 

speed can impact the performance of schedulers, and the 

performance increase rate exceeds 12% from the results 

obtained.  

We can clearly notice from Figure 6, that as the memory 

size increases, the processing time decreases, if we take the 

increase in memory size from 4 GB to 8 GB or from 8 GB to 

16 GB, we obtain an important performance increase value, 
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which ranges between 16% and 21%. This suggests that 

memory is one of the hardware resources that has a remarkable 

effect on task execution time. 

Figure 5. Jobs processing time relative to processor 

frequency 

Figure 6. Processing time of WordCount relative to available 

memory 

Figure 7. Processing time of WordCount relative to number 

of slots 

According to the results in Figure 7, we see two aspects for 

the performance of MapReduce in terms of processing time, 

the case where the number of slots is less than 2, we notice that 

the more this number increases, the more the processing time 

decreases, but when the number of slots exceeds 2, we observe 

that the increase in the number of slots implies a slowdown in 

processing time. We can say that choosing the optimal number 

of map and reduce slots can improve the processing time 

results.  

As a summary of this section, what can be concluded from 

these experiments and the analysis of the results obtained is 

that the type of workload itself and the hardware configuration 

of the cluster nodes have an inherent impact on MapReduce 

performance especially in job processing time. There are other 

factors that have not been addressed in this study that can 

affect the performance of the schedulers, such as (network 

bandwidth, concurrent workload, data locality, data skew, ...). 

Among the factors, we also find the heterogeneity of the 

clusters, since we can observe some variation in the 

performance of the MapReduce processing model, due to 

differences between nodes in the cluster in terms of 

configuration, performance, and computing capacity. This 

variation makes the estimation of the execution time of the 

workloads a bit more difficult in this type of system. So, we 

can say that heterogeneity of the cluster can also be one of the 

factors impacting the performance of Hadoop MapReduce. 

The obtained results generally give a clearer idea about the 

performance of MapReduce in executing applications. They 

show that MapReduce performance can be affected by several 

factors, including the adopted architecture (physical 

configuration), the scheduler used, but also the level of 

adaptation between the scheduler and the workloads. This can 

be useful for big data platforms and their clients to choose the 

best architectures and also to look for some adaptation 

between the scheduler and the workloads in order to obtain 

better processing time values and good performance of 

MapReduce in general. These results can also be exploited by 

big data researchers for further studies. 

5. CONCLUSIONS

In order to identify some factors that can affect the 

performance of Hadoop MapReduce, we presented in this 

paper a performance analytical study carried out using certain 

types of schedulers and with different types of workloads, our 

analysis also studied the impact of hardware configuration on 

MapReduce performance. The results obtained showed that 

the accurate runtime estimation is still difficult, because the 

MapReduce performance in processing a given workload 

depends not only on the scheduler used, but also on other 

factors, notably the nature of the workloads themselves, and 

the hardware on which they operate such as CPU speed or 

Memory capacity, or the number of map and reduce slots, as 

proven by experiments. In conclusion, we can say that the 

choice of the scheduler should not only depend only on its 

performance, but also on its adaptation to our workload, 

certainly with a good hardware configuration to optimize the 

results of data processing time, which can contribute to 

improving the performance of MapReduce and increasing the 

efficiency of the Hadoop framework. 

For future work, we aspire to expand our analysis by 

studying more hardware components and more schedulers, 

with other types of workloads, and also under other types of 

constraints, in order to get a clearer idea of the different factors 

that can affect the data processing to improve the performance 

of Hadoop MapReduce. 
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