
An Experimental Study on Detecting and Mitigating Vulnerabilities in Web Applications

Rishith Pranav Kumar Kollepalli1 , Mallidi Jaswanth Srinivasa Reddy1 , Bellam Lakshman Sai1 , Abirami

Natarajan1 , Senthilkumar Mathi1* , Venkadeshan Ramalingam2

1 Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Coimbatore

641112, India
2 Faculty in Information Technology Department, University of Technology and Applied Sciences-Shinas, Shinas 324, Oman

Corresponding Author Email: m_senthil@cb.amrita.edu

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.140219 ABSTRACT

Received: 5 September 2023

Revised: 21 March 2024

Accepted: 28 March 2024

Available online: 26 April 2024

The increasing use of the internet has led to a growing number of security threats.

Computers, smartphones, smartwatches, and other mobile devices associated with the

internet face different threats and exploits. In those cases, different services are provided

through web applications only. Those applications are vulnerable to hacking. There are

over 1.9 billion websites today, and everything is connected to the network. According to

the new national vulnerability database update, 10,683 weaknesses were found in web

applications in the first quarter of 2023. The websites have the most significant details of

the clients, like personal details, financial details, and so on. Checking all the web

application weaknesses is not a silver bullet. So, vulnerability scanners play a significant

role in web application security. Vulnerability analysis and penetration testing are two

distinct vulnerability types of testing. These tests can help identify all the vulnerabilities

in a web application, even those not detected by vulnerability scanners. While certain

users access this vulnerability analysis data with just honest goals, like creating some

security measures to avoid those vulnerabilities, some utilize it to recognize ways of

destroying significant information and records of websites. As it is notable, the term

penetration testing is also ethical hacking. The current paper aims to investigate

penetration testing on web applications. The paper discusses the different types of

penetration testing, the tools and techniques used, and the benefits of penetration testing.

It also suggests the challenges of penetration testing and the steps that can be taken to

mitigate these challenges.

Keywords:

ethical hacking, penetration testing, security,

vulnerability, web application

1. INTRODUCTION

Information security is essential for all firms due to the rise

in cyber hacking activities in the modern digital age [1].

Irrespective of their size, every business is faced with the

imperative task of safeguarding their data against potential

attackers. Web applications play a major role in

communication, resource sharing, social networking, online

banking, e-commerce, etc. [2]. Cybercriminals target web

application vulnerabilities to gain unauthorized access to

sensitive data, compromising user privacy and security. A

company that develops web applications covers most of these

features. So, these are the essential details for the attacker to

start their attack on that company. Because of that, the

attackers mostly target web applications. If the attacker hacked

the web application, they could access all the confidential or

sensitive data available in the web application. It leads the

attack to the next stage of an attack [3]. For example, if an

online shopping website’s credit or debit card details are saved,

and the attackers hack the website, they can obtain the full card

details and use them to steal money from the victim’s account.

Maintaining good security mechanisms to avoid cyber

threats is challenging [4]. The first step in achieving this is to

identify any vulnerabilities or security loopholes in the system.

These can be identified with the help of some testing

techniques. Distinguishing between Vulnerability Assessment

and Penetration Testing reveals two distinct approaches to

testing methodologies. Vulnerability assessment is a technique

to identify weaknesses or measure security vulnerabilities.

Penetration testing takes it to the next level, checking

everything – software, hardware, the whole setup to find out

where things could go wrong [5]. It is basically like trying to

think like a cyber attacker about what they could get into if

they broke through the system’s defenses [6]. Penetration

testing for web applications has been an active area of research

in recent years, with researchers proposing new methodologies,

tools, and case studies. Some studies have focused on specific

types of web app vulnerabilities like SQL injection [7] and

XSS [8], while others have taken a more comprehensive

approach covering various vulnerabilities [9-12]. The use of

automated scanning tools like Nmap, Nikto, and ZAP, along

with manual verification, has been commonly employed.

However, the dynamic nature of web applications and the

continuous emergence of new vulnerabilities necessitates

constant research efforts.

Performing manual penetration testing is daunting as the

International Journal of Safety and Security Engineering
Vol. 14, No. 2, April, 2024, pp. 523-532

Journal homepage: http://iieta.org/journals/ijsse

523

https://orcid.org/0009-0008-8115-885X
https://orcid.org/0009-0004-5088-2088
https://orcid.org/0009-0008-0200-3391
https://orcid.org/0009-0003-8200-6616
https://orcid.org/0000-0002-7134-8448
https://orcid.org/0000-0001-7631-2156

tester must conduct every possible test to find a single

vulnerability. In one application, many vulnerabilities may

exist. It is not an easy task, so the penetration tester uses

automated tools to avoid that. In automated penetration testing,

few tools are available as open-source, and some as

commercial products with different functionalities [13]. The

main problem in this automated penetration testing is in

selecting the best tool. The tester can’t say that this tool finds

all the vulnerabilities in the web application. The vulnerability

findings differ for each tool. None of the tools can identify the

complete vulnerability in the web application.

The current research aims to explore the vulnerabilities

present in web applications, their impact on security, and best

practices to mitigate risks. The investigation aims to conduct a

comprehensive penetration testing of an online shopping web

application, evaluate its security posture, and provide

recommendations to enhance its security defenses.

The literature survey is discussed in section 2,

methodologies are discussed in section 3, prevention

techniques are briefly explained in section 4, and finally, the

result is concluded in section 5.

2. LITERATURE SURVEY

In the work of Aibekova and Selvarajah [9], the author

discussed different penetration testing attacks and the types in

detail using Kali Linux. The process was done in six phases:

Reconnaissance, Enumeration, Exploitation, Dictionary attack,

Privilege Escalation, and DOS Attack. In the reconnaissance

phase, they identified the open port details by scanning the

target IP address in the Nmap tool and the next phase,

enumeration, and they started tracking the IP address details

like subnets, hosts, interfaces, DNS records, web server details,

etc., using OpenNetAdmin tool. In the second phase, they

found details about the web server. In the exploitation phase,

they used the Metasploit tool to identify exploits like buffer

overflow, code injection, and web application. In the fourth

phase, they started using a dictionary attack, in which they

identified a hashed password file. With that hashed password,

they used John the Ripper to decrypt it and got the target’s

exact password. Now, they moved on to privilege escalation.

In this phase, they explored each user; after collecting all the

necessary resources, they started a DoS attack against the

target.

The security evaluation was conducted of a web application

that employs penetration testing strategies to showcase man-

in-the-middle attacks [10]. They used a few penetration testing

strategies like SQL Injection, cross-site scripting (XSS), and

brute force attacks. They started the evaluation with

information gathering using the Nmap tool and got

information like port, state, service, and version. Using that

Nmap output, vulnerability analysis was initiated using Nikto,

W3af, and Zaproxy tools. Nikto finds 8 loopholes in the target,

Zaproxy finds 7 loopholes in the target, and W3af fails to find

the loopholes. During exploitation, the team identified an SQL

injection error, XSS exploit, password dictionary, brute force

attack process on burp suite, and a sniffing attack with

Wireshark. After the automatic penetration testing was

completed, manual penetration testing was performed, and the

findings were compared to the percentage range.

In the investigation of Ojagbule et al. [7], the author

compared SQL vulnerabilities found in common content

management systems. To achieve this, the Nikto tool was used

for the initial scanning phase, and the SQLMAP tool was used

for penetration testing. The three content management systems

analyzed were WordPress, Joomla, and Drupal, all installed on

localhost. There are four phases involved in penetration

testing in this paper. The first phase is gathering information

about the system and server to be targeted, then proceeding

with the scanning phase; they used a Nikto scanner to check

dangerous files, outdated versions, and server problems. After

scanning, they started with exploitation using SQLMAP, and

the final phase is mitigation, which comprises ways of

removing the vulnerabilities found during the previous phases

and the prevention techniques. In the whole process, the

scanning didn’t show any vulnerable SQL attacks; instead, it

warned about the other vulnerabilities available on those

websites, WordPress, Joomla, and Drupal.

The investigation focused on the client and server-side

attack possibilities in Kali Linux [11]. The main advantage of

using Kali Linux is its many built-in hacking tools, which

significantly help us perform vulnerability analysis and

security testing. In the context of client-side attacks, the

authors discuss the need for such attacks when server-side

attacks fail or when the attacker fails to obtain the proper IP

address. The attackers use social engineering techniques to get

important user details like names and social media account

details. From those details, they start analyzing the user. It is

helpful for them to understand more about the client. The most

common client-side attack they mentioned is the insertion of

Trojans into the device, and they even mentioned some

prevention techniques for the attack. They discussed

Netdiscover and Zenmap’s tools in server-side attacks because

they don’t require many details. Only the target IP is enough.

Those tools can use the IP address to identify details like open

ports, OS details, and installed services and works. After all

this discussion, they demonstrated packet sniffing, DoS

attacks, man-in-the-middle attacks, and fake access points.

Devi and Kumar [12] proposed identifying web application

security weaknesses using ethical hacking techniques. For this

assessment, they used tools like Nikto, OWASP’s Zed attack

proxy, Netcraft, Sparta, and Nmap in the Kali Linux platform.

They detected security weaknesses in all domains from low to

medium with OWASP’s ZAP tool. The detected vulnerability

is mostly cross-site scripting, SSL, server leak, HTTP header,

Retrieved x-powered, cookie without secure flag, URL

rewriting, application error disclosure, etc. As a result, they

concluded that Nikto found more vulnerabilities than

OWASP’s ZAP tool.

In the work of Anand and Singh [13], penetration testing

was done for Amazon Echo against a denial-of-service attack

on the Kali Linux platform. They started the testing by

assuming that the cyber criminals already have access to the

home network. They monitored the whole network traffic of

the Amazon Echo device under DoS attack, one case to

perform the attack on Kali Linux and one more instance for

monitoring the network during the attack on the same Kali

Linux. These attacks cause the device to crash, disconnecting

the device from the network. This process is monitored using

the Wireshark tool in Kali Linux, and they also showed a

network packet drop during the attack. By doing all these

processes, they found that initializing the denial-of-service

attack in Amazon Echos is easier. The only thing that attackers

should know is to access the home network, which leads them

to get the required information about the devices connected to

the network. They gathered all the information about the

device using Nmap for their demonstration. After getting the

524

device’s MAC address, they used the SPARTA tool to identify

the open ports. The airodump is used to obtain basic service

set identification of the router. Finally, they started attacking

the device using the Metasploit tool in Kali Linux.

The main aim of the previous study is to develop a fake

website using Python scripting and a flask server to detect the

SQL injection, cross-site scripting, spider content discovery

tool and skip fish in Kali Linux [14]. They used a spider to

discover the content and functionality of the visible content

where the users can browse. XSS and SQL injections are

detected in the forms. The authors also conducted automated

scans using technologies such as skipfish to give an in-depth

website analysis. The main advantage of using skip fish is after

completing the scan, it creates a separate zip file for the result.

In that file, “index.html” may exist. It contains all the

vulnerability details that it found during the scan. After doing

all these automated scans, they tried manual testing like SQL

injection, cross-site scripting, stored XSS, and Command

Injection. As a prevention technique, they requested

parameterized queries in SQL so that the attacker cannot

manipulate the query as they wish in SQL injection.

Additionally, using Content Security Policies (CSPs) in the

response header is recommended to prevent cross-site

scripting. This paper discusses the most frequent

vulnerabilities and automated preventative methods.

In the work of Kandasamy et al. [15], the author

investigated the recent cyber-attacks on healthcare institutions

in Asia. Their investigation found five different types of

attacks, mainly dominating healthcare institutions. This paper

discusses those five attacks, their vulnerabilities, and their

risks. The five main types of cyber-attacks are the Trojan

attack, Phishing attack, Ransomware, Advanced Persistent

Threat (APT), and Malware - Credentials compromise. There

are four main types of Malware: Malicious software is

intended to get unauthorized access to someone’s system

without their knowledge. The three types of Malware are

Trojan, Spyware, and Ransomware. In 2021, ransomware

attacks targeting healthcare institutions witnessed a significant

surge of 150%, as reported by the Cybersecurity and

Infrastructure Security Agency (CISA). As per the report’s

findings, healthcare institutions faced an average cost of $1.1

million due to ransomware attacks.

Phishing attacks are also social engineering attacks used to

steal user details, including financial details like credit card

numbers, by sending malicious links to the users. A recent

study shows Malaysia ranks third in Asia for phishing attacks.

Advanced Persistent Threat is deployed over a long period. It

is a selective attack to obtain unauthorized access to the

organization’s confidential data. APT has eight stages: Initial

Recon, Initial Compromise, Establish Foothold, Escalate

Privilege, Internal Recon, Move Laterally, Maintain Presence,

and Complete Mission. During this COVID-19 period, this

was the most common attack in Asian Healthcare institutions

by some Chinese APT groups, and they got around 68 lakhs of

patient details. After discussing all the attacks, they listed the

most common vulnerabilities that cause them with the help of

the national vulnerability database and common

vulnerabilities and exposes.

The motive in the study of Gunawan et al. [16] is to

penetrate web servers by simulating SQL injection, Cross-site

scripting, and WordPress attacks. With the help of Burp Suite

and SQLMap, they exploited the SQL injection. Penetration

testing is used to scan and gather information from web

applications for attacks. It gathers HTTP GET and POST

requests from the web server and the website cookies, essential

to accessing the SQL database. For XSS, they used the BeEF

tool on Kali Linux. They made a small modification to the

technique used in this attack. They created a phishing website

that redirects the site to another phishing page, which helps the

attacker download the required software and make it on the

victim’s machine.

In the investigation of Kumar and Tlhagadikgora [17], the

author implemented network and system administration

penetration testing. They designed and set up a virtual network

laboratory to conduct penetration testing by demonstrating the

attacks using Kali Linux. Four phases are involved in this

paper: information gathering, vulnerability analysis,

exploitation, and reporting. The initial phase involved

information gathering, utilizing three open-source tools

available in Kali Linux: i.e. Nmap, Zenmap, and Dmitry.

Nmap and Zenmap identify the live host in the virtual network

laboratory. Once the live hosts were identified, the next step

involved scanning the open ports using OS and service

fingerprinting techniques. After that, they started the

vulnerability analysis using Nexpose community, Nessus, and

OpenVAS. The report generated by Nessus contains a list of

vulnerabilities against every host.

Similarly, OpenVAS worked under the same configuration,

allowing for a comprehensive assessment of the security

posture of the organization’s IT infrastructure. By comparing

the scanning reports generated by these tools, the author

identified various vulnerabilities, including buffer overflow,

spoofing, denial-of-service (DoS), and privilege elevation. It

helps the organization find loopholes exploited by the attacker

so they can develop a security mechanism for the loopholes.

3. METHODOLOGY

3.1 Research design

The present work follows an experimental design approach

to assess the vulnerabilities and perform penetration testing on

a dummy shopping website. It evaluates security measures put

in place methodically by manipulating controlled variables.

Identifying potential vulnerabilities in the target web

application was mainly done with the Nikto vulnerability

scanner during the vulnerability detection phase. It is an

automated vulnerability evaluation that scans for recognized

vulnerabilities, misconfigurations, and security weaknesses

without exploiting them. The results from Nikto showed issues

such as the absence of security headers, old software versions,

and configuration problems that may be vulnerable to

exploitation.

While vulnerability detection finds possible weaknesses,

penetration testing goes a step beyond by actively trying to

exploit those vulnerabilities. In this research, various

penetration testing techniques were employed:

1) Phishing attacks using SetoolKit to test for broken

authentication and sensitive data exposure

vulnerabilities.

2) Using BurpSuite to modify and tamper with server

requests, simulating attacks like price manipulation

or unauthorized actions.

3) Server-Side Request Forgery attacks to test for the

ability to access restricted resources and sensitive

data.

These hands-on exploitation attempts went beyond

525

detecting vulnerabilities and validated their exploitability and

impact in a controlled environment.

3.2 Target environment

The target of this study is a dummy shopping website

created specifically for this purpose. A Whois lookup revealed

that the website is hosted on a server with IP address

65.8.178.77.

3.3 Information gathering

The present paper uses Nmap to gather information about

the target website. The few important features of Nmap are

host discovery, Port Scan, Service and Version Detection, and

Operating System detection [18]. Before proceeding with

Nmap commands, Whois lookup is used to identify the IP

address of the website.

Figure 1. Service and version detection

Prior to executing Nmap commands, a Whois lookup is

performed to identify the IP address of the target website.

Subsequently, Nmap is utilized for the following tasks using

the obtained IP address:

1. Nmap leverages host discovery algorithms to detect

active hosts within a specified IP range. This step is

crucial in identifying live systems for further probing.

2. Port Scanning is conducted to determine which ports

on the target system are open and potentially hosting

services accepting connections. Nmap's port

scanning capabilities help uncover potential attack

vectors.

3. For the open ports identified during port scanning,

Nmap attempts to identify the specific services

running on those ports and their respective versions.

Accurate service and version information is valuable

for assessing potential vulnerabilities associated with

outdated or insecure software.

4. Nmap incorporates techniques for detecting the

operating system running on the target system. If

direct identification is not possible, Nmap provides

educated guesses based on its fingerprinting database,

along with a confidence rating for each guess.

Knowledge of the underlying operating system aids

in understanding potential vulnerabilities and

tailoring further testing activities.

The information gathered through these Nmap features

serves as a foundation for subsequent phases of the

vulnerability assessment and penetration testing process.

Figure 2. OS detection

Figure 1 shows the output of service and version detection

in Nmap. Of 1000 ports, 982 are closed, so it is not showing

anything about them. The remaining ports show the details;

from the output, port 80/TCP, the HTTP service, is in an open

state with Amazon CloudFront httpd. Figure 2 shows the

operating system detection output. The Nmap fails to detect

the correct operating system for the target website. Instead, it

526

lists the possible operating system based on the guess.

According to the guess, the operating system was Grandstream

embedded.

3.4 Vulnerability scanning

Several activities include crawling, fuzzing, and analyzing

web application vulnerability scanning. Crawling searches for

pages in a web application, fuzzing simulates the attack.

Finally, the analyzer analyses the response given by the fuzzer

to identify whether the information is vulnerable. Three

methodologies are used in vulnerability finding for the web

application, namely, Black-Box Testing when the scanner

doesn’t have any information about the web application,

White-Box Testing when the scanner knows some information

about the web application, and grey-box testing to check the

output based on the given input with some limited knowledge

of web application [19]. This paper uses the Nikto

vulnerability scanner to identify the vulnerability in the web

application.

Nikto is an open-source vulnerability scanning tool

available in Kali Linux, which can test more than 6700

harmful files or programs and more than 1200 outdated

version detection [20]. Figure 3 shows the Nikto vulnerability

scanner output. It found seven pieces of information about the

target web application. The first information is anti-

clickjacking X-Frame-Options header is not present, which

means the attacker can use this web application to trick a user

by clicking a button or a link that redirects the user to a

malicious website. The next vulnerability in that web

application is the X-XSS protection header. This header

configures the reflective Cross-Site Scripting protection; it

helps us stop page loading if it finds XSS attacks. This

protection header is not defined in this web application, so the

web page loads if the attacker gives any Cross-Site Scripting

into the web application. Because of that, the attacker can

achieve their goal. The content-type response header is not set

in the webpage, and this response header is responsible for

protecting Multipurpose Internet Mail Extensions (MIME)

sniffing vulnerabilities. MIME sniffing vulnerabilities occur

when a web application allows users to upload content. The

attacker can upload the malicious file if it allows the user to

upload content. Along with these vulnerabilities, a few more

uncommon headers are also identified.

Figure 3. Nikto vulnerability analysis

The “X-Amz-Cf-Id” header is unique to Amazon Web

Services (AWS) CloudFront, a content delivery network

(CDN) service offered by Amazon and is not a standard HTTP

header. CloudFront produces this header and is present in the

server’s HTTP response. The “X-Amz-Cf-Id” header in the

output of the Nikto vulnerability scanner does not signify a

vulnerability. As was already noted, the content delivery

network Amazon Web Services (AWS) CloudFront produces

the “X-Amz-Cf-Id” header, which is a unique header. Another

distinctive header associated with Amazon Web Services

(AWS) CloudFront is the “X-Amz-Cf-Pop” header. The

“CloudFront Point of Presence” (POP) header is abbreviated

as such. Figure 4 shows the w3af vulnerability scanning.

Figure 4. w3af vulnerability scanning

The key findings of using w3af are as follows.

Wildcard DNS Configuration: The target website is using a

wildcard DNS configuration, where multiple subdomains

resolve to the same IP address (192.168.153.1). This

configuration can probably reveal sensitive statistics, and

boom the assault floor.

Sensitive Information Disclosure: The experiment located

numerous URLs related to the phpinfo.Personal home page

script, which could display sensitive information

approximately the server configuration, including set up

modules, surroundings variables, and paths.

Potential XSS Vulnerabilities: The test identified potential

Cross-Site Scripting (XSS) vulnerabilities that can allow an

attacker to inject malicious scripts into the website and

doubtlessly compromise consumer money owed or scouse

borrow sensitive facts.

Potential XST Vulnerability: The scan detected a potential

Cross-Site Tracing (XST) vulnerability, which could enable an

attacker to trace the website's requests and potentially gain

access to sensitive information.

Deliberate Vulnerable Application: The scan found a URL

(http://192.168.145.128/mutillidae/) that is likely a

deliberately vulnerable web application used for testing and

learning purposes.

On a different website, information along with the DAV

methods enabled on the target HTTP server and the scan

results. The vulnerabilities scan using w3af is listed in Table

1.

Table 1. Vulnerabilities scan using w3af

Header Type Value

Server Header Microsoft-IIS/8.5

x-aspnet-version 4.0.30319

x-powered-by ASP.NET

527

Target URL with DAV methods enabled:

 - URL: http://www.acuart.com/

- DAV methods enabled, such as baseline control, check-in,

checkout, connect, copy, debug, get, head, index, invalid,

invoke, label, link, lock, merge, subscribe, subscriptions, text

search, trace, track, unlink, unlock, unsubscribe, and

version_control

 Scan Results:

- Found 1 URL: http://www.acuart.com/

- Different injection points: 1

The scan enables various dependency modules or plugins

related to error handling, server headers, allowed methods, and

version information for different components like "format

string", "redo's", "dav", and "frontpage".

The scan detected information about the target HTTP server

and its version in the requests with specific IDs (36 and 37).

The detected server is "Microsoft-IIS/8.5", and the "X-

AspNet-Version" header shows the server version as

"4.0.30319". Additionally, the "X-Powered-By" header

indicates the target server is "ASP.NET".

For the URL "http://www.acuart.com/", the scan found a list

of enabled DAV (Distributed Authoring and Versioning)

methods. The enabled methods include various http methods

like acl, baseline control, checkin, checkout, connect, copy,

debug, get, head, index, invoke, label, link, lock, merge,

mkactivity, mkcol, move, notify, options, patch, pin, poll, post,

prop find, prop patch, put, report, rmdir, search, show method,

spacejunc, subscribe, subscribe tree, text search, trace, track,

uncheck out, unlink, unlock, unsubscribe, and version control.

The scan found 1 URL ("http://www.acuart.com/") and 1

different injection point during the scan, which finished in 38

seconds.

3.5 Exploitation

Attackers possess various tactics to exploit vulnerabilities

and compromise system security. These include manipulating

SQL queries for data extraction, exploiting authentication

weaknesses for unauthorized access, and intercepting sensitive

information. Phishing attacks trick people into giving up login

details or personal information, while server-side request

forgery (SSRF) attacks provide unauthorized access to

company property. Cross-site scripting (XSS) flaws enable

session hijacking when DoS attacks destroy systems. File

attachment vulnerabilities can lead to increased access or

privilege, while broken access allows unauthorized access.

XML External Entity (XXE) attacks manipulate XML input

for code execution. These strategies highlight the diverse

approaches attackers use to exploit system weaknesses and

compromise security.

The most exploited vulnerabilities are SQL injections,

Broken Authentication, Sensitive Data Exposure, File

inclusion testing, Server-Side Request Forgery, XML external

entities, broken access control, security misconfigurations,

and cross-site scripting. The present paper is mainly focusing

on broken authentication and sensitive data exposure.

One of the most common broken authentication attacks is a

phishing attack. The phishing attack is one of the cybersecurity

attacks used to steal user details, including login credentials

and even credit card numbers. The attacker sends malicious

messages as a trusted entity with malicious links for this attack.

Those links lead the user to install Malware software or files

that freeze the system as part of a ransomware attack, or the

attackers can steal sensitive information [21]. Phishing for

2FA codes (two-factor authentication). Attackers may try to

trick users into submitting their 2FA codes or completely

circumvent the 2FA procedure when a website uses 2FA. This

can be accomplished by pretending to be reputable services or

by utilizing social engineering strategies to get consumers to

divulge their codes. This paper uses the SetoolKit open-source

tool for a phishing attack. This tool clones the same website

created for this paper. If the user enters it, the attacker can get

all the details about the user system and download the required

malicious files or code into the target system. But as far as the

target is concerned, they cannot differentiate between the

original and phishing sites because they look the same.

Phishing for personal information, attackers may ask

consumers to disclose sensitive data through false emails or

communications that appear to be sent from a reliable source.

Examples are requests for private company data, personnel

records, or customer databases.

The next tool is Burpsuite, one of the most popular web

attack platforms, which can be used for scanning and even

attacks [22]. Using this tool, the tester can simulate various

security threats to test their application, which helps them

improve their security policy. In the burp suite, the important

feature is the agent function, which uses a proxy module

between the web application and the server. The proxy server

is a server between the web browser and the server. When the

client uses the browser instead of using the correct server, it

tries to retrieve the information from the proxy server. The

proxy server retrieves the correct server’s information and

displays it to the client. Because of that, the attacker looks

through the proxy server’s information. Even the attacker can

modify the request in the web application; in this attack, the

attacker modifies the content in the browser like they are

trying to reduce the product price or change the product in the

cart. Like that, many vulnerabilities can be found using

penetration testing on the web application.

In a server-side request forgery (SSRF) attack, resources are

accessed or changed by the attacker employing server

capability that has been abused. The attacker’s target is A

program that permits data imports from URLs or enables users

to read data from URLs. Changing URLs or messing with

URL path traversal to modify URLs is possible. Attackers

often provide a URL (or alter an existing one), and the server’s

running code reads from or submits data to it. Attackers can

use URLs to access private information and services, such as

HTTP-enabled databases and server configuration data, not

intended to be made public. An attacker can include a file via

the File Inclusion vulnerability, usually by taking advantage of

“dynamic file inclusion” procedures set up in the target

programme. The usage of user input without enough validation

leads to vulnerability. This may result in the file’s contents

being produced, but depending on how serious the problem is,

it may also result in. execution of code on the web server.

Cross-site scripting (XSS) attacks result from client-side code

execution, such as JavaScript.DoS attacks and the disclosure

of sensitive information.

4. PREVENTION TECHNIQUES

One of the vulnerabilities in web applications is cross-site

scripting (XSS); as said before, this is a client-side code

injection attack in which the attacker executes malicious code

in the web application.

Input validation and sanitization of user input by removing

528

or encoding potential malicious scripts like <script> tags is

crucial to prevent XSS. Ensure output encoding of any user-

supplied data before rendering to prevent injected scripts from

executing. Implement a Content Security Policy (CSP) to

whitelist trusted content sources and turn off inline script

execution, making it harder for malicious scripts to get

injected. Configure browser security headers like X-XSS-

Protection to enable XSS filtering, instructing browsers to

block pages with code injection attack signatures.

Preventing the XSS attack is not easy, but if the developers

follow a few steps, they can still prevent the XSS attack [23].

The first step is to properly train the developers about the XSS

attack, then ask them to use QA staff, DevOps, and SysAdmins.

The most important thing is the developers need to treat all

user input as public input. It is impossible to identify how the

attacker tries to access a web application, and the attacker can

access the web application even with an authorized login, so

treating all the users as public input is the main aspect. Setting

the HttpOnly flag for cookies helps us avoid accessing client-

side JavaScript. Scanning the web application also helps us

identify the XSS attacks [24].

Some prevention techniques can be used for XSS scripting

to avoid these attacks. However, preventing phishing attacks

is more difficult. The only prevention the client can do is click

any link from any source, even if the sender is known to the

client. Instead of clicking the link, the user can use the search

engine to access the site. Nowadays, most browsers enable

add-ons to help us spot malicious websites or alert users about

phishing sites [25]. Most importantly, don’t give any personal

or sensitive information on an insecure site, change the

password regularly, and don’t keep the same password for all

websites. If the password were the same, it would be easy for

the attacker to log in to any user site.

Compared with previous attacks, preventing SQL injection

is simple to implement. The SQL injection attacks can be

prevented using prepared statements with parameterized

queries, properly constructed procedures, escaping all user-

supplied input, and enforcing least privilege [26]. These are

the few defence techniques that can prevent SQL injection

attacks.

Input validation and sanitization of user input before

database queries prevent SQL injection attacks. Use least

privileged database accounts with only required permissions.

Utilize stored procedures for database access as they are less

vulnerable when coded properly. Implement multi-factor

authentication beyond just passwords. Enforce strong

password policies for length, complexity, and rotation.

Automatically lock accounts after failed login attempts to

prevent brute-forcing. Implement a centralized authentication

system across applications instead of ad-hoc logic. These are

the few defence techniques that can prevent SQL injection

attacks.

One prevention technique is installing a firewall, which is

an efficient way to prevent an attack; it works as a shield

between the system and the attacker. Next, click on any

advertisements or pop-ups that can be avoided in the web

application because they may contain malicious code. The

malicious code is automatically downloaded into the system

without anyone’s knowledge [27]. Never utilize the input

directly in the application code. Not just online form inputs

like login forms, but all input must be sanitized by the

developer. They must eliminate components of potentially

dangerous code, such as single quotations. It’s a good idea to

turn off the display of database problems on the live website.

SQL injection can gather details about the database via

database problems. All user-supplied input fields should

undergo stringent validation, especially those requiring

network requests to prevent server-side request forgery

validation of input.

Technique for preventing server-side request forgery

Validation of Input All user-supplied input fields should

undergo stringent validation, especially those that require

network requests. To make sure the URLs or IP addresses are

authentic and authorized, validate and sanitize them. Assign

the program access to a whitelist of permitted domains, IP

addresses, and protocols. Check any user-provided URLs

against this whitelist to limit requests to just reputable

resources. Filtering based on a whitelist is an effective way to

prevent SSRF attacks. Maintaining an Allowlist of permitted

URLs/IPs your application can access is a key SSRF

prevention measure. Reject any requests attempting to access

resources outside of the pre-approved allowlist. Segregating

the Application Logic that integrates remote resources loaded

over the network can contain the scope of potential SSRF

vulnerabilities and attacks within your environment.

Cross-Site Request Forgery (CSRF) tokens can be used to

verify the integrity of requests coming from your application.

As a result, attackers are less likely to deceive users into

sending unauthorized requests that could result in SSRF

assaults. Whitelisting of URLs on the server: implement

server-side URL whitelisting if your application requires the

ability to retrieve resources from external URLs. Keep a list of

permitted URLs and only retrieve resources from those

sources.

5. RESULTS ANALYSIS

In this section, three different vulnerability scanners, Nmap,

Nessus, and Nikto, are compared regarding features and the

vulnerabilities they can find. Each tool is compared with

features like cost, usage, capable operating system, and

advantages and disadvantages in a feature comparison.

The other comparison is purely based on the vulnerability it

can find; not all vulnerability scanners are the same, and each

scanner has some unique features.

Nmap Port Scanning Results:

• Out of 1000 ports scanned, 982 ports were closed.

• Ports found open: 80 (http), 443 (https)

Nikto Vulnerability Scan Results:

• Number of vulnerabilities/items reported: 7

• Error limit reached: 20 errors

Nessus was found to be the most comprehensive tool,

capable of identifying the highest number of vulnerabilities

compared to Nmap and Nikto shown in Table 2. Nikto,

although good at detecting web server vulnerabilities (over

6700 vulnerabilities), failed to detect some common

vulnerabilities like SQL injection, improper error management,

and denial of service shown in Table 3.

Nmap's strength lies in gathering information about ports

and services running on a system, but it is not as effective as

Nessus for software vulnerability scanning.

As shown in Table 3, the Nessus vulnerability analysis tool

works better when compared to Nmap and Nikto. Nessus is

possible to identify more vulnerability than the other tools.

Even though the Nikto looks good in Table 2, it fails to detect

some common vulnerabilities.

529

Table 2. Features of vulnerability scanners

Features Nmap Nessus Nikto
Cost It is free to download It is not free for a long time. It is free to use.

Usage It can be used to access the

uncontrolled part of the system
It is a security scanning tool to

identify malicious files
It is useful to identify outdated web servers,

software and version-specific problems.
Operating

Systems Windows and Linux Windows, Linux, Mac, Unix Windows, Linux

Advantage It helps to protect the system

network from intruders.
It doesn’t prevent attacks; it is only

used to check weaknesses. It can detect more than 6700 vulnerabilities.

Disadvantage It is not a better option for software It is not a better option for networks. It runs at the command line without any graphical

user interface. 

Table 3. Vulnerabilities comparison

Vulnerabilities Nmap Nessus Nikto

SQL Injection Yes Yes No
Improper Error Management Yes Yes No

Cross-site Scripting Yes Yes Yes
Denial of Service Yes Yes No

Remote Code Execution No Yes No

Figure 5. Scan time vs number of vulnerabilities in

vulnerability analysis

Figure 5 shows each vulnerability analysis tool’s time to

perform a full scan on the web application. Nessus took only

18 minutes to scan and identify 37 vulnerabilities, while Nikto

took 32 minutes but could only find 7 vulnerabilities. This

quantitative comparison highlights Nessus as a more efficient

and comprehensive vulnerability scanner. In a phishing attack,

this paper concentrates on two different tools, Zphisher and

Nexphisher. Both tools are open-source tools. The Nexphisher

tool was developed by combining the Zphisher and HiddenEye

tools. Even though Nexphisher is an advancement of Zphisher,

it doesn't have some main features like custom page generation,

which Zphisher works. In Zphisher, the user can create a

custom webpage based on their requirement instead of using

predefined templates, but in Nexphisher, that feature is not

available.

Figure 6 shows that the Zphisher works better than the

Nexphisher because Zphisher takes less time (7 minutes vs 12

minutes) and has more features (8 vs 5) than the Nexphisher

for setting up a phishing attack. In addition to this, we also

used the w3af tool, which revealed several vulnerabilities,

including a wildcard DNS configuration, sensitive information

disclosure, potential cross-site scripting (XSS) vulnerabilities,

potential cross-site tracing (XST) vulnerability, and the

presence of a deliberately vulnerable application used for

testing purposes.

Figure 6. Scan time and number of features in phishing

attack

6. CONCLUSION

The present paper delved deep into how penetration testing

works and how to find those pesky vulnerabilities in web

applications. It reinforced how important prevention is. Input

validation, whitelisting, and all that stuff to stop attacks like

XSS, SQL injection, and phishing –is super important. But it

is also tricky to put into practice, especially when you're

dealing with a big, complicated web application. The present

paper highlighted the significance of incorporating manual

testing alongside automated tools for penetration testing.

Manual testing can reveal weaknesses that could be

overlooked by automated scanners, particularly in intricate

web applications. Looking ahead, multiple practical

recommendations can be proposed to tackle the constraints

and improve the efficiency of penetration testing for web

applications as summarized as follows. 1) Utilizing multiple

vulnerability scanning tools: 2) The importance of continuous

research and development in penetration testing

methodologies and techniques is emphasized 3) The

importance of collaboration between development and

security teams throughout the software development process

is suggested, and 4) Advise on conducting regular security

audits and assessments, which should include penetration

testing, to consistently assess the web application's security

state and detect any new vulnerabilities that may have

occurred because of updates or upgrades. By acknowledging

these constraints and putting into practice the proposed

suggestions, companies can improve their capacity to pre-

emptively detect and address weaknesses in web applications,

thoroughly safeguarding their important resources and

guaranteeing the security, reliability, and accessibility of their

systems and data.

530

REFERENCES

[1] Goutam, A., Tiwari, V. (2019). Vulnerability assessment

and penetration testing to enhance the security of web

application. In 2019 4th International Conference on

Information Systems and Computer Networks, Mathura,

India, pp. 601-605.

https://doi.org/10.1109/ISCON47742.2019.9036175

[2] Nagpure, S., Kurkure, S. (2017). Vulnerability

assessment and penetration testing of web application. In

2017 International Conference on Computing,

Communication, Control and Automation, Pune, India,

pp. 1-6.

https://doi.org/10.1109/ICCUBEA.2017.8463920

[3] Kothamasu, G.A., Venkata, S.K.A., Pemmasani, Y.,

Mathi, S. (2023). An Investigation on Vulnerability

Analysis of Phishing Attacks and Countermeasures.

International Information and Engineering Technology

Association, 13(2): 333-340.

https://doi.org/10.18280/ijsse.130215

[4] Nakkeeran, M., Mathi, S. (2021). A generalized

comprehensive security architecture framework for IoT

applications against cyber-attacks. In Artificial

Intelligence and Technologies, vol 806. Springer,

Singapore, pp. 455-471. https://doi.org/10.1007/978-

981-16-6448-9_46

[5] Shebli, H.M.Z.A., Beheshti, B.D. (2018). A study on

penetration testing process and tools. In 2018 IEEE Long

Island Systems, Applications and Technology

Conference, Farmingdale, NY, USA, pp. 1-7.

https://doi.org/10.1109/LISAT.2018.8378035

[6] Pandey, R., Jyothindar, V., Chopra, U.K. (2020).

Vulnerability assessment and penetration testing: a

portable solution Implementation. In 2020 12th

International Conference on Computational Intelligence

and Communication Networks, Bhimtal, India, pp. 398-

402. https://doi.org/10.1109/CICN49253.2020.9242640

[7] Ojagbule, O, Wimmer, H, Haddad, R.J. (2018).

Vulnerability analysis of content management systems to

SQL injection using SQLMAP. In SoutheastCon2018, St.

Petersburg, FL, USA, pp. 1-7.

https://doi.org/10.1109/SECON.2018.8479130

[8] Fadlalla, F.F., Elshoush, H.T. (2023). Input validation

vulnerabilities in web applications: Systematic review,

classification, and analysis of the current state-of-the-art.

IEEE Access, 11: 40128-40161.

https://doi.org/10.1109/ACCESS.2023.3266385

[9] Aibekova, A., Selvarajah, V. (2022). Offensive security:

Study on penetration testing attacks, methods, and their

types. In 2022 IEEE International Conference on

Distributed Computing and Electrical Circuits and

Electronics, Ballari, India, pp. 1-9.

https://doi.org/10.1109 ICDCECE53908.2022.9792772

[10] Arnaldy, D., Perdana, A.R. (2019). Implementation and

analysis of penetration techniques using the man-in-the-

middle attack. In 2019 2nd International Conference of

Computer and Informatics Engineering, Banyuwangi,

Indonesia, pp. 188-192.

https://doi.org/10.1109/IC2IE47452.2019.8940872

[11] Cisar, P., Pinter, R. (2019). Some ethical hacking

possibilities in Kali Linux environment. Journal of

Applied Technical and Educational Sciences, 9(4): 129-

149. https://doi.org/10.24368/jates.v9i4.139

[12] Devi, R.S., Kumar, M.M. (2020). Testing for security

weakness of web applications using ethical hacking. In

2020 4th International Conference on Trends in

Electronics and Informatics (ICOEI) (48184),

Tirunelveli, India, pp. 354-361.

https://doi.org/10.1109/ICOEI48184.2020.9143018

[13] Anand, P., Singh, A.S. (2021). Penetration testing

security tools: A comparison. In 2021 10th International

Conference on System Modeling & Advancement in

Research Trends, MORADABAD, India, pp. 182-184.

https://doi.org/10.1109/SMART52563.2021.9676283

[14] Karayat, R., Jadhav, M., Kondaka, L.S., Nambiar, A.

(2022). Web application penetration testing & patch

development using Kali Linux. In 2022 8th International

Conference on Advanced Computing and

Communication Systems, Coimbatore, India, pp. 1392-

1397.

https://doi.org/10.1109/ICACCS54159.2022.9785232

[15] Kandasamy, K., Srinivas, S., Achuthan, K., Rangan, V.

P. (2022). Digital healthcare-cyberattacks in asian

organizations: an analysis of vulnerabilities, risks, nist

perspectives, and recommendations. IEEE Access, 10:

12345-12364.

https://doi.org/10.1109/ACCESS.2022.3145372

[16] Gunawan, T.S., Lim, M.K., Kartiwi, M., Malik, N.A.,

Ismail, N. (2018). Penetration testing using Kali linux:

SQL injection, XSS, wordpres, and WPA2 attacks.

Indonesian Journal of Electrical Engineering and

Computer Science, 12(2): 729-737.

https://doi.org/10.11591/ijeecs.v12.i2.pp729-737

[17] Kumar, R., Tlhagadikgora, K. (2018). Internal network

penetration testing using free/open source tools: Network

and system administration approach. Advanced

Informatics for Computing Research, 257-269.

https://doi.org/10.1007/978-981-13-3143-5_22

[18] Karangle, N., Mishra, A.K., Khan, D.A. (2019).

Comparison of Nikto and Uniscan for measuring URL

vulnerability. In 2019 10th International Conference on

Computing, Communication and Networking

Technologies, Kanpur, India, pp. 1-6.

https://doi.org/10.1109/ICCCNT45670.2019.8944463

[19] Visoottiviseth, V., Kotarasu, C., Cheunprapanusorn, N.,

Chamornmarn, T. (2019). A mobile application for

security assessment towards the internet of thing devices.

In 2019 IEEE 6th Asian Conference on Defence

Technology, Bali, Indonesia, pp. 1-7.

https://doi.org/10.1109/ACDT47198.2019.9072921

[20] Shah, M., Ahmed, S., Saeed, K., Junaid, M., Khan, H.

(2019). Penetration testing active reconnaissance phase–

optimized port scanning with Nmap tool. In 2019 2nd

International Conference on Computing, Mathematics

and Engineering Technologies, Sukkur, Pakistan, pp. 1-

6. https://doi.org/10.1109/ICOMET.2019.8673520

[21] Nathezhtha, T., Sangeetha, D., Vaidehi, V. (2019). WC-

PAD: web crawling based phishing attack detection. In

2019 International Carnahan Conference on Security

Technology, Chennai, India, pp. 1-6.

https://doi.org/10.1109/CCST.2019.8888416

[22] Junmei, W., Chengkang, Y. (2021). Automation testing

of software security based on burpsuite. In 2021

International Conference of Social Computing and

Digital Economy, Chongqing, China, pp. 71-74.

https://doi.org/10.1109/ICSCDE54196.2021.00025

[23] Bherde, G.P., Pund, M.A. (2016). Recent attack

prevention techniques in web service applications. In

531

2016 International Conference on Automatic Control and

Dynamic Optimization Techniques, Pune, India, pp.

1174-1180.

https://doi.org/10.1109/ICACDOT.2016.7877771

[24] Nischitha, G.K., Sahana, S., Santhosh Kumar, B.J.

(2019). Detection and avoidance of web vulnerability

using XSS. International Journal of Recent Technology

and Engineering, 8(2): 1737-1740.

https://doi.org/10.35940/ijrte.B1039.078219

[25] Abed, T.M., Abdul-Wahab, H.B. (2019). Anti-phishing

system using intelligent techniques. In 2019 2nd

Scientific Conference of Computer Sciences, Baghdad,

Iraq, pp. 44-50.

https://doi.org/10.1109/SCCS.2019.8852601

[26] Swarup, Y., Kumar, A., Tyagi, A., Kumar, V. (2021).

Prevention of SQL injection attacks using query hashing

technique. In 2021 2nd International Conference on

Range Technology, Chandipur, Balasore, India, pp. 1-5.

https://doi.org/10.1109/ICORT52730.2021.9581804

[27] Adil, M., Khan, R., Ghani, M.A.N.U. (2020). Preventive

techniques of phishing attacks in networks. In 2020 3rd

International Conference on Advancements in

Computational Sciences, Lahore, Pakistan, pp. 1-8.

https://doi.org/10.1109/ICACS47775.2020.9055943

532

