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This study employs machine learning techniques to forecast horticultural production in 

Indramayu Regency, Indonesia, utilizing data from the Indramayu Regency Statistics 

Agency from 2009 to 2017. The variables under observation encompass mango fruit 

production volume, harvest area, rainfall, and the number of rainy days. Mango fruit 

production volume is the target variable, while the remaining data serves as features. 

Regression models comprise Linear Regression, Random Forest Regression, Gradient 

Boosting Regression, and Decision Tree Regression. The research unveils three key 

findings. Firstly, it underscores the significance of data preprocessing to eliminate noise or 

outliers, thereby enhancing the performance of regression models, as evidenced by 

amplified R2 and reduced RMSE values alongside diminished MAPE. Elevated RMSE 

values highlight the presence of noise or outliers in unprocessed data. Secondly, it 

emphasizes the necessity of a representative test data proportion for precise prediction 

outcomes, as indicated by escalating MAPE and RMSE with increased test data 

proportions. Lastly, it shows the strong correlation between harvest area and mango 

production volume, culminating in commendable evaluation metrics. Among the regression 

models, Random Forest Regression emerges as the most robust, boasting the highest R2 

value and lowest RMSE, affirming its efficacy in this study. 
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1. INTRODUCTION

Horticultural production is vital in addressing food security 

and improving community welfare [1]. Horticulture is a 

crucial sector in Indonesia, encompassing a diverse array of 

plants, including vegetables, fruits, flowers, and ornamental 

species prized for their economic value. The country's 

expansive land and favorable climatic conditions provide an 

ideal environment for robust plant growth [2], particularly 

evident in regions like Indramayu. Here, the convergence of 

ample land and a supportive climate underscores the strategic 

importance of horticultural production. Moreover, the 

economic potential inherent in various horticultural crops 

further improves the welfare of Indramayu’s people. Through 

effective horticultural practices, nutritional needs are 

addressed, and economic benefits are gained, leading to 

improved livelihoods and welfare for the people [3]. 

Indramayu Regency boasts vast resource potential, one of 

the most significant being the horticultural sector [4]. As a 

cornerstone of the region’s agricultural landscape, horticulture 

is focal in bolstering food security and fostering economic 

prosperity for local farmers. Accurate forecasting of 

production levels equips policymakers, farmers, and 

stakeholders with valuable insights for resource allocation, 

market strategizing, and investment decisions [5]. For 

instance, anticipating a surge in horticultural output during a 

specific season empowers farmers to plan their planting 

schedules meticulously and bolster investments in irrigation 

systems and fertilizers [6]. This proactive approach enhances 

crop yields and profits and amplifies agricultural output, 

thereby invigorating the local economy. Conversely, in the 

event of anticipated low production levels, policymakers can 

pivot resources towards importing essential crops or devising 

alternative income streams for affected farmers. Such 

responsive measures mitigate economic setbacks triggered by 

seasonal fluctuations. Moreover, adept planning enables 

farmers to reduce the risk of crop failure and avoid significant 

investment losses [7]. Thus, the significance of agricultural 

production forecasting lies in its capacity to efficiently manage 

resources, ensuring the sustained profitability and resilience of 

both the farm sector and the local economy. 

Artificial intelligence, particularly machine learning, 

presents a compelling avenue for forecasting agricultural and 

horticultural production [8]. Machine learning, a cornerstone 

of artificial intelligence, empowers computers to obtain 

insights from data and past experiences, enabling predictive 

analytics and decision-making without explicit programming. 

When predicting agricultural or horticultural yields, machine 

learning algorithms leverage historical data encompassing 

weather patterns, soil composition, and other factors 

influencing crop growth. Machine learning systems craft 

predictive models by discerning underlying patterns within 
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this data corpus, furnishing farmers and horticulturists with 

invaluable tools for informed planning and decision-making 

across crop production cycles. 

The main objective of this research is to predict horticultural 

production, especially mango fruit in Indramayu Regency, 

Indonesia, by applying various machine learning models. This 

prediction model will utilize historical data published by the 

Indonesian government publicly through BPS (Statistics 

Indonesia) Indramayu data. Thus, we aim to answer the 

research question of what machine learning model is most 

suitable for predicting horticultural production, as well as how 

accurate each model is in predicting horticultural production. 

This research is expected to contribute to the optimization of 

horticultural production in Indramayu Regency, Indonesia. 

 

 

2. RELATED WORKS 

 

There are several previous studies that have applied 

machine learning in solving the problem of predicting 

agricultural production [9-11]. Rathod et al. [12] compared the 

ARIMA algorithm against Neural Network Autoregressive 

(NAR) and non-linear Support Vector Regression (NLSVR) 

in predicting mango fruit production in Karnataka, India. Here, 

the research revealed the machine learning approach 

outstripped the traditional ARIMA model, reaffirming the 

potential of machine learning techniques in agricultural yield 

prediction. 

Jhajharia and Mathur [13] predicted crop yields in the state 

of Rajasthan, India. Prediction is done using a machine 

learning approach. The data used are yield data, area data, 

production data and rainfall data. The data range used was 

from 1997-2018. Machine learning regression models used are 

Decision Tree, Random Forest, Gradient Boosting Regression. 

In this study, it was found that the gradient boosting regression 

model provided the most superior performance compared to 

other machine learning regression models.  

Jorvekar et al. [14] compared the evaluation of machine 

learning regression model performance metrics for crop yield 

prediction in agriculture. The data used in this study were 

taken from several data sources from 101 different countries. 

The data used are yield dataset, rainfall dataset, and pesticides 

dataset with data time span from 1961-2016. There are 8 

regression models compared, namely Linear Regression, K-

Nearest Neighbor, Support Vector Regression, Decision Tree 

Regression, Random Forest Regression, Gradient Boosting 

Regression, Lasso Regression, and Elasticnet Regression. In 

this study, the experimental results show that Random Forest 

Regression has the highest R2 value of 0.973. 

Rai et al. [15] also conducted a comparative analysis on 

various machine learning regression models to predict 

agricultural yields. The purpose of this research is to determine 

the most accurate regression model to predict crop yields. The 

data used in this study came from the Indian agriculture 

government portal. The data used includes covered area, yield, 

seasons, and years from 1997-2013. The regression models 

compared in this study are Decision Tree Regression, Linear 

Regression, Lasso Regression and Random Forest Regression. 

The results showed that the Random Forest Regression model 

outperformed the performance of other regression models. 

Tiwari et al. [16] proposed the use of historical rainfall data 

to predict agricultural yields using a machine learning 

regression model approach. The data used includes several 

years of data (which does not mention the details of the year 

range), crop yields of two types of crops namely wheat and 

potatoes, as well as rainfall data. Machine learning regression 

models used are Random Forest Regression, Support Vector 

Regression, K-Nearest Neighbor, and Gradient Boosting 

Regression. Experiments in this research show that Random 

Forest Regression produces the highest accuracy. In addition, 

this study also mentioned that feature selection and 

hyperparameter tunning can improve the accuracy of machine 

learning regression models. 

Ashwitha and Spoorthi [17] also reported that regression 

models in machine learning can improve the accuracy of crop 

yield predictions for agricultural progress. This study 

compared four regression models namely Random Forest 

Regression, Gradient Boosting Regression, Decision Tree 

Regression, and Linear Regression. This research also 

provides similar findings to other studies, that the Random 

Forest Regression model produces the most accurate 

prediction performance.  

Meanwhile, Putra and Walmi [18] delved into agricultural 

prediction, employing the artificial neural network (ANN) 

algorithm to forecast rice production in West Sumatra, 

Indonesia. Their study encompassed tests across 19 regions 

within West Sumatra, yielding an impressive accuracy rate of 

88.14% and a relatively minimal error rate of 11.86%. 

Similarly, other studies within Indonesia have explored 

machine learning applications in horticultural data analysis. 

Kaunang et al. [19] utilized a decision tree algorithm to predict 

food crop outcomes, Masdian et al. [20] employed the random 

forest algorithm to scrutinize rice productivity in Batang 

Regency, Indonesia, while Fareza et al. [21] leveraged the 

extreme learning machine method to forecast the yield of 

biopharmaceutical plants.  

In the above studies, it can be concluded that the machine 

learning approach can be used to solve the problem of 

predicting agricultural production, including horticulture. The 

majority of machine learning models used are regression 

models such as Random Forest Regression, Decision Tree, 

Gradient Boosting Regression, Linear Regression and other 

regression models. Therefore, in this research we will focus on 

horticultural data, especially mango fruit in Indramayu 

Regency, as one of the regions that has potential resources in 

the horticultural sector.  

These regression models were chosen based on their unique 

capabilities. Random Forest Regression was chosen because 

of its ability to handle data with many variables and its 

resistance to overfitting although it has limitations on large 

computations [22, 23]. In addition, the Random Forest 

Regression model is also widely mentioned in previous studies 

to produce more accurate prediction performance [14-17]. 

Gradient Boosting Regression was chosen because it has the 

advantage of gradually increasing prediction accuracy by 

correcting errors from the previous model but has a longer 

computation time [13, 24, 25]. Decision Tree was chosen due 

to its simplicity and ability to interpret results, which is 

important for intuitive understanding in an agricultural 

context, but is prone to overfitting [26, 27]. Meanwhile, Linear 

Regression was chosen as the base model to compare 

performance with other more complex models. 

Therefore, in this research we investigate several machine 

learning regression models, namely Random Forest 

Regression, Decision Tree, Gradient Boosting Regression, 

Linear Regression, to predict the productivity of horticulture, 

especially mangoes in Indramayu Regency, Indonesia. 
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3. METHODOLOGY 

 

3.1 Data collection 

 

The data collection process in this study was carried out 

through secondary data collection. The secondary data used as 

data for this study were obtained from the data publication 

“Indramayu Regency in Figures” which is released annually 

by the Indramayu Regency's Indonesia Statistics (BPS) [28]. 

The data collected consists of the name of the sub-district, 

year, total mango production, mango harvest area, rainfall and 

number of rainy days. 

The time span of the data is from 2009 to 2017, covering 31 

sub-districts in Indramayu Regency, Indonesia. All data that 

has been collected is tabulated so that 279 rows of data are 

obtained. Data on the amount of mango production is the data 

used as the target variable to predict the amount of mango 

production. Meanwhile, other data will be used as feature 

variables to predict the amount of mango production. The 

pieces of data used can be seen in Figure 1. 

The limited amount of data available each year has caused 

the data in this study to only cover the years 2009 - 2017. This 

is because since 2018, BPS no longer publishes data related to 

mango harvest areas.  

To reduce the impact of this limitation, a thorough data 

quality check was carried out at the data preprocessing stage, 

so that the data used is representative and accurate in the 

context of this research. 

The stages carried out during data preprocessing are 

identifying and deleting empty or missing value data and 

checking the distribution of each data using QQ-plot. QQ-plot 

is used to determine whether there are outliers in the data that 

will affect the performance of the model later in making 

predictions. 

 
 

Figure 1. Excerpts of data on mango production, harvested 

area, rainfall, and rainy days in Indramayu Regency, 

Indonesia 

 

3.2 Data preprocessing 

 

Once the data collection phase concludes, the next step 

involves data preprocessing, an important process to refine the 

dataset by eliminating noise to facilitate more precise 

predictions. Initially, the focus is on identifying and removing 

empty or missing values. Subsequently, a thorough 

examination of the distribution of each dataset ensues, 

typically conducted through techniques like QQ-plot analysis. 

This stage serves to uncover potential data outliers that could 

compromise the model’s predictive accuracy. The results of 

this preliminary data distribution assessment are shown in 

Figure 2. 

 
 

Figure 2. Initial data distribution 
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Figure 3. Data distribution after outlier removal 

 

In Figure 2, it can be seen that the initial data distribution 

still contains outlier data. Therefore, the next step is to remove 

outliers using the Interquartile Range method. The results of 

the data distribution after removing outliers can be seen in 

Figure 3. 

The next step is to transform the district's data using one-

hot encoding, which will convert each district into a numeric 

representation. In addition, it also deletes year data that will 

not be used in forming a prediction model for the amount of 

mango production in Indramayu Regency, Indonesia. The last 

stage is to normalize the data using MinMaxScaler.  

 

3.3 Model training dan testing 

 

After the data undergoes preprocessing, the next step 

involves data partitioning. This entails dividing the dataset into 

two subsets: training and test data. The training data is utilized 

to construct regression models during the training phase, while 

the test data is reserved for assessing these models. 

The training data undergoes training using various 

regression techniques, including linear regression, random 

forest regression, gradient boosting regression, and decision 

tree regression. Conversely, the test data, which remains 

unseen throughout the training phase, serves as a litmus test 

for evaluating the predictive performance of the trained 

regression models on fresh data. Notably, this training and 

testing process uses the Python programming language within 

the Google Colab environment. 

 

3.3.1 Linear regression 

The linear regression method is employed to predict a 

quantitative response, denoted as Y, based on a solitary 

predictor variable, X. This approach hinges on the assumption 

that X and Y exhibit a linear relationship [29], a mathematical 

expression formulated in Eq. (1). 

 

𝑌 ≈ 𝛽0 + 𝛽1𝑋 (1) 

 

Eq. (1) signifies a regression of Y on X, where X embodies 

factors about harvest productivity, such as mango harvest area, 

rainfall, number of rainy days, and districts in Indramayu. 

Meanwhile, Y represents the quantity of mango production. 

Utilizing a linear regression model, we can effectively regress 

the quantity of mango production against these harvest 

productivity factors. Within Eq. (1), 𝛽0  and 𝛽1  denote two 

unknown constants, signifying the intercept and slope within 

the linear model. 𝛽0  and 𝛽1  called coefficients or model 

parameters, are important in determining the relationship 

between X and Y. 

 

3.3.2 Random forest regression 

Random forest is an ensemble classifier that collects 

different decision trees [30]. Capable in both regression and 

classification tasks, this method combines multiple tree 

predictors. Each decision tree within the ensemble operates on 

random vectors as parameters, selecting features from samples 

and subsets of the dataset for training in a theoretical manner 

[31]. The strength of individual trees and their 

interdependence collectively determine the generalization 

error of the forest. Each node is split through a randomized 

feature selection process, yielding error rates that rival 

Adboost, particularly in noisy environments [32]. Known for 

its adaptability and user-friendly nature, random forest 

emerges as a favored machine learning algorithm among 

researchers. Its innate effectiveness often yields exceptional 

results even without hyper-parameter tuning, rendering it a 
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staple choice due to its simplicity. 

 

3.3.3 Gradient boosting regression 

Gradient Boosting Regression is commonly employed to 

uncover nonlinear relationships within tabular datasets [33]. 

When a machine learning model exhibits poor predictability, 

gradient boosting enhances model quality through 

interpretability. This iterative process optimizes the model's 

predictive capacity in each learning iteration, enabling it to 

handle missing values and outliers for improved 

generalization. The primary objective of gradient boosting is 

to enhance the model's predictive performance and optimize 

the loss function by bolstering weak learners, which measure 

the disparity between predicted and actual target values. The 

algorithm initiates by training a decision tree, assessing the 

weight of each tree, and classifying them based on their 

complexity. Gradient Boost blends multiple weak models with 

each iterative step to form stronger ones, thereby minimizing 

bias errors [34]. 

 

3.3.4 Decision tree regression 

One notable decision tree algorithm is CART 

(Classification and Regression Tree), which is renowned for 

its versatility in handling regression and classification tasks 

[35]. CART operates as a recursive partitioning method, 

systematically dividing a subset of the dataset into two child 

nodes by utilizing all predictor variables. Beginning with the 

entire dataset, a decision tree is constructed iteratively. The 

selection of the best predictor is guided by the Gini index, 

serving as a measure of inequality (or impurity) within the 

sample. This index aids in establishing decision nodes (D-

nodes) and partitioning the dataset into smaller subsets. The 

tree is then constructed through a recursive process until one 

of several conditions is met. All tuples possess the same 

attribute value; no remaining attributes or further instances 

exist. Eq. (2) delineates the calculation of the Gini index, 

wherein 𝑝𝑖 denotes the probability of a tuple in 𝐷 belonging to 

class-𝑖. 
 

𝐺𝑖𝑛𝑖 (𝐷) = 1 − ∑ 𝑝𝑖
2

𝑚

𝑖=1
 (2) 

 

3.4 Model evaluation 

 

Model evaluation is conducted to determine the 

performance of the model in predicting the amount of mango 

production. In the study, three evaluation values were used, 

namely MAPE, RMSE and R2. By using a combination of 

these evaluation values, we can get a comprehensive picture 

of the performance of the regression model, rather than using 

only one evaluation value. So that we can ensure which 

regression model provides accurate and reliable results. 

Especially in the context of mango production prediction as an 

agricultural production. It is important to ensure that the model 

used can provide accurate and reliable predictions in 

determining the right agricultural policy. 

 

3.4.1 Mean Absolute Percentage Error (MAPE) 

MAPE serves as a valuable metric for assessing the error 

rate of predictions [36]. It quantifies the error percentage 

between predicted and actual values, averaging them across all 

data points. This calculation, as outlined in Eq. (3), involves 

summing the absolute differences between actual and 

predicted values, dividing by the true value, and then 

averaging across all data points, where 𝑛 represents the total 

number of data, 𝐴𝑖  signifies the true value of the 𝑖-ith data 

point, and 𝐹𝑖  denotes the predicted value for the 𝑖 -th data 

point. 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐴𝑖 − 𝐹𝑖

𝐴𝑖

|

𝑛

𝑖=1

∗ 100% (3) 

 

This method proves highly effective in evaluating the 

accuracy of predictive models, offering insight into their 

performance. MAPE’s notable advantage lies in its 

straightforward interpretation, which yields results in 

percentage. Moreover, MAPE facilitates comparisons 

between various prediction models, enabling assessment of 

their accuracy. By quantifying the percentage error between 

predicted and actual values, MAPE clearly indicates a model's 

predictive prowess. Thus, MAPE provides easily 

understandable information and facilitates precise 

comparisons across diverse predictive models. 

 

3.4.2 Root Mean Squared Error (RMSE) 

RMSE is an essential metric in assessing the difference 

between observed and predicted values by statistical models 

or algorithms [37]. Computed as the square root of the average 

of squared differences between observed and predicted values, 

RMSE is depicted in Eq. (4), where 𝑛  represents the total 

number of data points, 𝐴𝑖 signifies the actual value of the 𝑖-th 

data point, and 𝐹𝑖 denotes the predicted value for the 𝑖-th data 

point. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐴𝑖 − 𝐹𝑖)

2
𝑛

𝑖=1
 (4) 

 

In predictive modelling, RMSE functions as a crucial gauge 

of prediction quality, with lower RMSE values indicating 

more accurate predictions and reduced error rates. It also 

facilitates comparative analysis across various prediction 

models, allowing for the identification of a more precise 

model. Furthermore, RMSE is valuable in evaluating 

discrepancies between predicted and observed values, 

particularly in continuous data estimation. 

 

3.4.3 Determinant Coefficient (R2) 

R2 is a metric for calculating the explanatory power of 

independent variables in a regression model [38]. Calculated 

value of R2, as depicted in Eq. (5), involves variables; total 

data points as 𝑛, 𝐴𝑖 denoting the actual value of the 𝑖-th data, 

𝐹𝑖 representing the predicted value of the 𝑖-th and 𝐴̅ signifying 

the average value of the real data. 

 

𝑅2 = 1 −
∑ (𝐴𝑖 − 𝐹𝑖)

2𝑛
𝑖=1

∑ (𝐴̅ − 𝐴𝑖)
2𝑛

𝑖=1

 (5) 

 

R2 values fall within the range of 0 to 1, with higher values 

indicating a stronger ability of the regression model to 

elucidate variations within the data. This metric can be 

interpreted as the percentage of variation in the dependent 

variable that can be accounted for by the independent variables 

within the regression model. In the context of prediction or 

estimation, R2 serves as a valuable indicator of the accuracy of 

model predictions. Higher R2 values signify closer alignment 

between model predictions and actual data, while lower values 
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indicate greater unexplained variation within the dependent 

variable. 
 

 

4. RESULT AND DISCUSSION 

 

The optimum value of parameters (hyperparameter tuning) 

is obtained using the Randomized Search method to get the 

optimal linear regression model. The predetermined 

hyperparameter value will be randomly selected by this 

method. Furthermore, the model of each combination will be 

evaluated using an evaluation metric. Based on the results, this 

method will choose the hyperparameter combination with the 

best evaluation value. Table 1 shows the optimum parameter 

value for each regression model used in this study. 

 

Table 1. Optimal parameter values for each regression model 

 
Regression Model Optimum Parameter 

Linear Regression (LReg) positive= True, n_jobs=1, fit_intercept=False, copy_X=True 

Random Forest Regression 

(RFReg) 

n_estimators=300, max_depth=3, random_state=0, min_samples_split= 10, min_samples_leaf=8, 

bootstrap=True 

Gradient Boosting Regression 

(GBReg) 

n_estimators=1000, max_depth=10, random_state=0, subsample=0.1, min_samples_split=2, 

min_samples_leaf= 4, learning_rate =0.01 

Decision Tree Regression 

(DTReg) 

splitter='random' min_samples_split=10, min_samples_leaf=4, max_features=None, max_depth=7, 

random_state=0 

 

Table 2. Comparison of preprocessed vs. non-preprocessed data for a 90% training and 10% testing data split 

 

Experiment Regression Model R2 MAPE RMSE 

Without preprocessing 

LReg 

RFReg 

GBReg 

DTReg 

-0.152 

-0.007 

0.003 

-0.258 

867.507 

810.965 

942.524 

337.034 

0.093 

0.087 

0.087 

0.097 

With preprocessing 

LReg 

RFReg 

GBReg 

DTReg 

0.151 

0.467 

0.509 

0.347 

56.955 

58.966 

45.598 

56.139 

0.225 

0.178 

0.171 

0.197 

 

Table 3. Comparison of preprocessed and non-preprocessed data for an 80% training and 20% testing data split 

 
Experiment Regression Model R2 MAPE RMSE 

Without preprocessing 

LReg 

RFReg 

GBReg 

DTReg 

-0.107 

-0.085 

-0.003 

-0.157 

1.25×1014 

5.53×1013 

2.32×1013 

4.83×1012 

0.0706 

0.0699 

0.0672 

0.0722 

With preprocessing 

LReg 

RFReg 

GBReg 

DTReg 

0.290 

0.613 

0.577 

0.615 

97.310 

67.462 

63.848 

57.389 

0.255 

0.188 

0.197 

0.188 

 

Table 4. Comparison of preprocessed and non-preprocessed data for a 70% training and 30% testing data split 

 
Experiment Regression Model R2 MAPE RMSE 

Without preprocessing 

LReg 

RFReg 

GBReg 

DTReg 

-0.291 

-0.198 

-0.054 

-0.269 

8.78×1013 

2.95×1013 

3.00×1013 

1.25×1014 

0.079 

0.076 

0.072 

0.079 

With preprocessing 

LReg 

RFReg 

GBReg 

DTReg 

0.126 

0.485 

-0.080 

0.310 

207.633 

163.617 

222.110 

139.902 

0.292 

0.225 

0.325 

0.260 

 

Tables 2-4 highlight the efficacy of incorporating a 

preprocessing stage in improving the performance of the 

regression model, evidenced by the uptick in R2 values and 

reduction in MAPE. Notably, in the gradient boosting 

regression model, the most significant enhancement is 

observed, with the R2 value soaring from 0.0029 to 0.5087, 

while the MAPE plummets from 942.5236 to 45.5978, with a 

90% to 10% split between training and test data. 

Conversely, the RMSE values obtained from experiments 

without preprocessing stages are lower than those with 

preprocessing. This discrepancy suggests that data lacking 

preprocessing may contain noise or outliers, causing RMSE to 

weigh on outliers and yield lower values disproportionately. 

These findings underscore the important role of the 

preprocessing stage in machine learning regression models. 

Specifically, the preprocessing step, focused on outlier 

removal in this experiment, is instrumental in ensuring the 

accuracy of regression model predictions. Outliers, by their 

deviation from the norm, can distort the evaluation of 

predictive model quality, making their removal imperative for 

robust analysis.  

Tables 2-4 also show that the greater the proportion of test 
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data, the greater the MAPE and RMSE values. This indicates 

that the larger the sample of test data used, the higher the 

prediction error rate of the model [39, 40]. Therefore, using a 

representative sample of test data to obtain accurate prediction 

results is important. 

 

 
 

Figure 4. Comparison of R2 values for various k values on k-

fold cross validation 

 

In the next experiment, data division is executed using the 

k-fold cross-validation technique to assess the model's overall 

performance across the entire dataset. This step determines the 

proportion of data allocated for training and testing in the 

ensuing experiment. Figure 4 presents a comparative analysis 

of R2 values for various k values in k-fold cross-validation. 

Notably, for k = 5, the gradient-boosting regression model 

yields the highest R2 value of 0.4426. With k = 5 indicating a 

test data distribution of 1/5 or 20% of the entire dataset, the 

subsequent experiment will adopt a training data to test data 

ratio of 80%:20%. 

 

Table 5. Correlation value of features with target class 

 
 Harvested Area Precipitation Rainy Days 

Correlation 0.7 0.1 -0.083 

 

In the subsequent investigation, the efficacy of different 

feature sets in predicting mango production quantities is 

scrutinized. As previously discussed, three features—mango 

harvest area, rain precipitation, and number of rainy days—

were utilized in predicting mango production amounts. Table 

5 elucidates the correlation values of each feature with the 

target variable, mango production quantity. Notably, the 

harvest area feature exhibits a robust correlation with mango 

production quantity, while precipitation and rainy-day features 

demonstrate weaker correlations. 

Further analysis of this finding that the strong correlation 

between harvest area and total mango production confirms that 

the importance of harvest area management in increasing 

mango production, because the larger the harvest area, the 

greater the mango production produced [41]. This reinforces 

the fact that the harvest area will contribute significantly to the 

machine learning regression model. Meanwhile, the weak 

correlation between rainfall and rainy days variables with 

mango production illustrates that these variables have an 

indirect influence on mango production. For example, during 

the dry season, these variables play a role in mango 

production. The machine learning regression model can 

identify important features, so this rainfall and rainy day 

variables still need to be taken into account, even though their 

influence is not as great as the harvest area. Therefore, the next 

experiment will compare the performance of the regression 

model with various combinations of features. 

 

Table 6. Comparison of R2 values for each regression model 

on various feature combinations 

 
Experiment LReg RFReg GBReg DTReg Mean 

3 features 

2 features (a+b) 

2 features (a+c) 

1 feature (a) 

0.290 

0.305 

0.278 

0.338 

0.613 

0.643 

0.591 

0.624 

0.577 

0.590 

0.586 

0.600 

0.615 

0.520 

0.520 

0.590 

0.524 

0.514 

0.494 

0.538 

Mean 0.303 0.618 0.588 0.561  
a = harvested area, b = rainfall, c = rainy days 

 

Table 6 comprehensively compares R2 values across 

different regression models and feature combinations. 

Notably, the random forest regression model achieves the 

highest R2 value of 0.6430 when utilizing two features—

harvest area and rainfall. However, upon closer examination 

of average values across experiments, employing only one 

feature, specifically harvest area, yields more robust R2 results 

than other configurations. Furthermore, the table underscores 

the consistent performance of the random forest regression 

model across all experiments, suggesting that it remains stable 

regardless of the number of features utilized. 

 

Table 7. Comparison of RMSE values for each regression 

model on various feature combinations 

 
Experiment LReg RFReg GBReg DTReg Mean 

3 features 

2 features (a+b) 

2 features (a+c) 

1 feature (a) 

0.255 

0.252 

0.257 

0.246 

0.188 

0.181 

0.193 

0.185 

0.197 

0.194 

0.195 

0.191 

0.188 

0.209 

0.209 

0.194 

0.207 

0.209 

0.214 

0.204 

Mean 0.252 0.187 0.194 0.200  

a = harvested area, b = rainfall, c = rainy days 

 

Meanwhile, if analyzed from the RMSE values shown in 

Table 7, the lowest RMSE value is 0.181 in the random forest 

regression model using two features, namely harvest area and 

rainfall. However, when considered for all regression models, 

experiments using one feature, harvest area, have the smallest 

average RMSE value of 0.204. This is in line with the 

correlation value of the harvest area feature, which is higher 

than the other features, indicating a strong relationship 

between the harvest area and the amount of mango production. 

Meanwhile, random forest regression provides a minor error 

value compared to all regression models, indicating that this 

model is the most accurate in predicting the number of 

mangoes. A low RMSE value indicates a closer fit between the 

predicted and actual values. 

 

 

5. CONCLUSIONS 

 

Effective machine learning techniques are employed in a 

regression context to forecast horticultural production in 

Indramayu Regency, Indonesia. Utilizing secondary data from 

the Central Bureau of Statistics of Indramayu Regency 

spanning 2009 to 2017 and encompassing 31 sub-districts, the 

dataset comprises key variables including mango production 

quantity, mango harvest area, rainfall, and number of rainy 

days. Notably, the quantity of mango production is the 

prediction’s target variable. The study attempts to predict 

mango production quantities by employing various machine 

learning regression models such as Linear Regression, 

Random Forest Regression, Gradient Boosting Regression, 

and Decision Tree Regression. 
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The comparison of regression model performance hinges on 

three key evaluation metrics: MAPE, RMSE, and R2. MAPE 

gauges the accuracy of regression model predictions, with 

smaller values indicating higher precision. Conversely, RMSE 

reflects the model's error rate, where smaller values signify 

superior accuracy, implying a closer alignment between 

predicted and actual values. Meanwhile, R2 measures the 

regression model’s ability to elucidate variation in predicted 

data, with higher values indicating a stronger relationship 

between independent and dependent variables, ranging from 0 

to 1, where 1 denotes a perfect explanation of data variation. 

This study comprises three experiments aimed at enhancing 

regression model performance. The initial experiment 

contrasts model performance with and without data 

preprocessing, highlighting the importance of cleaning data 

from noise or outliers. Preprocessing notably improves model 

performance, as evidenced by increased R2 values and 

decreased MAPE. However, it also leads to higher RMSE 

values, indicative of noise or outliers in unprocessed data.  

The second experiment determines the optimal proportion 

of training and test data. Results indicate that a larger 

proportion of test data correlates with higher MAPE and 

RMSE values, implying increased prediction error rates. Thus, 

employing a representative sample of test data for accurate 

predictions is crucial, with the 80%:20% training-to-test data 

ratio yielding superior regression model performance.  

The third experiment compares different feature 

combinations for predicting mango production quantity. 

Harvest area emerges as the feature with the strongest 

correlation to mango production quantity, yielding higher R2 

values and lower RMSE values. Additionally, the random 

forest regression model exhibits superior robustness to other 

models, boasting the highest R2 value and lowest RMSE value. 

The implications of the findings in this study indicate that 

machine learning models, such as Random Forest Regression 

and Gradient Boosting Regression, can produce more accurate 

predictions of horticultural production in Indramayu Regency 

compared to machine learning models of Decision Tree 

Regression and Linear Regression. By utilizing historical data, 

these models allow farmers and policy makers to make more 

informed decisions regarding resource use and agricultural 

management. In other regions with similar characteristics, 

these models can be applied to improve agricultural efficiency 

through more accurate yield forecasting, optimization of 

resource use, and better risk management, thus supporting 

food security and increased agricultural productivity. 

The results of this study have several limitations, such as the 

limited time period of data collection (2009-2017). In addition, 

there are also limitations related to the predictor variables 

available from BPS data publications. Because the accuracy of 

the regression model is also influenced by the quality of the 

predictor variables or features used in the formation of the 

regression model. 

Based on the research limitations that have been presented, 

there are three potentials for further research development. 

The first potential is the addition of predictor variables or 

features such as soil quality, water availability, weather, air 

temperature, and other environmental factors that can improve 

the accuracy of the regression model. The second potential is 

to expand the time period of data collection and use other data 

sources besides BPS data that can also enrich the analysis and 

research results. The third potential is to conduct a 

comparative study on other regression models and also use an 

ensemble learning approach to improve the performance of the 

regression model. Thus, further research development in this 

case can bring significant benefits in improving the accuracy 

and validity of the regression model used. 
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