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This study focuses on improving heart attack diagnosis using convolutional neural networks 

(CNNs): particularly the Inception-v3 model. CNNs excel in capturing spatial correlations 

in electrocardiography (ECG) data, enhancing classification accuracy and processing time. 

They automatically learn hierarchical features, making them ideal for medical image 

analysis like heart disease prediction. Inception-v3's design efficiently captures local and 

global features with inception modules of varying kernel sizes. Pre-trained Inception-v3 

models from ImageNet facilitate transfer learning for heart disease tasks. This approach 

achieves 98.72% accuracy in classifying heart rhythms into critical groups. By leveraging 

CNNs and Inception-v3, this methodology promises to revolutionize heart illness 

diagnostics, improving patient care and potentially saving lives through early detection of 

severe arrhythmias. 
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1. INTRODUCTION

The heart is a fantastic organ that beats between 60 and 100 

times each minute in healthy humans. Heart disease remains 

one of the leading causes of morbidity and mortality globally, 

imposing a significant burden on healthcare systems and 

economies worldwide. The impact of heart disease is not 

limited to high-income countries. Still, it extends across all 

regions and socioeconomic groups, with disparities in access 

to healthcare exacerbating the burden in low- and middle-

income countries. Factors such as aging populations, 

urbanization, unhealthy dietary habits, physical inactivity, 

tobacco use, and the rising prevalence of comorbid conditions 

like diabetes and hypertension contribute to the escalating 

global prevalence of heart disease. In this context, the early 

detection and timely management of heart disease are 

paramount for reducing morbidity, mortality, and healthcare 

costs. ECG is a cornerstone diagnostic tool in cardiology, 

providing valuable insights into cardiac electrical activity and 

rhythm. However, interpreting ECG signals accurately can be 

challenging due to the complexity and variability of waveform 

patterns, subtle abnormalities, and the need for expert 

knowledge and experience. For a long time, ECG has been a 

vital tool for tracking cardiac activity and making long-term 

diagnoses of a range of heart diseases [1]. Even with all of the 

advances in ECG technology, there are still many obstacles to 

quickly and adequately identifying heart attacks. These 

challenges result from the complex nature of cardiac 

abnormalities and the individual differences across patients. 

Improving the ECG-based heart attack prediction requires 

addressing these intricacies. Our goal is to improve patient 

outcomes by refining techniques that can result in more 

accurate and prompt diagnoses of heart attacks through this 

research. 

Machine learning has been used in heart attack prediction to 

overcome the difficulties involved in cardiac health 

monitoring. This study applies GLCM to the heart sound 

signal spectrogram and suggests a feature extraction strategy 

for heart sound categorization [2]. The complexity and 

variability of heart disorders and the wide range of individual 

variations have made accurate and dependable diagnosis 

problematic, even with the extensive use of ECG for detection 

and monitoring. 

Heart attacks can manifest with different ECG patterns 

depending on various factors, such as the location, extent, and 

duration of myocardial ischemia or infarction. This variability 

in presentation complicates ECG interpretation and requires 

healthcare providers to be adept at recognizing diverse 

patterns associated with myocardial infarction. ECG signals 

are susceptible to noise and artifacts from various sources, 

including patient movement, electrode placement errors, 

muscle activity, and environmental interference. These noise 

and artifacts can obscure relevant signal information, leading 

to misinterpretation or false-positive findings, which may 

compromise the accuracy of heart attack diagnosis. 

ECG interpretation is subject to inter-observer variability, 

where different healthcare providers may interpret the same 

ECG signal differently. Variability in interpretation can lead 

to inconsistencies in diagnosis and treatment decisions, 

highlighting the need for standardized protocols and decision-

support tools to improve diagnostic accuracy and consistency. 

 Better and more accurate detection methods are desperately 

needed because of this unpredictability and the mysterious 

nature of some heart diseases. 

Machine learning (ML) has emerged as a powerful tool in 

healthcare, offering the potential to enhance diagnostic 
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accuracy, improve patient outcomes, and streamline clinical 

workflows. The success of machine learning in ECG 

interpretation is the development of algorithms capable of 

detecting specific ECG abnormalities associated with 

myocardial infarction, such as ST-segment elevation or 

depression. Machine learning algorithms can integrate ECG 

data with electronic health records to comprehensively view a 

patient's health status and history. By analyzing longitudinal 

data, these algorithms can identify subtle changes in ECG 

patterns over time that may signal an increased risk of 

myocardial infarction. 

In image analysis, CNNs use convolutional layers to 

convolve a set of learnable filters (kernels) across the input 

image, extracting local features and detecting spatial patterns. 

Pooling layers are then used to downsample the feature maps, 

reducing computational complexity and removing the most 

salient features. Finally, fully connected layers combine the 

extracted features to perform high-level reasoning and make 

predictions. Deep learning models are highly scalable and can 

handle large volumes of ECG data. With the increasing 

availability of annotated ECG datasets, deep learning 

algorithms can be trained on vast amounts of data, leading to 

more robust and generalizable models. 

Recent advances in deep learning, particularly those 

involving CNNs, have created a potentially productive avenue 

for enhancing the processing of ECG data [3]. Due to CNNs' 

remarkable capacity to grasp complex spatial correlations in 

the data, the accuracy and processing speed of cardiac 

anomaly classification have been transformed. Utilizing these 

state-of-the-art computational techniques, the scientific 

community aims to tackle the current problems in ECG-based 

heart attack prediction. Combining deep learning with ECG 

data not only offers the possibility of early identification and 

intervention in cases of severe arrhythmias but also marks a 

significant development in the search for more accurate and 

dependable heart health monitoring. ECG analysis and 

machine learning can revolutionize the detection of cardiac 

illness, improving patient outcomes and possibly saving lives. 

 

 
 

Figure 1. ECG signals [1]: Fusion, [2]: Normal, [3]: 

Unknown [4]: Supraventricular, [5]: Ventricular 

 

We present a novel method in this research to accurately 

predict and classify heart rhythms into vital categories: N 

(Normal): S (Supraventricular): V (Ventricular): F (Fusion): 

and Q (Unknown). For efficient heart health monitoring, it is 

essential to identify these classes accurately. To distinguish 

between fusion beats, supraventricular arrhythmias, 

ventricular arrhythmias, normal sinus rhythms, and situations 

where classification is still unclear, our system uses cutting-

edge machine learning and signal processing techniques, 

specifically Inception-v3, in conjunction with AdaBoost. 

Combining the image classification powerhouse Inception-v3 

with the widely used ensemble learning model AdaBoost 

represents a purposeful move toward cutting-edge techniques. 

This predictive ability can significantly improve early 

diagnosis and intervention when severe arrhythmias emerge, 

improving patient care and possibly saving lives [3]. The 

graphical depictions of signals for every cardiac rhythm class 

in Figure 1 are essential for understanding our study's unique 

aspects. 

 
 

2. RELATED WORK 

 

A thorough analysis of the body of research will be 

conducted in the ensuing parts, covering a broad spectrum of 

earlier investigations and studies. These studies offer 

invaluable insights, methodology, and findings that will form 

the basis for the analysis in this paper. 

Feature engineering often involves preprocessing steps to 

enhance the quality of ECG signals. This may include noise 

reduction, baseline correction, artifact removal, and 

normalization. Preprocessing ensures that the input data is 

clean and standardized, which can improve the performance of 

classification algorithms. 

Feature engineering techniques such as principal 

component analysis (PCA) or wavelet transforms can help 

reduce the dimensionality of the data. 

Feature engineering involves selecting or extracting 

relevant features from informative ECG signals for 

classification tasks. These features may include morphological 

characteristics (e.g., amplitude, duration, and slope of ECG 

waves): frequency-domain features (e.g., spectral 

components): or statistical measures (e.g., mean, variance, 

skewness). By focusing on meaningful features, feature 

engineering can improve the discriminative power of 

classification models. 
 

2.1 Supervised learning approaches 
 

With its data-driven approach to enhancing diagnostic 

accuracy, supervised learning is essential to predicting heart 

attacks. In the end, Takci [4] identified the most effective 

combination as the support vector machine with a linear kernel 

and the relief feature selection, achieving an impressive 

accuracy of 84.81%. This is achieved by evaluating various 

machine learning methods and feature selection algorithms on 

the Statlog (Heart) dataset. With an impressive accuracy score 

of 92.10%, Hossen et al. [5] made a valuable contribution to 

the healthcare industry by showcasing the efficient use of 

supervised learning techniques, specifically Logistic 

Regression, in forecasting the probability of individuals 

having heart disease. The performance of several supervised 

machine learning algorithms, such as Decision Tree, Naïve 

Bayes, Random Forest, Support Vector Machine, K-Nearest 

Neighbor, and Logistic Regression, is systematically 

evaluated and compared with the study conducted by Sujatha 

and Mahalakshmi [6]. According to the paper, the most 

accurate predictor of heart disease is Random Forest, which 

achieved an impressive accuracy of 83.52% through a 

thorough analysis using key performance metrics like 

Accuracy, Precision, Area Under the Curve (AUC), and F1-

score. Notable F1-Score, AUC, and precision scores were 

84.21%, 88.24%, and 88.89%, respectively. Rasheed et al. [7] 
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presented a critical diagnostic technique that uses SVMs to 

facilitate early heart failure identification with a 90.47% 

accuracy rate. It emphasizes the importance of simplifying 

data and using multimedia and advanced models to improve 

healthcare diagnostics, underscoring the value of innovation in 

the field. Using a dataset from the UCI repository, Hossain et 

al. [8] used five machine-learning algorithms to predict cardiac 

illness, with a Support Vector Machine reaching an accuracy 

of 85.49%. For a detailed comparison of these studies, see 

Table 1, which summarizes the algorithms used, key findings, 

limitations, and accuracy scores reported in each study. 

Several ECG datasets combined improve early diagnosis and 

may increase patient survival rates. 

 

Table 1. Performance analysis with references [4-8] 

 
References  Algorithms Used Key Findings Limitation Accuracy Score 

[4] SVM (Linear Kernel) 

The best accuracy was obtained using 

the support vector machine algorithm 

with a linear kernel and the relief feature 

selection strategy. 

Data imbalance, 

computational demands 
84.81% 

[5] 

Random Forest, Decision 

Tree, and Logistic 

Regression 

Of all the supervised learning 

techniques, logistic regression was the 

most accurate method for predicting an 

individual's risk of getting heart disease. 

Limited dataset size 92.10% 

[6] 

Decision Tree, Naïve 

Bayes, Random Forest, 

Support Vector Machine, 

K-Nearest Neighbor, 

Logistic Regression 

When compared to other machine 

learning methods, Random Forest 

performs better. 

Limited dataset size 83.52% 

[7] SVM 

The proposed support vector machine 

model has demonstrated a high accuracy 

in the early detection of heart failure, 

highlighting its potential to enhance 

healthcare diagnostics. 

Need for broader clinical 

testing to ensure real-world 

applicability 

90.47% 

[8] 

Support Vector Machine, 

Logistic Regression, K-

nearest Neighbor, Naive 

Bayes, and Ensemble 

Voting Classifier 

The ability of Vector Machines to 

forecast cardiac disease is superior to 

that of conventional classifiers, 

increasing the possibility of early 

detection and better patient outcomes. 

A more extensive dataset is 

required to enhance the 

model's prediction 

performance. 

85.49% 

 

2.2 Deep learning approaches  

 

Deep learning has become a promising method for 

classifying ECGs, with many advantages over conventional 

machine learning methods. Although ECG data analysis has 

made substantial use of ML solutions, these systems have 

limitations because of their shallow feature learning 

architectures and reliance on heuristic hand-crafted or 

designed features. The main obstacle is that determining which 

features are most suitable to produce high classification 

accuracy in the context of ECG classification may be 

challenging. Deep learning systems, however, present a more 

reliable option. These designs enable the automated extraction 

of complex and valuable information from ECG data using 

convolutional layers as feature extractors. Pyakillya et al. [9] 

presented a deep learning architecture with fully connected 

and 1D convolutional layers for ECG classification. It utilizes 

deep learning to automatically extract features from ECG data, 

resolving the feature selection issue in traditional machine 

learning. The results that have been presented highlight the 

possibility of improving ECG categorization and improving 

cardiac diagnosis. Yin et al. [10] conducted a unique method 

that uses a cascading convolutional neural network and radar 

data to improve arrhythmia classification in mobile ECG 

monitoring, even in small motion. With an accuracy of 

88.89%, the system overcomes its limits and improves its 

classification accuracy for regular and pathological heartbeats 

in practical situations. An innovative method for automated 

myocardial infarction detection utilizing ECG signals is 

presented by Acharya et al. [11]. It accomplishes impressive 

average accuracies of 93.53% for ECG beats with noise and 

95.22% for those without noise removal by applying a 

convolutional neural network (CNN) technique. Crucially, the 

approach doesn't call either feature extraction or selection, 

which makes it an invaluable tool for physicians in clinical 

situations that helps with MI diagnosis. Ramdass and Ganesan 

[12] presented an approach that leverages a Neighbourhood 

selection technique to select optimal features for learning, 

thereby enhancing the model's generalization. The selected 

features were trained using a multilayer feedforward neural 

network (MLFFN). The proposed algorithm ultimately 

achieved an impressive accuracy. 

Xu et al. [13] presented a unique mixed network comprising 

CNN and RNN that achieves exceptional recognition 

sensitivity, accuracy, and specificity to classify ECG signals. 

The suggested model performs better than other approaches, 

demonstrating its potential for accurate cardiac health 

assessment, particularly in cloud computing or mobile 

devices. An efficient deep learning technique for categorizing 

ECG data into three groups, congestive heart failure, 

arrhythmia, and regular heartbeats, provided in work [14]. A 

high accuracy of 93.75% demonstrates its potential for real-

time monitoring and early identification of cardiac problems, 

addressing a crucial public health concern. It does this by using 

straightforward convolutional units and time-frequency 

representations. Swapna et al. [15] presented a novel use of 

CNN-LSTM and CNN deep learning algorithms for diabetes 

diagnosis utilizing Heart Rate Variability (HRV) signals 

obtained from ECG data. With CNN-LSTM achieving a 

maximum accuracy of 95.1% during cross-validation, the 

method provides exceptional accuracy without requiring 

feature extraction. As a result, the work represents a 

breakthrough in the automated identification of diabetes using 

HRV signals. 
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Waqar et al. [16] proposed a low-cost method of diagnosing 

heart problems using 1D CNN and the firefly algorithm 

applied to ECG signals. With an average classification 

accuracy of 78.54%, it outperforms current algorithms and 

provides a workable solution for the early identification of 

cardiac issues. This article proposes an inexpensive method of 

diagnosing heart problems by applying 1D CNN and the 

Firefly algorithm to ECG readings. Using machine learning 

techniques on a UCI dataset, Nagavelli et al. [17] provided a 

low-cost method of heart attack prediction that improves 

reliability and eliminates the requirement for feature 

engineering. Better outcomes are obtained with the synthetic 

minority oversampling technique (SMOTE) and a tailored 

artificial neural network. A range of machine learning 

techniques, including Naïve Bayes, SVM with XGBoost, 

improved SVM, and a hybrid model combining DBSCAN, 

SMOTE-ENN, and XGBoost, are employed in the paper [18] 

to effectively detect, localize, and predict heart disease in its 

early stages. Clinicians who provide healthcare services can 

benefit from these technologies. Bharti et al. [19] offered a 

unique method integrating ECG and fingerprint data using a 

novel end-to-end deep learning-based fusion neural 

architecture. For a detailed comparison of these studies, see 

Table 2, which summarizes the algorithms used, key findings, 

limitations, and accuracy scores reported in each study. As 

demonstrated by increased classification accuracy on a 

multimodal dataset, this significantly enhances presentation 

attack detection in fingerprint biometrics. Several deep 

learning and machine learning techniques are applied to the 

UCI Heart Disease dataset in this work [20], which discusses 

potential integration with multimedia technologies, 

normalizes data, and uses Isolation Forest to address irrelevant 

information. Additionally, the study reaches a notable 94.2% 

accuracy. Ramaraj [21] provided a unique 1D-CNN that 

achieves excellent accuracy (91.33%) and real-time 

classification to detect cardiac arrhythmias, providing an 

efficient, straightforward, and mobile-friendly method for 

ECG signal processing. To facilitate efficient ECG signal 

recognition, Moody and Mark [22] presented the CIGRU-

ELM model, which integrates class imbalance handling with 

the Gated Recurrent Unit (GRU) and Extreme Learning 

Machine (ELM). The model uses GRU for feature extraction 

and ELM for classification to address class imbalance. It 

shows improved performance on the PTB-XL dataset based on 

extensive evaluation metrics. 

 

Table 2. Performance analysis with references [9-19] 

 
References Algorithms Used Key Findings Limitation Accuracy Score 

[9] 1D CNN+FCN 

Using preprocessed ECG data sets, 1D convolutional neural 

networks with FCN layers were implemented. This eliminated 

the requirement for feature engineering and produced 

competitive classification accuracy with human results. 

Imbalanced dataset 86% 

[10] CNN 

Classifying arrhythmias in circumstances of minor motion 

with a cascade convolutional neural network and impulse 

radio ultra-wideband radar data. 

Further signal 

separation needed 
88.89% 

[11] CNN 

The proposed CNN-based method provides a useful 

diagnostic tool for clinical application by automatically and 

accurately identifying myocardial infarction in ECG signals, 

regardless of noise. 

Limited dataset size 93.53% 

[13] CNN-RNN 

The CNN and RNN models performed better in ECG signal 

classification than previous models, providing improved long-

term dependent modeling and potential for broader 

application. 

Imbalanced dataset 95.90% 

[14] CNN 

A two-unit convolutional neural network is presented, which 

performs better in categorizing ECG data associated with 

arrhythmia and congestive heart failure than more intricate 

architectures like Google Net-144 layers. 

Limited patient 

data 
93.75% 

[15] CNN-LSTM 

The suggested deep learning method identified diabetes from 

HRV data, marking a significant breakthrough in automated 

diabetes identification. 

Data variability 95.1% 

[16] 1D CNN 
I proposed 1D CNN with the Firefly algorithm for STEMI 

and non-STEMI heart attack diagnosis. 

The average 

performance of the 

model is low. 

78.54% 

[19] Mobilenet-V2 

The average classification accuracy significantly increases 

when fingerprint and ECG signals are fused using a suggested 

end-to-end deep learning architecture. 

Need for a 

prototype sensor 

development 

94.87% 

 

 

3. PROPOSED METHOD 

 

This part presents our research model, an advanced 

architecture intended to improve classification performance 

within the parameters of our investigation. To get accurate 

results in our domain, the model combines sophisticated 

classification algorithms with the capability of transfer 

learning. 

As illustrated in Figure 2, the proposed model is structured 

as follows: 

1. To process images with 256×256 pixels and three RGB 

color channels, the Inception-v3 base model is loaded 

with ImageNet weights, and the input shape is set to (256, 

256, 3). 

2. In the output, the global average pooling layer calculates 

the average value for every feature map. 

3. The global average pooling layer is followed by a Dense 

Layer with 128 units and ReLU activation. 

4. a 5-unit Dense Layer with Softmax activation is 

introduced to facilitate categorization. 
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5. The Adam optimizer is used to assemble the complete 

model, using accuracy as the evaluation metric and sparse 

categorical cross-entropy as the loss function. 

6. early halting is used with a patience of 3 to reduce 

overfitting. 

7. data augmentation is performed on the training data using 

the image data generator to improve model resilience. 

8. After the model is trained, features are taken from the 

output of the Inception-v3 base model for both the 

training and testing datasets. 

9. The features retrieved from the Inception-v3 model are 

used to train an estimator of the decision tree classifier 

with a maximum depth of 2, creating an AdaBoost 

classifier. 

10. Using AdaBoost as an ensemble learning technique, this 

architecture enhances classification performance by 

combining additional dense layers for classification with 

transfer learning from the Inception-v3 base model. 

 

 
 

Figure 2. Proposed model for prediction 

 

The primary benefit of using a global average pooling layer 

in CNNs is its ability to reduce spatial dimensions while 

preserving spatial information in a more informative manner 

compared to other pooling methods. Global average pooling 

acts as a form of regularization by reducing the number of 

parameters in the network. Since it aggregates information 

globally across feature maps, it reduces the risk of overfitting 

compared to fully connected layers. 

Therefore, global average pooling balances dimensionality 

reduction, information preservation, regularization, and 

computational efficiency, making it a popular choice in many 

CNN architectures. 

The AdaBoost algorithm is a popular ensemble learning 

method that combines multiple weak learners (typically 

decision trees) to create a strong learner. 

Basic overview of the configuration of the Adaboost 

algorithm 

One of the primary parameters to configure in AdaBoost is 

the number of weak learners and learning rate. 

Number of weak learners (n_estimators=2000): 

The n_estimators parameter is set to 2000, indicating that 

the AdaBoost ensemble will consist of 2000 weak learners 

(decision trees in this case). 

Learning rate (learning_rate=2): 

The weak learner parameter is typically denoted as 

n_estimators in popular libraries like scikit-learn in Python. 

Here, in this model, the learning rate is set to 2. However, this 

value is unusually high for a learning rate in AdaBoost. The 

learning rate in AdaBoost determines the contribution of each 

weak learner to the final ensemble. 

A lower learning rate typically requires fewer weak learners 

to achieve comparable performance and vice versa. AdaBoost 

can be used with performance metrics, such as accuracy, 

precision, recall, or AUC. 

4. METHODOLOGY 

 

The following section outlines the methodology employed 

in this research. 

 

4.1 Dataset details 

 

We used a dataset of ECG images from the MIT-BIH 

Arrhythmia database for this investigation [23]. After a 

rigorous preprocessing process, the dataset yielded 109,445 

unique ECG pictures normalized to a 256×256 pixel 

resolution. Our research's ability to cover a broad spectrum of 

cardiac arrhythmia patients was made possible by this 

enormous dataset. We mainly focused on five cardiac 

arrhythmia super classes using the AAMI-recommended 

classification scheme. N (Normal): S (Supraventricular 

Ectopic Beats): V (Ventricular Ectopic Beats): F (Fusion 

Beats): and Q (Unknown Beats) were the classes we took into 

consideration for our study. By thoroughly examining the 

ECG pictures, this categorization method made recognizing 

and differentiating these various arrhythmia patterns easier. 

Notably, our research has a solid basis for investigating the 

application of deep learning techniques to cardiac arrhythmia 

identification because of the availability of such an extensive 

dataset. The dataset's scale, variety, and carefully processed 

ECG images formed the basis of our research, allowing us to 

obtain precise results and insightful knowledge on arrhythmia 

detection. 

 

4.2 Dataset preprocessing  

 

One of the most critical stages in our research, which aims 

to create a model for categorizing ECG images, is data 

preprocessing. We used label encoding to convert the 

categorical ECG classes into numerical values so that machine 

learning algorithms could handle this classification 

assignment more quickly. We then scaled the pixel values 

between 0 and 1 to normalize the ECG picture data. In addition 

to guaranteeing a consistent data range, this normalization 

keeps individual features from controlling the model's learning 

process. Label encoding and data normalization work together 

to ensure the model can learn from the input data and improve 

its accuracy and prediction powers. 

 

4.3 Training model  

 

In this paper, we introduce a thorough method that uses two 

potent machine learning approaches to improve the prediction 

accuracy of heart attacks. Using Inception-v3 deep learning 

model's capacity to identify intricate patterns and features in 

medical data, we applied it to classifying ECG images. In 

addition, we enhanced the overall classification performance 

by utilizing the power of the AdaBoost ensemble learning 

technique. Because of their unique strengths and capacities, 

Inception-v3 and AdaBoost are excellent models for tackling 

heart attack prediction. 

Inception-v3 model: Our primary model, built on the 

Inception-v3 architecture, is essential to predicting cardiac 

attacks. A deep learning model called Inception-v3 is well-

known for its exceptional picture classification skills [24]. 

Because ImageNet weights were used for pre-training, it had a 

solid base from which to extract features. We got Inception-v3 

to recognize complex patterns and pertinent features in the 

data by optimizing it for our particular ECG image 
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classification challenge. Adding a global average pooling 

layer simplified feature maps even more, and adding more 

dense layers made it easier to classify ECG images into 

different groups at the end. The Inception-v3 model is a 

valuable tool for heart attack prediction because of its 

considerable benefits in comprehending intricate patterns in 

medical data. 

AdaBoost model: We added the ensemble learning 

technique AdaBoost to our Inception-v3 model to improve our 

classification performance even more. AdaBoost is beneficial 

in scenarios when precision is of the essence [25]. This is 

accomplished by fusing several weak classifiers, Decision 

Trees in our example, into one robust classifier. The Decision 

Trees [26] were optimized for our particular assignment with 

a maximum depth of 2. The features that were taken out of the 

Inception-v3 model were fed into the AdaBoost classifier. This 

ensemble learning method successfully leverages the qualities 

of numerous models, increasing overall performance and 

accuracy, which makes it invaluable for predicting heart 

attacks. 

Number of weak learners (n_estimators=2000): 

The n_estimators parameter is set to 2000, indicating that 

the AdaBoost ensemble will consist of 2000 weak learners 

(decision trees in this case). 

Many weak learners generally allow AdaBoost to fit the 

training data more closely, potentially improving the model’s 

performance. The 2000 vulnerable learners' choice has been 

based on empirical testing, experimentation, or domain-

specific considerations. 

Learning rate (learning_rate=2): 

The weak learner parameter is typically denoted as 

n_estimators in popular libraries like scikit-learn in Python. 

Here, in this model, the learning rate is set to 2. A learning rate 

of 2 is relatively high and may lead to aggressive updates of 

the weights during training, potentially leading to faster 

convergence. Each weak learner's contribution to the final 

ensemble is doubled at every iteration. This value was chosen 

for experimental purposes or as part of tuning efforts. 

 

4.4 Evaluation metrics 

 

Our study used several crucial evaluation indicators to 

evaluate our models' performance. These metrics, which 

include F1 Score, Accuracy, Precision, and Recall, each offer 

insightful information about how well the models work. 

Accuracy: One primary indicator used to assess how 

accurate a model is overall in its predictions is its accuracy 

[27]. The percentage of correctly identified occurrences 

relative to all instances in the dataset is quantified. The 

accuracy formula is: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁
 

 

where, 

-Cases accurately anticipated as positive are called True 

Positives (TP). 

-Cases accurately forecasted as unfavorable are known as 

True Negatives (TN). 

-Cases erroneously predicted as positive are known as False 

Positives (FP). 

-Cases mistakenly forecasted as unfavorable are known as 

False Negatives (FN). 

Precision: A model's accuracy is measured by how 

successfully it forecasts favorable results. It illustrates the 

model's ability to prevent false positives by calculating the 

ratio of accurate optimistic predictions to all optimistic 

predictions [28]. The accuracy formula is: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall: Recall measures the model's ability to recognize 

every positive case in the dataset. It is often referred to as 

sensitivity or actual positive rate. Quantified is the proportion 

of true positive events overall correctly predicted positive 

events [29]. Recall is calculated as follows: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

F1 Score: Recall and precision are combined in a well-

balanced statistic called the F1 Score. It gives a single number 

that balances the trade-off between false positives and false 

negatives by computing the harmonic mean of these two 

measures [30]. The F1 Score is calculated as follows: 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

 

5. PERFORMANCE ANALYSIS  

 

In this section, we provide a thorough performance study of 

our model. Several vital indicators are used to assess the 

performance of these models, offering essential insights into 

their efficacy and accuracy. We now go into great detail and 

analyze the measures' scores displayed in Table 3. This will 

help us understand how well the models can diagnose cardiac 

problems and potentially save lives. This investigation is an 

essential first step towards evaluating our predictive models' 

practicality and clinical relevance. 

 

Table 3. Precision, Recall, and F1-Score for model 

evaluation 

 
Class Precision Recall F1-Score 

F 1.0 0.96 0.98 

N 0.96 1.0 0.97 

Q 1.0 1.0 1.0 

S 0.98 0.97 0.97 

V 1.0 1.0 1.0 

 

Our performance analysis showed that the Inception-v3 and 

AdaBoost models achieved a combined accuracy of 98.72%. 

The incredible accuracy of the model can be attributed to its 

ability to reliably classify ECG signals into the following five 

classes: F, N, Q, S, and V. We looked at precision, recall, and 

F1-Score—three critical multi-class classification metrics—to 

understand its performance better. Table 1 tabulates and shows 

each class's F1-Score, recall, and precision. Notably, F1 scores 

ranging from 0.97 to a flawless 1.0 demonstrated the model's 

remarkable performance in every class, emphasizing its ability 

to provide reliable and precise diagnoses. 

 

5.1 Receiver Operating Characteristic (ROC) curve 

analysis 

 

ROC curve is computed using the roc_curve function from 
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sci-kit-learn for each class in the dataset. 

Actual Positive Rate (TPR) is plotted on the y-axis, and 

False Positive Rate (FPR) is plotted on the x-axis for each 

class. 

AUC is calculated for each ROC curve using the AUC 

function. 

ROC curves for each class are plotted on the exact figure, 

with labels indicating the class number and its corresponding 

AUC. 

The diagonal dashed line represents the ROC curve of a 

random classifier. 

 

5.2 Training and validation accuracy 

 

The training and validation accuracy values recorded during 

the training process are plotted over epochs. 

The x-axis represents the number of epochs, and the y-axis 

represents the accuracy. 

The plot shows how the model's accuracy changes 

overtraining, both on the training data (solid line) and the 

validation data (dashed line). 

 

5.3 Training and validation loss 

 

Similar to the accuracy plot, the training and validation loss 

values recorded during the training process are plotted over 

epochs. 

The x-axis represents the number of epochs, and the y-axis 

represents the loss (e.g., cross-entropy loss) 

The plot shows how the loss of the model changes 

overtraining, both on the training data (solid line) and the 

validation data (dashed line). 

The results are visualized using metrics such as accuracy, 

precision, recall, F1-score, and a confusion matrix. The trade-

off between sensitivity and specificity in the context of these 

evaluation metrics: 

-Accuracy measures the overall correctness of the model's 

predictions across all classes. 

It calculates the proportion of correctly classified instances 

(both true positives and true negatives) out of all the cases. 

-Precision measures the ability of the model to correctly 

identify positive instances among all instances predicted as 

positive. 

It calculates the proportion of positive instances out of all 

the cases predicted as positive. 

Precision is sensitive to false positives and quantifies the 

model's ability to avoid misclassifying negative instances as 

positive. 

-Recall, also known as sensitivity or actual positive rate, 

measures the ability of the model to identify positive instances 

out of all virtual positive instances correctly. 

It calculates the proportion of valid positive instances out of 

all positive instances. 

Recall is sensitive to false negatives and quantifies the 

model's ability to capture all positive instances without 

missing any. 

-The F1-score is the harmonic mean of precision and recall, 

providing a single metric that balances both. 

It combines precision and recall into a single value, 

particularly useful when dealing with imbalanced datasets. 

The precision-recall trade-off and the confusion matrix 

show the trade-off between sensitivity and specificity. 

Maximizing sensitivity (recall) often leads to higher false 

favorable rates, which reduces specificity. Conversely, 

maximizing specificity usually requires a trade-off with 

sensitivity, potentially leading to higher false negative rates. 

Maximizing sensitivity ensures that most positive cases are 

correctly identified (minimizing false negatives): but it may 

also increase false favorable rates, leading to unnecessary 

treatments or procedures. 

Maximizing specificity reduces false positives but may 

increase false negatives, potentially missing essential 

diagnoses. 

The confusion matrix displayed in Figure 3 further 

demonstrates the exceptional performance of our approach. 

The confusion matrix shows the proportion of accurate and 

inaccurate predictions for each class, providing a visual aid for 

evaluating the model's performance. The true positives, false 

positives, true negatives, and false negatives in this situation 

are all displayed in the confusion matrix. False positives are 

incorrect classifications of nonexistent classes, whereas true 

positives show that samples have been correctly classified for 

a particular class. False negatives indicate situations where the 

model wrongly categorizes a sample as belonging to a class. 

In contrast, true negatives show situations in which the model 

correctly identifies samples as not belonging to a class. The 

confusion matrix further supports the efficacy of our heart 

attack prediction model by offering insightful information 

about the algorithm's advantages and possible areas for 

development.  

 

 
 

Figure 3. Confusion matrix 

 

 
 

Figure 4. ROC curve of the model (Inception-v3+ Ada 

Boost) 
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The model's capacity to balance accurate positive and false 

favorable rates at various classification thresholds is 

demonstrated by the ROC curve in Figure 4. The 

discrimination capacity of the model is represented visually by 

the ROC curve, which also offers information on how well it 

performs in terms of sensitivity and specificity. The area under 

the curve (AUC-ROC) and its shape measure how well the 

model separates classes; a greater AUC denotes better 

performance. This graphical tool is handy for evaluating 

classification models, particularly in domains where 

distinguishing between specificity and sensitivity is crucial, 

such as medical diagnostics. 

 

5.4 AUC-ROC discussion 

 

The following metrics are related to the model's ability to 

distinguish between classes. 

-Accuracy provides an overall measure of the model's 

correctness in classifying instances across all classes. 

While accuracy is a valuable metric, it may only sometimes 

provide a complete picture, especially in class imbalance or 

when certain classes are more critical than others. 

-Precision measures the model's ability to correctly identify 

positive instances among all instances predicted as positive for 

each class. 

High precision indicates the model has a low false positive 

rate, meaning it correctly identifies positive instances without 

misclassifying negative ones. 

Precision is essential when the cost of false positives is high 

(e.g., in medical diagnosis): as it ensures that the identified 

positive cases are reliable. 

-Recall, also known as sensitivity or actual positive rate, 

measures the model's ability to capture all positive instances 

for each class. 

High recall indicates that the model has a low false negative 

rate, meaning it correctly identifies most positive instances 

without missing many. 

Recall is crucial when capturing all positive instances, even 

if it leads to false positives (e.g., in disease detection). 

-F1-score balances precision and recall into a single metric, 

providing a harmonic mean of the two. 

It accounts for both false positives and negatives and helps 

evaluate models when there's an imbalance between positive 

and negative instances. 

They assume an equal cost for misclassifications across all 

classes, which may only sometimes be the case. 

They may need to fully capture the model's performance in 

real-world scenarios where the class distributions are highly 

imbalanced or specific classes are more critical than others. 

They do not provide information about the model's 

uncertainty or confidence in its predictions, which can be 

essential in decision-making. 

Recall is crucial when capturing all positive instances, even 

if it leads to false positives (e.g., in disease detection). 

-F1-score balances precision and recall into a single metric, 

providing a harmonic mean of the two. 

It accounts for both false positives and negatives and helps 

evaluate models when there's an imbalance between positive 

and negative instances. 

-They assume an equal cost for misclassifications across all 

classes, which may only sometimes be the case. 

They may need to fully capture the model's performance in 

real-world scenarios where the class distributions are highly 

imbalanced or specific classes are more critical than others. 

They do not provide information about the model's 

uncertainty or confidence in its predictions, which can be 

essential in decision-making. 

 

 

6. COMPARATIVE ANALYSIS 

 

We compared our proposed model to those represented in 

studies [24, 25] that also used the MIT-BIH Arrhythmia 

database for ECG signal categorization as part of our 

comparative analysis, see Table 4. We evaluated our model in 

the context of previous research. These earlier studies used 

two different model architectures: one used a 1D CNN, and 

the other used WaveNet and InceptionNet. These models had 

respective accuracy levels of 97.30% and 98.50%. 

 

Table 4. Comparative analysis 

 
Ref. No.  Dataset Used Models Used Accuracy 

[30] 

MIT-

BIHArrhythmia 

database 

WaveNet + 

InceptionNet 
97.30% 

[31] 

MIT-BIH 

Arrhythmia 

database 

ID-CNN 98.50% 

Our paper 

MIT-BIH 

Arrhythmia 

database 

Inception-v3 + 

AdaBoost 
98.72% 

 

With an accuracy of 98.72%, our model, which combines 

Inception-v3 with AdaBoost and extracts features from 

Inception-v3, surpassed the previous models. Our model is 

better than others for a few reasons. First, Inception-v3 is a 

deep learning architecture that has shown promise in picture 

classification tasks. Its capacity to handle a variety of signal 

types is demonstrated by its processing of ECG signals. We 

successfully used the advantages of Inception-v3 with 

AdaBoost as an ensemble learning technique to improve 

classification performance. 

Our model's superiority is significant for heart attack 

prediction based on ECG signals. Our model offers a very 

dependable method of differentiating between cardiac 

disorders, such as arrhythmia, congestive heart failure, and 

regular heartbeats, with an accuracy of 98.72%. Its ability to 

provide early identification of cardiac abnormalities and real-

time monitoring makes it significant since it may allow for 

prompt intervention and potentially life-saving therapies. 

Clinicians can make correct diagnoses based on ECG signals 

even in complicated and dynamic healthcare circumstances 

with the help of this precise and robust model. Inception-v3 

and AdaBoost work together to create a potent predictive 

accuracy framework, which makes our model a valuable tool 

for heart health management. 

The proposed model defines neural network architecture 

based on the Inception-v3 model for image classification tasks.  

(1) Model architecture 

-The base model is Inception-v3, a deep convolutional 

neural network (CNN) pre-trained on the ImageNet dataset. 

-Inception-v3 is known for its complex architecture with 

multiple layers, including convolutional layers, pooling layers, 

and inception modules, designed to capture intricate image 

patterns. 

-The specific configuration used in this code snippet 

includes removing the fully connected layers 

(‘include_top=False’) and adding custom dense layers for 
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classification. 

(2) Number of parameters 

-The number of parameters in the model depends on the 

architecture and configuration. 

-Inception-v3 typically has millions of parameters due to its 

deep and complex structure. 

-The additional custom dense layers (‘Dense(128, 

activation=‘relu’)’and ‘Dense(5, activation='softmax’)’) 

contribute to the total number of parameters. 

-The exact number of parameters can be calculated by 

summing the parameters of each layer, including weights and 

biases. 

(3) Computational cost 

-Training and evaluating the Inception-v3-based model can 

be computationally intensive due to its large number of 

parameters and complex operations. 

-The computational cost includes processing time for 

forward and backward passes during training, parameter 

updates, and memory requirements. 

-Training deep neural networks like Inception-v3 often 

requires powerful hardware accelerators (e.g., GPUs) and 

significant computational resources. 

 

 

7. FUTURE SCOPE 

 

Promising and diverse research opportunities exist in heart 

attack prediction utilizing ECG data in the future. Initially, 

there is a chance to investigate the incorporation of more 

physiological data modalities to improve the models' 

predictive power. More thorough and precise diagnosis 

models may result from combining ECG signals with data on 

the patient's demographics, blood pressure, heart rate 

variability, and other vital indicators. Creating hybrid models 

that integrate and analyze data from multiple sources will 

expand the possibilities for targeted treatment plans and early 

detection. 

Second, a crucial area for further research is integrating 

wearable technology with real-time monitoring. Wearable 

ECG sensors and mobile health apps can provide continuous 

data streams for long-term monitoring and early detection as 

technology advances. It is exciting to research the 

development of models capable of handling real-time, 

streaming ECG data, and instantly alerting patients or 

healthcare providers. Making preventive interventions 

possible and enhancing patients' quality of life can completely 

transform how cardiac illnesses are treated. There is much 

room for improvement in heart attack prediction using ECG 

signals. Combining various data sources and real-time 

monitoring will undoubtedly pave the way for developing 

more precise, effective, patient-centered medical solutions. 

Better patient outcomes, lower healthcare costs, and an overall 

improvement in managing heart-related disorders will result 

from the continued development of these strategies. 

Data privacy and security are critical considerations in the 

design, implementation, and maintenance of real-time 

monitoring systems in healthcare because patients trust 

healthcare providers with their most sensitive information, 

including medical history, diagnoses, and treatments. 

Ensuring the privacy and security of this data helps maintain 

patient trust and confidence in the healthcare system. 

Sensitive patient data is a valuable target for cybercriminals 

seeking to steal information for financial gain or other 

malicious purposes. Data breaches can have severe 

consequences, including financial losses, reputational damage, 

and compromised patient confidentiality. 

Patient confidentiality is a cornerstone of medical ethics and 

professional practice. Real-time monitoring systems often 

involve the continuous collection and transmission of patient 

data, making it essential to safeguard the confidentiality of this 

information. 

Maintaining data privacy and security in the context of 

sensitive patient data and real-time monitoring systems is 

essential 

The generation of high velocity of data creation requires 

robust systems capable of processing and analyzing data in 

real-time to derive actionable insights promptly. 

Wearable devices often capture diverse types of data, such 

as heart rate, activity levels, sleep patterns, and more. 

Integrating and harmonizing these heterogeneous data streams 

from different devices poses a challenge. 

Raw sensor data from wearable devices may contain noise, 

outliers, and artifacts that need to be addressed through 

preprocessing steps such as filtering, smoothing, and 

normalization. 

Deploying technologies for processing and analyzing 

continuous data streams from wearable devices can have 

significant economic impacts, both in terms of costs and 

benefits for healthcare systems. 

Developing or acquiring software for data processing, 

analysis, and visualization requires investment in software 

development resources, licensing fees. 

Healthcare personnel need training to use and interpret data 

from wearable devices effectively. Costs associated with 

training programs, user support, and change management 

during implementation should be considered. 

Continuous monitoring and analysis of physiological data 

from wearable devices can enable early detection of health 

problems, proactive interventions, and personalized treatment 

plans, leading to improved patient outcomes and reduced 

healthcare costs associated with preventable complications or 

hospital readmissions. 

 

 

8. CONCLUSION 

 

In conclusion, our study has shown a noteworthy 

advancement in ECG signal-based heart attack prediction. 

Plus, with an astounding accuracy of 98.72%, the suggested 

model—an ensemble of Inception-v3 plus AdaBoost—has 

demonstrated remarkable performance. This high accuracy is 

higher than that of current models, such as those reported in 

earlier research. This model's unique strategy, which combines 

AdaBoost's ensemble learning capabilities with the strength of 

transfer learning from Inception-v3, is responsible for its 

success. There are various reasons behind the model's better 

performance. The network exploited deep knowledge from a 

wide range of images using a pre-trained Inception-v3 base 

model, which was subsequently optimized for the ECG 

classification task. Additionally, AdaBoost's ensemble 

learning method successfully integrated the features recovered 

by Inception-v3, leading to a more reliable and accurate 

classification. The model's efficacy highlights the potential of 

ensemble methods and transfer learning in healthcare settings. 

This study opens the door for creating more trustworthy and 

robust diagnostic instruments for heart attack prediction, 

which could enhance patient care, save lives, and save medical 

expenses. 
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To enhance the clinical integration of this ML model for 

predicting early-stage heart strokes, it is crucial to delve into 

the practical aspects of its implementation within existing 

clinical workflows. The model seamlessly aligns with routine 

medical practices and addresses whether it requires any 

modifications to facilitate smooth integration. Identifies 

potential barriers to adoption, such as data privacy concerns, 

resource constraints, or resistance from healthcare 

professionals. Discusses strategies for overcoming these 

challenges, emphasizing collaboration with medical staff, 

providing necessary training, and ensuring compliance with 

regulatory standards. By thoroughly exploring the practical 

considerations and addressing potential hurdles, our paper can 

offer valuable insights into the feasibility and effective 

deployment of the model within real-world clinical 

environments. This holistic approach contributes to the overall 

understanding of the model's practical utility in healthcare 

settings. 
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