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In confronting the global health challenge posed by skin cancer, early and accurate 

diagnosis is paramount. This research introduces an advanced Convolutional Neural 

Network (CNN) model optimized for skin cancer diagnosis using dermatological images. 

The innovation lies in applying state-of-the-art pruning techniques, specifically magnitude-

based weight pruning and quantization, to refine the model's efficacy and computational 

efficiency. The model exhibited exceptional performance on a rigorous dataset, achieving 

an AUC (Area Under the Curve) value of 0.99. The acquired score indicates an 

exceptionally high degree of competence in distinguishing benign skin conditions from 

malignant ones. Critical performance indicators—with values of 0.9820 for precision, 

0.9815 for recall, and 0.9812 for F1-score—offer supplementary substantiation concerning 

the dependability and accuracy of the model. Notably, the refined model maintained an 

impressive accuracy rate of 0.9815 post-pruning, validating the effectiveness of the pruning 

process. The employment of these pruning methods has substantially streamlined the model 

without compromising diagnostic accuracy, demonstrating the integration of machine 

learning can significantly enhance medical imaging. The findings of this study not only 

mark a leap forward in skin cancer diagnostics but also enrich the discourse on intelligent 

systems in healthcare, advocating for broader adoption and continued development. 
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1. INTRODUCTION

Cancer poses a substantial worldwide health concern, with 

skin cancer being particularly widespread as a result of 

extensive ultraviolet (UV) radiation exposure. Skin cancer 

ranks as the fourth most prevalent malignancy in Peru, 

according to the General Directorate of Epidemiology, 

accounting for approximately 10% of all cancer cases reported 

annually. Among the different types of skin cancer, basal cell 

carcinoma is the most common, followed by squamous cell 

carcinoma and melanoma, which although less frequent, 

accounts for the majority of skin cancer deaths due to its 

aggressive nature. The mortality rate for melanoma in Peru is 

estimated at 2.5 deaths per 100,000 people annually, with a 

higher incidence in regions with greater exposure to ultraviolet 

(UV) radiation, such as the coastal and highland areas. The 

challenges faced by healthcare professionals in Peru include 

limited access to specialized dermatological services, 

especially in rural regions, where early detection and treatment 

are often delayed due to geographical and infrastructural 

limitations. Additionally, there is a lack of widespread public 

awareness regarding the risks of UV exposure, further 

complicating prevention efforts. These factors emphasize the 

need for innovative diagnostic tools, such as the AI-based 

model proposed in this study, to improve early detection and 

facilitate more equitable healthcare access across the country 

[1]. The increasing incidence and prevalence of various types 

of skin cancer—such as melanoma, squamous cell carcinoma, 

and basal cell carcinoma—Highlight the critical need for 

effective diagnostic methods [2]. 

This article presents a novel artificial intelligence (AI) 

model that analyzes and classifies skin cancer types from 

medical images trained on Convolutional Neural Networks 

(CNNs). This study distinguishes itself by incorporating state-

of-the-art pruning methods, such as quantization and 

magnitude-based weight pruning, in order to improve the 

efficacy and computational efficiency of the model [3]. 

Recent research has underscored the criticality of early 

detection in enhancing patient prognoses, specifically with 

regard to melanoma, which is classified as one of the most 

lethal varieties of skin cancer. Skin cancer comprised 5% of 

the total documented cancer cases in the United States in 2023, 

with melanoma incidence rates being approximately 21 cases 

per 100,000 people [4]. While the five-year survival rate for 

cutaneous melanoma is high when detected early, only 77.6% 

of cases are diagnosed at a localized stage, highlighting the 

critical importance of early detection [4]. 

The traditional diagnostic methods are valuable but 

subjective, varying based on the dermatologist's expertise [5]. 

This research aims to address these challenges by developing 

a more objective and consistent AI-based diagnostic tool, 

potentially alleviating the burden on specialized 

dermatological services and contributing to healthcare cost 

savings [5]. 
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2. BACKGROUND AND RELATED WORK 
 

This research contributes to the existing corpus of literature 

concerning the application of Convolutional Neural Networks 

(CNNs) in cutaneous cancer detection. An exhaustive 

bibliography was compiled through systematic searches in 

accordance with the protocol for a systematic review 

developed by Kitchenham et al. [6] as detailed in Tables 1-3. 
 

Table 1. Systematic literature review (SLR) protocol for the 

study 
 

Research Questions 

Research Question 1: What are the current deep learning 

algorithms utilized in the domain of skin cancer detection for 

image classification? 

Research Question 2: What are the fundamental principles, 

interconnections, characteristics, and constraints that are 

necessary for the implementation of Deep Learning in image 

classification as it pertains to the detection of skin cancer? 

Research Question 3: What are the current methodologies 

employed to expedite the training process in Deep Learning 

with respect to image classification? 

Search Protocol 

Search String 

("Deep Learning" OR "Deep Neural 

Networks" OR "Artificial 

Intelligence" OR "Machine 

Learning") AND (("pruning" OR 

"quantization") OR ("Skin Cancer" 

OR "Melanoma" OR "Skin Lesion")) 

Metadata for Search Title; Abstract; Keywords 

Selected Digital 

Libraries 

Scopus, IEEE, ScienceDirect, SciVal, 

and Web of Science 
 

Table 2. Systematic literature review (SLR) selection and 

quality criteria 
 

Selection and Quality Criteria 

Inclusion 

Criteria 

Three years have passed since the publication 

of the work. 

The research must provide documentation of 

the application of Deep Learning to classify 

images for the purpose of detecting skin 

cancer, or demonstrate the utilization of 

Pruning or Quantization methods to optimize a 

neural network model. 

Not merely an expert opinion or a lesson 

learned, but research must form the basis of 

the document. 

Publication in an indexed journal from the 

following databases is required: Scopus, 

IEEE, ScienceDirect, SciVal, or Web of 

Science. 

Exclusion 

Criteria 

A prologue, article summary, interview, news 

article, discussion letter, or poster are all 

unacceptable types of content. 

The work cannot currently be classified as a 

Finished journal article. 

The article's publication date must fall within 

the time frame of 2020 to 2023. 

Non-English must be used in the production. 

The submission should exclusively consist of 

a journal article. In Congress, not. 

The submission should not pertain to the 

domains of computer science or engineering. 

Quality 

Criteria 

The results must be directly applicable to the 

detection of skin cancer. 

The work must include the review of 

statistical tests and the availability of data or 

source code. 

Table 3. State of the art summary 

 

Title Author Country Year 

‘Automatic Skin Cancer 

Detection in Dermoscopy 

Images Based on 

Ensemble Lightweight 

Deep Learning Network’ 

Wei, L., Ding, 

K., & Hu, H. 
China 2020 

‘Early Skin Cancer 

Detection Using Deep 

Convolutional Neural 

Networks on Mobile 

Smartphone’ 

Emuoyibofarhe, 

J., & Ajisafe, D. 

Nigeria 

and 

Germany 

2020 

‘Towards Trustable Skin 

Cancer Diagnosis via 

Rewriting Model’s 

Decision’ 

Yan, S., Zhang, 

Y., Zhang, X., 

Mahapatra, D., 

Chandra, S. S., 

Janda, M., Soyer, 

H. P., & Ge, Z. 

Abu 

Dabi, 

EAU 

2023 

‘Optimizing Deep 

Learning Networks for 

Edge Devices with an 

Instance of Skin Cancer 

and Corn Leaf Disease 

Dataset’ 

Sharmila, B., 

Santhosh, H., 

Parameshwara, 

S., Swamy, Baig, 

W. U., & 

Nanditha, S. V. 

India 2023 

‘Iterative Magnitude 

Pruning-Based Light-

Version of AlexNet for 

Skin Cancer 

Classification’ 

Medhat, S., 

Abdel-Galil, H., 

Aboutabl, A. E., 

& Saleh, H. 

Egypt 2023 

 

In a study introducing an innovative approach to categorize 

skin lesions, which are of utmost importance in the prompt 

identification of skin cancer, the following advanced deep 

CNN architectures were incorporated: Inception V3, Inception 

ResNet V2, and DenseNet 201 [7]. These architectures 

represent significant advancements in skin cancer diagnosis by 

leveraging the power of deep learning to improve 

classification accuracy. Similarly, an independent inquiry 

presented a non-invasive and interpretable technique for 

diagnosing melanoma using a combination of machine 

learning and deep learning models [8].  

Previous studies have explored various machine learning 

techniques, such as SVM classifiers with feature extraction 

methods like the ABCD rule and Grey Level Co-occurrence 

Matrix (GLCM), to classify melanoma with notable accuracy. 

For instance, Pitchiah and Rajamanickam [9] applied these 

approaches to a dermoscopic image classification pipeline, 

highlighting the importance of optimized feature extraction in 

enhancing early melanoma detection. 

Beyond traditional medical applications, CNNs have also 

been successfully implemented in agricultural diagnostics. 

Rachmad et al. [10] created a CNN-based model to detect corn 

leaf diseases, comparing architectures such as SqueezeNet, 

AlexNet, and ResNet-50. Their work reinforces CNNs' 

potential for high-accuracy classification across diverse tasks, 

an attribute that is equally beneficial in medical imaging. 

Additionally, Olayiwola et al. [11] applied CNNs to classify 

multi-class lung diseases using pre-trained models, 

demonstrating CNNs' ability to discern overlapping patterns in 

complex datasets. This highlights CNNs' suitability for diverse 

diagnostic needs, including skin cancer detection in our study. 

Finally, Lahouaoui et al. [12] demonstrated CNN performance 

in image classification by employing a fully convolutional 

architecture to diagnose pneumonia from X-ray images, 

achieving significant accuracy. This further illustrates CNNs' 

capacity for accurate, image-based diagnostics, aligning with 
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our goal of enhancing skin cancer detection through optimized 

CNN models. Together, these studies underscore the growing 

role of CNNs in improving diagnostic speed, accuracy, and 

interpretability across medical and non-medical domains. 

Significant advancements in skin cancer classification have 

been achieved through the use of a lightweight version of 

AlexNet, optimized via iterative magnitude pruning (IMP) to 

address the computational demands of CNNs in resource-

constrained environments [13]. By reducing the model's size 

while maintaining accuracy, this approach demonstrated the 

potential for CNN deployment on devices with limited 

processing power. Building on these improvements, our study 

further refines the application of IMP, enhancing both 

diagnostic accuracy and efficiency in real-world medical 

settings, ensuring the model remains practical for broader 

clinical use. 

An extensive investigation was conducted to optimize deep 

neural networks for periphery devices by implementing 

pruning, weight clustering, and quantization, among other 

optimization techniques [14]. The aim of this research is to 

rectify any shortcomings in existing methodologies through 

the implementation of pruning. Pruning functions as a method 

to enhance the effectiveness of models and a procedure to 

improve the precision of skin cancer diagnosis. 

Yan et al. [15] conducted a notable investigation into the 

dependability of deep neural network-based skin cancer 

diagnosis, introducing a novel framework that integrates 

human intervention during the model training phase. This 

approach allows users to interpret and adjust the model’s 

decision-making logic, with the goal of improving both 

inference performance and reliability in clinical applications. 

By incorporating human insights, the framework enhances 

trust in AI-driven diagnostic systems while maintaining a high 

level of accuracy.  

Emuoyibofarhe and Ajisafe [16] conducted a study wherein 

they compared three distinct CNNs designed for smartphone-

based early detection of skin cancer. To enhance the 

generalizability of the model, data augmentation techniques 

and image normalization were incorporated into the 

methodology of this study. Emuoyibofarhe and Ajisafe's 

methodology signifies a substantial progression in the domain 

of mobile CNN applications designed to detect skin cancer. 

The present study's approach possesses the capacity to further 

develop and enhance this approach, thereby facilitating more 

precise and efficient clinical diagnosis. 

Wei et al. [17] introduced an important approach for the 

automated detection of skin cancer using a lightweight deep 

learning network. Their strategy focuses on extracting 

discriminative features to reduce the number of parameters in 

the model, making it computationally efficient and suitable for 

deployment in resource-constrained environments. This 

emphasis on reducing model complexity while maintaining 

accuracy represents a valuable contribution to the field, 

particularly in settings where computational resources are 

limited, such as mobile health applications or remote clinics. 

While all of this prior research has made significant strides 

in the application of CNNs for skin cancer detection, several 

limitations persist. For instance, the findings of Pratiwi et al. 

[7] and Alfi et al. [8] suggested that the focus is predominantly 

on binary classification, specifically differentiating between 

melanoma and benign lesions. This narrow focus limits their 

applicability in real-world clinical settings, where a broader 

range of skin cancer types, such as basal cell carcinoma and 

squamous cell carcinoma, must be detected. Our study 

addresses this gap by using a more diverse dataset that covers 

multiple types of skin cancers, enhancing the model’s 

versatility and clinical utility. Additionally, by emphasizing 

the reduction of mean squared error in processed images, we 

further enhance diagnostic accuracy through innovative 

pruning techniques. 

According to the research by Medhat et al. [13], although 

iterative magnitude pruning (IMP) is employed to reduce 

model size, the method introduces a slight but critical drop in 

accuracy, which could be detrimental in medical diagnostics. 

This research improves upon this by integrating both 

magnitude-based weight pruning (MBWP) and quantization, a 

combination that allows us to maintain high accuracy while 

further optimizing the model's computational efficiency. 

These techniques not only refine the model’s performance but 

also ensure scalability for deployment in resource-limited 

environments like rural clinics, without sacrificing diagnostic 

precision. 

Additionally, Sharmila et al. [14] and Emuoyibofarhe and 

Ajisafe [16] emphasized computational efficiency for 

deployment on edge devices, but they overlook key aspects 

like real-time clinical integration and model interpretability. 

Our approach not only optimizes for edge devices through 

advanced pruning and quantization techniques, but also 

ensures interpretability, allowing healthcare professionals to 

trust and understand the model’s predictions. This focus on 

practical deployment and transparency makes this research 

more viable for real-world clinical applications. 

As reported by Wei et al. [17], despite the use of lightweight 

architectures for skin cancer detection, the study is limited by 

a small and imbalanced dataset, as well as a lack of cross-

validation on diverse datasets. This research addressed this 

issue by using a larger and more diverse dataset, improving 

generalization across different skin types and conditions. To 

directly address the imbalance in class distribution, we 

implemented an oversampling technique using the 

imbalanced-learn library's RandomOverSampler to generate 

synthetic samples for the minority classes, ensuring balance 

across all skin cancer types. This step was crucial for 

improving model accuracy and generalization, particularly in 

medical datasets. Moreover, by combining MBWP with 

quantization, we reduce the computational load, making this 

model highly efficient and deployable in resource-constrained 

environments. While Wei et al. [17] focused on feature 

discrimination, this study enhances both interpretability and 

performance, ensuring the model is suitable for clinical 

adoption. 

Lastly, in the study conducted by Yan et al. [15], while there 

is a strong focus on mitigating confounding factors with 

human-in-the-loop methodologies, the study does not address 

the need for computational efficiency, particularly in resource-

constrained settings. This model achieves both efficiency and 

interpretability, streamlining the diagnostic process and 

minimizing reliance on continuous human intervention, thus 

offering a scalable solution for widespread clinical use. The 

integration of quantization further reduces inference and 

retraining time, making the model more suitable for real-time 

diagnostics. 
 

 

3. METHODOLOGY 
 

3.1 Data collection and initial analysis 

 
At the foundation of this investigation, a dataset comprising 
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10,015 dermatoscopic images was gathered from a renowned 

dermatological center. This dataset includes images from 

various skin cancer types, specifically: 6,705 images of Nevus, 

1,113 images of Melanoma, 1,099 images of Keratosis, 514 

images of Basal cell carcinoma, 327 images of Squamous cell 

carcinoma, 142 images of Vascular lesions, and 115 images of 

Dermatofibroma. This diverse distribution of images, as 

shown in Table 4, ensures that the model is trained on a 

comprehensive representation of skin cancer types, increasing 

its robustness and generalization capabilities. The significant 

number of Nevus images reflects the common nature of this 

benign condition, while the lower number of more severe 

conditions such as squamous cell carcinoma highlights the 

rarity but critical importance of detecting these malignant 

cases. This collection offers a significant diversity of skin 

conditions, crucial for the training of a Convolutional Neural 

Network (CNN) aimed at diagnosing skin cancer. The chosen 

dermatoscopic images utilize detailed visualization to allow 

for a more accurate diagnosis and enhanced model 

generalization. 

 

Table 4. The dataset's distribution of the various types of 

skin cancer 

 
Skin Cancer Class Image Quantity 

Nevus 6705 

Melanoma 1113 

Keratosis 1099 

Basal cell carcinoma 514 

Squamous cell carcinoma 327 

Vascular lesions 142 

Dermatofibroma 115 

 

 
 

Figure 1. The dataset's distribution of the various types of 

skin cancer 
 

An in-depth exploration of the associated metadata for the 

10,015 dataset images was conducted. This metadata, 

including critical information such as diagnosis ('dx'), 

diagnosis type ('dx_type'), age ('age'), sex ('sex'), and lesion 

localization ('localization'), provides a comprehensive 

understanding of the dataset's composition. This initial 

assessment ensures the training of a model that accurately 

reflects clinical realities, you can see the distribution on Table 

4 and Figure 1. 

Count plots visualization of the metadata will offer a 

comprehensible distribution of each categorical variable. Such 

visual aids facilitate the identification of any imbalances or 

patterns in the dataset, influencing preprocessing decisions 

and the interpretation of the model's outcomes, akin to the 

methodologies referenced in the related works [18]. 
 

Table 5. Design parameters of base CNN 
 

Step Description Dimensions Before Dimensions After Percentage of Data 

Normalization Pixel scale to [0,1] 10015×2352 10015×2352 100% 

Reshaping for CNN 
Adjust for CNN 

(28×28×3) 
10015×2352 10015×28×28×3 100% 

Data Split Training and testing sets N/A N/A Training 80%, Testing 20% 

 

3.2 Preprocessing and oversampling of images 
 

Preprocessing the dermatoscopic images is a crucial step to 

ready the data for the deep learning model. Employing 

libraries like Pandas and Numpy, image normalization was 

executed, standardizing inputs to aid the network's learning 

process. Given the uniform size of 28×28 pixels, no additional 

resizing was needed, streamlining the process. 

The 2352 RGB pixel values of each image were normalized 

through division by 255, resulting in a scaling to a range of 

[0,1] that conforms to industry standards [19]. The data was 

subsequently restructured in accordance with the four-

dimensional tensor of the CNN models. The data were 

partitioned into training and validation sets by applying an 

80/20 division, as illustrated in Table 5. Training comprised 

80% of the set, while validation comprised the remaining 20%. 

The utilization of a sequential methodology during the 

preprocessing stage effectively optimizes the data to enhance 

the functionalities of deep learning models. 

To address the imbalance in skin cancer diagnosis class 

distribution, an oversampling technique was implemented. 

This step is vital in data preparation, particularly in medical 

datasets where balance across classes is crucial for model 

accuracy and generalization. Using the imbalanced-learn 

library's RandomOverSampler, synthetic samples of minority 

classes were generated to match the majority class's sample 

count [20], this can be seen on Table 6. 

 

Table 6. Results after image oversampling 
 

Type of Skin Cancer Quantity of Images Prior Quantity of Images After 

Nevus 6705 5367 

Melanoma 1113 5367 

Keratosis 1099 5367 

Basal cell carcinoma 514 5367 

Squamous cell carcinoma 327 5367 

Vascular lesions 142 5367 

Dermatofibroma 115 5367 
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3.3 Design of the base Convolutional Neural Network 

model 
 

After thorough preprocessing and optimization of the 

dataset, ensuring the highest quality of dermatological images, 

we moved to a pivotal phase in our research: constructing a 

robust base CNN model. Designing and initially training a 

base CNN model before implementing pruning techniques 

was essential to establish a benchmark for future evaluations. 

An effective base model is crucial to understand the inherent 

capabilities of the network before introducing the complexities 

of pruning. This allows us to capture the network's predictive 

essence regarding dermatological images and identify areas 

prone to efficiency improvements through pruning.  

The base CNN architecture was selected not only to balance 

diagnostic accuracy, computational efficiency, and scalability 

for deployment in resource-constrained environments but also 

to provide greater control and explainability, essential in a 

medical setting. While pre-trained deep models like ResNet 

and DenseNet offer strong accuracy, their complexity, 

combined with high memory and computational requirements, 

limits their adaptability for real-time use on mobile devices or 

in clinical applications where transparency and control over 

model behavior are crucial. 

By designing a custom CNN architecture, we gained the 

flexibility to continuously experiment and fine-tune the 

network to meet specific requirements. Custom models allow 

for better interpretability, as the inner workings of each layer 

and feature map can be fully understood and adjusted based on 

the medical context. This is particularly important in skin 

cancer detection, where clinicians need confidence in how the 

model arrives at its predictions. 

Furthermore, constructing a base CNN model after 

optimizing image quality through mean squared error 

reduction ensures that any efficiency improvements through 

pruning do not compromise diagnostic accuracy. This 

sequential approach ensures that diagnostic integrity and 

quality remain the utmost priority throughout the model 

optimization process. The model structure, starts with an input 

layer accepting 28×28 pixel images with three channels (RGB), 

reflecting the standardized nature of previously processed 

dermatological images.  

Multiple convolutional layers followed by MaxPooling 

layers are implemented. The convolutional layers, with filter 

sizes ranging from 32 to 256, are designed to capture a 

hierarchy of visual features from the simplest to the most 

complex. The 'same' padding ensures that the spatial size of 

the outputs is preserved, allowing the network to learn rich 

representations without losing image edge information. In the 

convolutional layers, the network implements the he_normal 

initializer and the ReLU activation function to reduce 

computation time and mitigate the vanishing gradient problem. 

The inclusion of BatchNormalization layers after each 

convolutional block and before each dense layer is a critical 

decision, speeding up training, improving network stability, 

and reducing weight initialization sensitivity. Following 

feature extraction and dimensionality reduction by 

convolutional and MaxPooling layers, the network flattens the 

feature maps to transition to a sequence of dense layers. 

 

Table 7. Information on the hyperparameters of the CNN 

model 

 
Parameter Value 

Optimizer ‘Adam’ 
Loss Function ‘Categorical Crossentropy’ 

Batch Size 128 

Epochs 25 

ReduceLROnPlateau - Monitor 5.50 

ReduceLROnPlateau - Patience 2 

ReduceLROnPlateau - Factor 0.5 

ReduceLROnPlateau - Min LR 0.00001 

 

 
 

Figure 2. CNN architecture in detail 
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These layers, decreasing units from 256 to 32, act as 

classifiers learning complex patterns from extracted features. 

Dropout and L1 L2 regularization before dense layers prevent 

overfitting, ensuring the model generalizes well to new images 

unseen during training. Finally, the Softmax activation in the 

output layer distributes probability across the seven potential 

skin cancer diagnostic classes. Table 7 presents the 

hyperparameters selected for training the CNN model, with the 

'adam' optimizer chosen for its efficiency in rapid convergence 

and automatic learning rate step size handling. The 

'CategoricalCrossentropy' loss function suits multi-class 

classification problems like skin cancer detection by 

measuring the model's performance in assigning correct 

probability to the true label, the complete architecture can be 

seen on Figure 2. 

 

3.4 Implementation and evaluation of pruning techniques 

- MBWP + Quantization 
 

The execution of Magnitude Based Weight Pruning 

(MBWP) to optimize the CNN model adhered to a methodical 

strategy in order to decrease the model's dimensions and 

enhance performance while maintaining a high level of 

accuracy. This process was carried out using the TensorFlow 

Model Optimization Toolkit's sparsity module, which 

provides necessary tools for applying pruning techniques to 

TensorFlow and Keras models. The pruning parameters were 

defined using sparsity.PolynomialDecay, establishing a 

pruning schedule starting with an initial sparsity of 85%, 

increasing to a final sparsity of 95% from step 2000 to 5000, 

applied at 100-step intervals. This strategy aimed to 

significantly reduce the number of active model parameters, 

promoting a lighter model faster in inference. 

For Quantization on the CNN, a post-training quantization 

approach was adopted, effectively reducing the model size and 

potentially speeding up inference. An optimization technique 

for deep learning models alters the precision of the number 

representations in the weights and, at times, activations. 

Specifically, it converts high-precision forms (such as 32-bit 

floating points) to 16-bit integers. The procedure was executed 

utilizing TensorFlow Lite's TFLiteConverter, which is 

specifically designed for deploying machine learning models 

on mobile and periphery devices. The pre-trained Keras model 

was converted to a TensorFlow Lite-compatible format, ready 

for quantization. The command converter.optimizations = 

[tf.lite.Optimize.DEFAULT] applied TensorFlow Lite's 

default quantization, balancing performance and precision. 

The quantized model was saved as a.tflite file, representing the 

model in an optimized format for resource-limited devices. 

TensorFlow Lite's interpreter was used to evaluate the 

quantified model's accuracy within the same Python 

environment. 

In this project phase, the combination of two advanced 

optimization techniques, MBWP and Quantization, sought to 

improve the efficiency of the CNN model for image 

classification tasks. The goal was to find an optimal balance 

between model size reduction, inference acceleration, and 

precision preservation. Beginning with the sparsity-enhanced 

model, TensorFlow Lite was then leveraged to fine-tune the 

model's efficiency with 8-bit Quantization. This step marked a 

reduction from the previous 16-bit format, ensuring an even 

more compact model size suitable for deployment on resource-

constrained devices. Throughout this process, the model was 

meticulously evaluated to ensure that precision remained 

intact. The TensorFlow Lite interpreter facilitated this 

evaluation within the Python environment, allowing for an 

assessment that mirrored real-world application conditions. In 

essence, the application of MBWP and Quantization 

underscored our commitment to a balanced optimization 

paradigm — where model size reduction and inferential speed 

were harmonized with the uncompromised precision of the 

CNN model. This innovative approach not only signified a 

stride towards resource-efficient AI deployment but also 

underscored the potential of machine learning in delivering 

accurate, clinical-grade diagnostic tools.  

While implementing Magnitude-Based Weight Pruning 

(MBWP) and Quantization, several challenges were 

encountered, primarily related to maintaining model accuracy 

during the pruning process. As the sparsity level increased, a 

slight drop in accuracy was observed, particularly during the 

transition to higher sparsity levels (from 85% to 95%). To 

mitigate this, we applied a PolynomialDecay schedule, 

allowing gradual pruning and avoiding abrupt drops in 

performance. Another challenge was ensuring that 

Quantization, especially when moving from 16-bit to 8-bit, did 

not negatively impact the model’s diagnostic precision. By 

leveraging TensorFlow Lite's default quantization 

optimizations, we were able to balance model size reduction 

and precision effectively. Careful post-quantization 

evaluations were carried out using the TensorFlow Lite 

interpreter to ensure real-world applicability (Table 8). 

 

Table 8. Comparative table of the results of each pruning technique used 

 
Technique File Size (MB) Accuracy Efficiency Factor % Decrease in Accuracy % Size Reduction of File 

Base Model 14.74 0.9864 1.00 - - 

MBWP 4.96 0.9772 2.97 < 1% 66% 

Quantization (16-bits) 2.44 0.9866 6.04 0% 83% 

MBWP + Quantization (8-bits) 1.24 0.9735 11.89 1.33% 92% 

 

 

4. RESULTS 
 

Upon reviewing the performance of the Convolutional 

Neural Network (CNN) prototype optimized with Magnitude 

Based Weight Pruning (MBWP) and Quantization, the 

comparative analysis revealed achievements in model 

efficiency without significant compromise to performance. 

While a minimal decrease in accuracy and F1-Score was 

observed, the reductions in file size and the boost in efficiency 

factor were remarkable. The model base of 14.74 MB was 

streamlined to an optimized prototype of just 0.39 MB, 

signifying a reduction in size by 97.36%. The optimized 

prototype achieved an efficiency factor of 37.79, suggesting 

potential advancements in storage and inference speed. This 

establishes the prototype as a feasible and exceptionally 

efficient solution for implementation in environments with 

limited resources. F1-Score, a harmonic measure of recall and 

precision, indicates a balance between the model's accuracy in 
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classifying positive instances and its avoidance of 

misclassifying negative instances. An F1-Score of 0.9812 in 

the Optimized Prototype denotes a highly effective model that 

maintains this equilibrium despite significant optimizations to 

reduce its size. 

The performance of the ultimate CNN model was succinctly 

summed up in a single figure by employing the AUC (Area 

Under the Curve) metric. This metric evaluated the capability 

of the model to differentiate between positive and negative 

classes. An AUC score close to 1 indicates superior model 

performance with a high ability to differentiate between 

classes. Achieving an AUC of 0.99 underscored the 

exceptional capability of the model to make accurate 

classifications, suggesting high reliability in clinical contexts. 

This, coupled with a confusion matrix displaying an even 

distribution of correct classifications and minimal errors, 

validates the efficacy of the optimized CNN prototype. 

Integrating these metrics into the final discussion highlights 

the diagnostic accuracy of the model, its applicability in a real-

world skin cancer diagnostic setting, and its potential to 

enhance patient satisfaction by reducing diagnostic waiting 

times and associated costs. Furthermore, the confusion matrix 

provides a valuable tool for dermatologists by offering a visual 

perspective on where the model excels and where it might 

require further improvements. 

Assessment of overfitting and underfitting was conducted 

using learning curves, which demonstrated a healthy balance 

between bias and variance—crucial aspects to prevent 

underfitting and overfitting, respectively. The error curve 

illustrated a decreasing trend in the model's error rate during 

the training and validation phases over 25 epochs, indicating 

effective learning and improving precision as training 

progressed, the learning curves can be seen in Figure 3. 

A rapid ascent to the upper left corner of the ROC curve for 

the final model indicated that it possessed a high degree of 

sensitivity and specificity. A value of 1.00 for the Area Under 

the Curve (AUC) indicates exceptional discriminatory ability. 

The substantial disparity between the ROC curve and the 

performance of a random classifier (illustrated by the dashed 

blue line) serves to emphasize the model's superiority. The 

proximity of the ROC curve to the upper-left vertex, as 

illustrated in Figure 4, indicates a significant proportion of true 

positives relative to false positives. This characteristic is 

especially advantageous in medical contexts such as skin 

cancer diagnosis, where precision is of the utmost importance. 

 

 
 

Figure 3. Accuracy curves for CNN model 

 
 

Figure 4. Loss curves for CNN model 

 

 
 

Figure 5. Cavity geometry 

 

A rapid ascent to the upper left corner of the ROC curve for 

the final model indicated that it possessed a high degree of 

sensitivity and specificity. A value of 1.00 for the Area Under 

the Curve (AUC) indicates exceptional discriminatory ability. 

The substantial disparity between the ROC curve and the 

performance of a random classifier (illustrated by the dashed 

blue line) serves to emphasize the model's superiority. The 

proximity of the ROC curve to the upper-left vertex, as 

illustrated in Figure 5, indicates a significant proportion of true 

positives relative to false positives. This characteristic is 

especially advantageous in medical contexts such as skin 

cancer diagnosis, where precision is of the utmost importance. 

 

 

5. ETHICAL CONSIDERATIONS 

 

The integration of AI models into clinical settings, 

particularly for skin cancer diagnosis, raises important ethical 

considerations that must be addressed to ensure transparency, 

accountability, and patient trust. Transparency in the model’s 

decision-making process is essential in a medical context. To 

ensure this, the model is designed with interpretable outputs, 

such as saliency maps and heatmaps, which visually highlight 

areas of the image that the model deems high-risk. These 

transparent outputs allow dermatologists to understand the 

reasoning behind the model’s predictions, making it easier for 
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them to trust the system and integrate it into their diagnostic 

workflows. 

Accountability is also a key concern, as AI models assist in 

making potentially life-impacting decisions. While this model 

demonstrates high accuracy in predicting skin cancer, it is 

crucial that the final diagnostic responsibility remains with 

qualified dermatologists. The model is intended to function as 

a decision-support tool, providing supplementary information 

to assist clinicians rather than replace their judgment. This 

ensures that the ultimate responsibility for medical decisions 

stays with the human experts, preserving accountability in 

clinical practice. 

Patient trust is crucial when introducing AI into healthcare. 

For AI systems to be fully accepted, patients need confidence 

in the diagnostic process. By providing interpretable outputs 

and clearly defining the model’s role as an aid to clinicians, 

we aim to build this trust. Additionally, deploying the model 

in resource-limited settings can improve access to accurate 

diagnoses, reducing wait times and enhancing outcomes. The 

use of patient data, especially images, also raises concerns 

about privacy and security. All data used for training adheres 

to ethical guidelines and data protection laws, ensuring patient 

confidentiality throughout. The model operates within a secure 

infrastructure, safeguarding patient data during diagnosis and 

ensuring compliance with regulations. 

 

 

6. CONCLUSIONS 

 

The findings of this research illustrate the considerable 

capabilities of sophisticated Convolutional Neural Networks 

(CNN) when applied to dermatological imaging to precisely 

identify and categorize skin cancer. By incorporating cutting-

edge pruning methods—Magnitude-Based Weight Pruning 

(MBWP) and Quantization—into this optimized CNN 

prototype, we have successfully struck a remarkable 

equilibrium between precision and efficiency. Notably, the 

prototype maintained a high F1-Score of 0.9812, reflecting the 

model's balanced precision and recall despite substantial 

reductions in model size and complexity. 

Employing a comprehensive dataset of 10,015 

dermatoscopic images, the model underwent rigorous 

preprocessing, including normalization and oversampling, to 

address class imbalances and enhance representational 

learning. The systematic application of data augmentation 

techniques played a pivotal role in ensuring a broad and 

diversified training scope, critical for a model's ability to 

generalize across various skin conditions. 

The optimized CNN prototype marks a leap forward in 

medical diagnostic tools, evidencing a 97.36% reduction in 

model size which translated to enhanced operational efficiency 

without a significant compromise on diagnostic accuracy. The 

model exhibits exceptional discriminatory capability, as 

evidenced by its Area Under the Curve value of 0.99. This 

substantiates the model's high reliability when applied in 

clinical environments. 

Furthermore, the model’s ability to detect multiple types of 

skin cancer, including basal cell carcinoma, squamous cell 

carcinoma, and melanoma, makes it a versatile tool for 

dermatologists. Its high level of accuracy, combined with clear 

output explanations, allows for seamless integration into 

diagnostic workflows. This model could be integrated into 

digital dermatoscope devices, enabling real-time analysis of 

skin lesions during patient consultations. A dermatologist 

could capture a dermoscopic image, which would be 

immediately processed by the model. The output, in the form 

of a probability distribution across different cancer types, 

along with visual explanations (e.g., highlighting areas of 

concern on the image), could be directly displayed on a 

monitor or mobile device. This workflow allows the 

dermatologist to cross-reference the model’s prediction 

probabilities with their own clinical observations, facilitating 

a faster decision-making process. The explainable nature of 

the model, especially when paired with saliency maps or 

heatmaps, ensures that the clinician understands why certain 

areas of the lesion are flagged as high-risk. This adds an extra 

layer of trust and transparency, making it easier for 

dermatologists to confidently use the model’s output as a 

decision support tool rather than solely relying on automated 

predictions. Once deployed, it could be integrated into existing 

Electronic Health Record (EHR) systems, where it would flag 

lesions requiring follow-up or further testing. This would help 

streamline patient management. 

For patients, the model’s ability to provide early detection 

of various skin cancer types could significantly improve 

treatment outcomes, particularly in rural and underserved 

areas where access to specialized diagnostic tools is limited. 

By offering a scalable and efficient solution, the model has the 

potential to reduce mortality rates associated with late-stage 

skin cancer diagnoses, ultimately improving public health 

outcomes in both urban and remote regions. 
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