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In this paper, we propose a novel lightweight object detection model tailored for edge 

devices, built upon the YOLOv5 architecture. Our model introduces three key 

innovations to enhance both efficiency and accuracy. First, we present an Improved 

Spatial Pyramid Pooling Fast (SPPF) layer that combines 1×1 convolutions with dilated 

convolutions to expand the receptive field while minimizing computational costs, 

thereby improving multi-scale feature extraction. Second, we refine the model’s neck 

by integrating Ghost and Partial Convolutions (PGhostNetV2), significantly reducing 

the computational load while preserving fine-grained spatial details essential for 

accurate detection. Finally, we enhance the Cross Stage Partial (CSP) Bottleneck by 

incorporating Ghost and Shuffle Convolutions (GSConv), optimizing feature 

representation while maintaining a lightweight structure. These enhancements result in 

a model that achieves competitive performance in terms of detection accuracy while 

significantly reducing inference time and computational demands, making it highly 

suitable for real-time applications on resource-constrained edge devices. 
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1. INTRODUCTION

Object detection stands as a critical task in the field of 

computer vision, with wide-ranging applications from 

autonomous driving to surveillance systems [1-6]. The advent 

of deep learning has significantly propelled the field of object 

detection, leading to substantial improvements in both 

accuracy and speed of detection. Advances in neural network 

architectures and learning algorithms have opened up new 

possibilities for robust detection mechanisms that can handle 

complex visual data in various conditions. 

Object detection methodologies based on deep learning are 

generally categorized into two main types: one-stage and two-

stage approaches. One-stage detectors, such as YOLO (You 

Only Look Once) [7-12], SSD (Single Shot MultiBox 

Detector) [13], FCOS [14], and CenterNet [15] are designed 

for speed and efficiency, processing the entire image in a 

single pass to predict both bounding boxes and class 

probabilities. Two-stage detectors, like R-CNN [16] and its 

variants (Fast R-CNN, Faster R-CNN) [17, 18], focus on 

achieving higher accuracy by first proposing candidate object 

regions and then classifying each region into object categories. 

Among the numerous models developed for object 

detection, the YOLO family has established itself as a 

dominant framework for real-time detection due to its high-

speed performance and strong accuracy. YOLOv5, in 

particular, has achieved a balance between precision and 

speed, making it a widely adopted model for a variety of real-

time applications. However, there remain challenges in 

deploying such models on resource-constrained environments, 

such as edge devices, where computational and memory 

efficiency are paramount. This presents a need for further 

refinements to enhance both the efficiency and accuracy of 

object detection models specifically optimized for these 

environments. 

In this work, we address these challenges by proposing a 

novel lightweight object detection model that builds upon the 

YOLOv5 architecture with specific enhancements aimed at 

improving performance in resource-constrained 

environments, such as edge devices. The novelty of our 

approach lies in three key architectural innovations that 

significantly improve the model’s efficiency while 

maintaining competitive detection accuracy: 

⚫ Improved Spatial Pyramid Pooling Fast (SPPF) Layer:

We introduce an enhanced SPPF layer that combines

1×1 convolutions with dilated convolutions, thereby

expanding the receptive field without increasing

computational overhead. This novel configuration

enhances multi-scale feature extraction and contributes

to faster inference.

⚫ Refined Neck Architecture with Ghost and Partial

Convolutions (PGhostNetV2): Our model incorporates a

refined neck design that integrates Ghost and Partial

Convolutions to drastically reduce the computational

burden while preserving the fine-grained spatial details

essential for accurate object detection. This allows the

model to operate efficiently on devices with limited

processing power.

⚫ Enhanced Cross Stage Partial (CSP) Bottleneck with

GSConv: We further optimize the Cross Stage Partial

(CSP) layer by replacing standard convolutional

operations with Ghost and Shuffle Convolutions
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(GSConv). This enhancement improves feature 

extraction and representation while keeping the 

computational demands minimal. 

These innovations make significant advances over the state-

of-the-art by improving the balance between speed and 

accuracy in real-time object detection on edge devices. The 

proposed model is designed to be highly adaptable to resource-

constrained environments, providing a practical solution for 

applications such as autonomous driving, surveillance, and 

mobile devices where computational efficiency is critical. Our 

experimental results, conducted on the BDD100K dataset, 

demonstrate that the proposed model not only achieves 

competitive accuracy but also significantly reduces inference 

time and computational demands, making it a state-of-the-art 

solution for lightweight object detection. 

 

 

2. RELATED WORK 

 

Object detection has seen significant advancements over the 

past decade, primarily driven by the rise of deep learning and 

convolutional neural networks (CNNs). Early approaches such 

as R-CNN, Fast R-CNN, and Faster R-CNN [16-18] focused 

on a two-stage process to achieve high accuracy. However, 

their computational complexity made them unsuitable for real-

time applications on resource-constrained devices. This led to 

the development of one-stage detectors like YOLO [7-12], 

SSD [13], FCOS [14], and CenterNet [15], which balance 

speed and accuracy by predicting bounding boxes and class 

probabilities in a single pass. Among these, YOLO has gained 

widespread use for its efficiency and high detection speed. 

Recently, several lightweight object detection models 

specifically optimized for edge devices have emerged to 

address the limitations of traditional models. MobileNet [19] 

and its variants, including MobileNetV2 [20] and 

MobileNetV3 [21], introduced depthwise separable 

convolutions to reduce computational cost, making them 

highly suitable for mobile and embedded systems. However, 

these models sometimes suffer from reduced accuracy due to 

the simplified network structure. EfficientDet [22] leveraged 

compound scaling to balance the network’s depth, width, and 

resolution, allowing for scalable detection across different 

device capacities. Although EfficientDet achieved strong 

results in terms of accuracy and speed, its architecture is more 

complex and can become computationally expensive for very 

resource-limited devices. Another prominent lightweight 

approach is GhostNet [23], which introduced Ghost 

Convolutions to generate more feature maps from fewer 

operations, reducing redundancy in CNNs. GhostNetV2 [24] 

further refined this by improving the efficiency of feature 

extraction. However, while GhostNet reduces computation, its 

use of depthwise convolutions limits its ability to capture 

global context, making it less effective in scenarios where 

fine-grained spatial information is crucial for accurate object 

detection. 

Another approach to enhance efficiency involves improving 

specific components within existing architectures. For 

example, the Spatial Pyramid Pooling (SPP) layer, introduced 

in early CNN models [25], has been adapted and optimized in 

various forms, including in YOLOv4 and YOLOv5, to 

improve multi-scale feature extraction. The introduction of 

techniques like dilated convolutions has further helped in 

capturing contextual information without increasing the 

computational cost [26]. 

Our approach builds upon the strengths of these models 

while addressing their limitations. Specifically, we incorporate 

Partial Convolutions (PConv) into GhostNetV2 to form 

PGhostNetV2, which overcomes the limitations of depthwise 

convolutions by better preserving spatial information through 

a split-and-convolve approach. This refinement not only 

reduces the computational load but also improves detection 

accuracy, particularly for small objects and complex 

environments. Further, techniques such as the Improved SPPF 

layer in our model are designed to improve multi-scale feature 

extraction, a feature shared by EfficientDet but achieved more 

efficiently in our architecture through the combination of 

dilated convolutions and 1×1 convolutions. Moreover, our 

Enhanced CSP Bottleneck with GSConv further optimizes 

feature extraction, reducing complexity without sacrificing 

detection performance, particularly in real-time applications 

on edge devices. 

 

 

3. METHODOLOGY 

 

3.1 YOLOv5 structure 

 

The YOLOv5 architecture is widely recognized for its 

balance between detection accuracy and computational 

efficiency, making it a popular choice for real-time object 

detection tasks. YOLOv5 is part of the broader YOLO family, 

known for pioneering a one-stage detection approach where 

the model predicts both bounding boxes and class probabilities 

directly from the full image in a single pass. This design 

significantly reduces inference time compared to two-stage 

models such as R-CNN, Fast R-CNN, and Faster R-CNN, 

where region proposals are generated first and classified later. 

 

 
 

Figure 1. YOLOv5 architecture 

 

The YOLOv5 architecture, as depicted in Figure 1, is 

structured into three main components: the backbone, the neck, 

and the head. The backbone of YOLOv5 begins with an Input 

layer where the input image is fed into the network. The first 

notable layer is the Focus layer, which helps in reducing the 

input dimensionality and concentrates on the most informative 

parts of the image for detection. This is followed by a series of 

Convolutional (Conv) layers and C3 (Cross Stage Partial 

networks) layers. The Conv layers are standard convolutional 
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layers used for feature extraction. The C3 layers, which are a 

modified version of the residual networks, enable the flow of 

information and gradients through the network, helping in 

learning more complex patterns without increasing the 

computational cost. The architecture also incorporates a 

Spatial Pyramid Pooling-Fast (SPPF) layer towards the end of 

the backbone. The SPPF layer pools features at different scales 

and concatenates them to maintain spatial hierarchies between 

features, enhancing the network's ability to recognize objects 

at various scales. The neck of YOLOv5 features a series of 

additional convolutional layers and upsampling layers 

combined with concatenation operations. This structure is 

crucial for constructing a rich feature pyramid which is 

beneficial for detecting objects at different scales. The use of 

upsampling layers and concatenations helps in merging the 

low-level feature information from earlier layers with high-

level features from deeper layers, which enhances the feature 

representation for different object sizes. The C3 layers in the 

neck further help in refining these features, ensuring that the 

features are robust and contain useful spatial and contextual 

information. The head of the network consists mainly of 

Conv2d layers. These layers are tasked with converting the 

rich, multi-scale feature maps produced by the backbone and 

neck into the final output predictions. The head processes 

these features to produce the bounding boxes, object class 

probabilities, and objectness scores which indicate the 

presence of objects within the boxes.  

In this work, YOLOv5 was selected as the base architecture 

due to its inherent advantages over other detection models. Its 

architecture is both computationally efficient and highly 

accurate, making it a prime candidate for adaptation in edge 

computing environments where processing power and 

memory are limited. Additionally, YOLOv5’s modularity 

allows for straightforward integration of improvements such 

as our proposed enhancements to the Spatial Pyramid Pooling, 

neck structure, and Cross Stage Partial Bottleneck, which 

further optimize the model for lightweight detection on edge 

devices. 

Building upon YOLOv5, we introduce several 

modifications designed to enhance both efficiency and 

detection accuracy. These include the Improved SPPF layer 

that expands the receptive field while reducing computational 

overhead, the PGhostNetV2 architecture in the neck that 

reduces the model's computational complexity, and the 

Enhanced CSP Bottleneck with GSConv for more efficient 

feature extraction. Together, these innovations build on 

YOLOv5's strengths and push the boundaries of lightweight, 

real-time object detection in resource-constrained 

environments. 

 

3.2 Improved SPPF layer 

 

In YOLOv5, the SPPF layer is an adaptation of the 

traditional Spatial Pyramid Pooling (SPP) layer [25], designed 

to be more efficient while maintaining similar benefits. The 

SPPF layer in YOLOv5 aims to enhance the receptive field of 

the network, allowing it to handle input of varying sizes and 

capture contextual information at different scales more 

efficiently. The detailed structure of the SPPF layer is shown 

in Figure 2(a). The SPPF layer utilizes a single max pooling 

operation with a large kernel size (i.e., 5×5) and performs max 

pooling with different strides to aggregate spatial features at 

varying scales efficiently. Mathematically, this can be 

expressed as: 

𝑃𝑘(𝑥) = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 
(𝑥, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 5 × 5, 𝑠𝑡𝑟𝑖𝑑𝑒 = 𝑠𝑘)  

(1) 

 

where, Pk(x) represents the max pooling operation with stride 

sk, applied to the input x. The outputs of these pooling 

operations are concatenated along the channel dimension: 

 

𝑦 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑃1(𝑥), 𝑃2(𝑥), 𝑃3(𝑥), … )  (2) 

 

This concatenated output maintains a rich representation of 

both local and more global features, effectively combining 

them to enhance the network’s ability to detect objects at 

different scales. The main advantage of the SPPF layer over 

the traditional SPP is its efficiency. By using fewer pooling 

operations and leveraging varying strides, the SPPF layer 

reduces the computational overhead while still enhancing the 

receptive field. This makes it particularly suitable for real-time 

applications where both speed and accuracy are crucial. 

 

 
 

Figure 2. The structure of SPPF (a) and improved SPPF (b) 

 

To optimize inference speed while aiming to maintain 

accuracy, we propose an improved SPPF layer which 

integrates a 1×1 convolution layer and 3×3 dilated 

convolutions, as shown in Figure 2(b). The Improved SPPF 

layer in our model is a significant enhancement aimed at 

capturing multi-scale context more efficiently, particularly for 

real-time object detection on resource-constrained edge 

devices. This improvement is based on integrating 1×1 

convolutions with dilated convolutions to optimize both 

feature extraction and computational efficiency. The 1×1 

convolution acts as a bottleneck layer that effectively reduces 

the number of input channels (i.e., feature maps): 

 

𝑦1 = 𝐶𝑜𝑛𝑣1×1(𝑥)  (3) 

 

This operation plays a critical role in decreasing the overall 

computational cost by minimizing the number of parameters 

that need to be processed in the subsequent layers. Despite 

reducing dimensionality, the 1×1 convolution preserves the 

essential features, ensuring that the most relevant information 

is passed through the network. By acting as a bottleneck, the 

1×1 convolution prepares the feature maps for more efficient 

processing through dilated convolutions.  

After the 1×1 convolution, the resulting feature maps are 

processed by dilated convolutions (3×3 convolutions with 

varying dilation rates): 

 

𝑦2 = 𝐷𝑖𝑙𝑎𝑡𝑒𝑑𝐶𝑜𝑛𝑣3×3(𝑦1, 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑑)  (4) 

 

where, the dilation rate d increases the receptive field without 
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increasing the kernel size. 

Dilated convolutions are effective in expanding the 

receptive field without increasing the kernel size, meaning the 

network can capture more contextual information from the 

input data while keeping the number of parameters low. This 

is particularly beneficial for object detection tasks where 

understanding the spatial relationships between objects at 

different scales is crucial. The dilation rate controls the 

spacing between the kernel weights, allowing the network to 

gather information from a broader area of the image. By 

combining multiple dilated convolutions with varying dilation 

rates, the SPPF layer can aggregate features at multiple scales, 

ensuring that both local and global context is captured without 

increasing the computational load. This multi-scale feature 

extraction is crucial for detecting objects of varying sizes 

within the same image. 

This approach allows the network to capture more 

contextual and spatial information from the input, which is 

crucial for tasks like object detection where understanding the 

broader scene context improves accuracy. The sequence 

includes multiple max pooling layers, each designed to 

aggregate features from varying spatial extents:  

 

𝑃𝑘(𝑦2) = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 
(𝑦2, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 5 × 5, 𝑠𝑡𝑟𝑖𝑑𝑒 = 𝑠𝑘)  

(5) 

 

The outputs of these pooling operations are then 

concatenated: 

 

𝑦 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑃1(𝑦2), 𝑃2(𝑦2), 𝑃3(𝑦2), … )  (6) 

 

Supporting these layers are SiLU activation functions and 

batch normalization, which promote better gradient flow and 

faster model convergence by standardizing the activations 

from the convolutional layers. This structured approach 

enhances inference speed without compromising the model's 

ability to perform accurately, making it particularly effective 

for real-time applications where computational resources are 

limited. Through these improvements, the architecture is 

optimized for performance on diverse hardware platforms, 

balancing the demands of speed and precision adeptly. 

 

3.3 Improve the neck by ghost and partial convolutions 

 

GhostNetV2 [24] is an evolution of the GhostNet 

architecture [23], designed to enhance the efficiency of 

convolutional neural networks by reducing the redundancy 

present in feature maps. In GhostNetV2, as depicted in Figure 

3, the basic building block is the Ghost module. This module 

generates more feature maps from the intrinsic features of the 

original feature maps, which allows for a reduction in the 

number of convolutional operations required. Specifically, the 

Ghost module applies depthwise convolution (DWConv) to 

create a large number of feature maps with minimal 

computational overhead. This structure enhances the model's 

efficiency, making it particularly suitable for deployment on 

edge devices with limited computational resources. 

Despite its advantages, the use of DWConv in the 

GhostNetV2 structure has some limitations. DWConv is 

known for its ability to reduce computational complexity 

compared to standard convolutions, but it also has inherent 

drawbacks. One of the key limitations is that DWConv can 

struggle with capturing global context and may be less 

effective in scenarios where fine-grained spatial information is 

crucial. This limitation can lead to a degradation in the quality 

of feature representations, particularly in the context of 

complex object detection tasks where capturing intricate 

details is necessary for accurate predictions. 

 

 
 

Figure 3. The architecture of GhostNetV2 

 

 
 

Figure 4. Partial convolution structure 

 

To address the limitations of DWConv, we introduce Partial 

Convolution (PConv) into the GhostNetV2 architecture to 

create PGhostNetV2 module. As illustrated in Figure 4, PConv 

works by splitting the input feature map into two parts. One 

part undergoes standard convolution operations, while the 

other part remains untouched. This design balances the 

computational savings of depthwise convolutions with the 

spatial feature-preserving qualities of standard convolutions. 

Specifically, partial convolutions apply convolution only to a 

subset of the input feature channels while the remaining 

channels pass through unchanged. This selective processing 

allows the network to retain critical spatial information across 

the feature map, which is essential for accurate object 

detection, particularly for small objects or in scenarios where 

object boundaries are complex. In contrast to depthwise 

convolutions, where each feature map is processed 

independently, partial convolutions enable the model to retain 

both local and global spatial dependencies by processing a 

portion of the feature maps through regular convolutions. This 

approach ensures that important spatial details are preserved 

without a significant increase in computational cost. 

The primary motivation for replacing DWConv with PConv 

in the GhostNetV2 structure is to overcome the 

aforementioned limitations of DWConv while maintaining the 

lightweight nature of the model. PConv, with its split-and-

convolve approach, allows the model to capture more detailed 

spatial information without significantly increasing the 

computational cost. This is particularly beneficial for object 

detection tasks, where precise localization and recognition of 

objects are critical. By integrating PConv into the GhostNetV2 

architecture to generate PGhostNetV2, we aim to enhance the 

quality of feature maps generated by the Ghost module, 

leading to better performance in object detection tasks, 

especially in edge device scenarios. 

We use three PGhostNetV2 modules at the end of the neck 

to generate output feature maps, ensuring that they are both 

rich in detail and computationally efficient. The use of 

PGhostNetV2 modules at the end of the neck enhances the 
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model's ability to produce detailed and efficient feature maps, 

leading to improved performance on lightweight object 

detection tasks. 

 

3.4 Enhanced C3 layer 

 

The C3 layer is a critical component in YOLOv5's 

architecture, designed to enhance the learning capability and 

efficiency of the model. This layer incorporates several key 

features that optimize both the computational cost and the 

effectiveness of the neural network in processing spatial 

features for object detection tasks. The structure of the C3 

layer begins with splitting the input feature map into two 

separate paths, as shown in Figure 5(a). One path processes the 

features directly, typically through a series of convolutional 

operations, while the other path is subjected to a sequence of 

transformations intended to refine and enhance the feature 

representation. The transformations generally include multiple 

convolutional layers; the first layer often uses a smaller 

number of filters to reduce dimensionality and computational 

load, followed by a batch normalization layer and an activation 

function like Leaky ReLU or SiLU to introduce non-linearity 

and stabilize the network learning. After processing through 

these convolutional blocks, the two paths are recombined. This 

recombination is a distinctive aspect of the C3 layer, where the 

feature maps from both paths are concatenated along the 

channel axis. This concatenation helps in enriching the feature 

space with both processed and bypassed features, enhancing 

the model's ability to capture and utilize more complex 

patterns and dependencies within the data. Moreover, the C3 

layer includes skip connections, similar to those used in 

residual networks, which help in mitigating the vanishing 

gradient problem by allowing gradients to flow directly 

through the network layers during backpropagation. This is 

particularly beneficial for the training of deep networks, 

ensuring more stable and faster convergence. 

 

 

 
 

Figure 5. The structure of C3 layer (a) and enhanced C3 

layer (b) 

To optimize processing and improve the network's 

capability to handle complex object detection tasks, we design 

an Enhanced C3 layer, which is used to replace the standard 

C3 layer in YOLOv5 architecture, specifically aimed at 

increasing the model's efficiency and effectiveness in feature 

extraction and representation. The core innovation in this 

Enhanced C3 layer lies in the replacement of standard 

convolutional operations in the bottleneck structure with 

GSConv (Ghost and Shuffle Convolution) [27], as shown in 

Figure 5(b). Ghost Convolutions are designed to reduce the 

redundancy in feature maps by generating a portion of the 

output feature maps through cheaper transformations. Rather 

than applying full convolutions to every feature map, Ghost 

Convolutions apply standard convolutions to only a portion of 

the input features, generating the remaining feature maps 

through inexpensive linear operations. This drastically reduces 

the number of operations required, leading to a more efficient 

convolutional layer. The intuition behind this is that many 

feature maps in deep convolutional networks contain a high 

degree of redundancy, and Ghost Convolutions eliminate this 

inefficiency by learning fewer but more meaningful feature 

maps. Shuffle Convolutions complement Ghost Convolutions 

by introducing an additional mechanism that enhances the 

network’s ability to mix and propagate information across 

feature channels. Shuffle Convolutions achieve this by 

dividing the input feature maps into groups, performing 

grouped convolutions on these subsets, and then shuffling the 

output channels to improve interaction between feature groups. 

This channel shuffling increases the diversity of features and 

allows the model to capture a wider range of spatial 

dependencies across the input image. The intuition here is that 

simply reducing the computational load, as Ghost 

Convolutions do, can sometimes limit the representational 

power of the network. Shuffle Convolutions counteract this 

limitation by ensuring that information from different feature 

maps is mixed and spread across the network, increasing the 

ability of the model to represent complex patterns and fine 

details. 

The GSConv approach segments the convolutional 

processing into groups, allowing the network to reduce 

computational overhead significantly while still capturing 

spatial dependencies effectively. Each GSConv operates on a 

subset of input features, thereby focusing on extracting more 

nuanced and localized feature representations which can be 

crucial for tasks requiring high-detail perception, such as in 

autonomous vehicle navigation or intricate object detection 

scenarios. Moreover, the GS-Bottleneck modules are applied 

repeatedly, providing a deepened layering strategy to 

progressively refine features at different levels of abstraction. 

The bottleneck modules, now powered by GSConv, ensure 

that each stage of feature processing builds on the refined 

outputs of the previous stage, enhancing the network's ability 

to learn complex patterns with greater accuracy. The inclusion 

of concatenation after the GS-Bottlenecks and before the final 

convolution layer further enriches the feature maps by 

combining diverse representations, ensuring that subsequent 

layers have access to a broad spectrum of features from both 

deep and shallow levels. This design is aimed at boosting the 

representational power of the network without a 

commensurate increase in computational demands. 

By combining Ghost and Shuffle Convolutions, the 

Enhanced C3 Layer achieves a balance between computational 

efficiency and the ability to capture detailed spatial 

information. Ghost Convolutions reduce the overall number of 
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operations without sacrificing meaningful feature 

representation, while Shuffle Convolutions ensure that the 

information in these features is mixed effectively, improving 

the network’s ability to capture complex relationships between 

objects in the image. This synergy allows the Enhanced C3 

layer to retain the lightweight nature required for edge devices 

while significantly improving the model’s capacity for object 

detection, especially in complex or crowded environments. 

 

 

4. RESULTS AND DISCUSSION  

 

4.1 Dataset and evaluation metrics 

 

For the evaluation of our proposed model, we utilized the 

BDD100K dataset [28], which is one of the largest and most 

diverse datasets available for autonomous driving tasks. 

Created by the Berkeley DeepDrive Center, this dataset is 

specifically designed for real-world driving scenarios and 

provides a rich collection of images with various driving 

conditions, environments, and object types, making it ideal for 

benchmarking object detection models for applications in 

autonomous driving. The BDD100K dataset contains 100,000 

images, all captured at 720p resolution from dash-mounted 

cameras in vehicles. These images are annotated with a wide 

variety of objects relevant to driving scenarios. The dataset 

includes annotations for 10 object categories, which cover 

both traffic-related and environmental objects essential for 

autonomous vehicle navigation. In addition to object 

annotations, BDD100K also provides labels for various scene 

attributes, including weather conditions (clear, rainy, foggy, 

overcast), time of day (daytime, night, dusk), and road types 

(city streets, highways, residential areas). This diverse and 

comprehensive labeling makes the dataset particularly 

challenging and valuable for developing and testing object 

detection models in dynamic driving environments. 

We selected the BDD100K dataset for evaluation due to 

several factors. First, the dataset covers a wide range of 

scenarios that an autonomous vehicle may encounter in real-

world settings, including different lighting conditions, weather 

types, and varying traffic densities. This ensures that the 

trained model can handle complex situations, making it more 

robust and generalizable to real-world applications. Second, 

BDD100K provides images from real driving environments, 

which include not only urban settings but also highways, 

residential areas, and parking lots. This diversity in driving 

conditions allows us to evaluate the model’s ability to detect 

objects accurately across different road types and 

environments. Finally, the BDD100K dataset includes both 

densely populated urban scenes with numerous small objects 

and sparser highway environments, challenging the model’s 

ability to detect objects at different scales and in varying 

densities. Additionally, the presence of diverse weather 

conditions and lighting environments tests the robustness of 

the model across different visual conditions. 

We use several metrics to assess different aspects of the 

model's efficiency and accuracy, including mAP, Params, 

FLOPs, and FPS. These metrics provide valuable insights into 

the model's performance. mAP is a standard metric for 

measuring the accuracy of object detectors like those used in 

computer vision. It represents the average precision across all 

classes and recall levels. Precision is the ratio of correctly 

predicted positive observations to the total predicted positives, 

and recall is the ratio of correctly predicted positive 

observations to all actual positives. The mAP is calculated by 

taking the mean of the Average Precision (AP) for each class. 

Params (Parameters) refers to the total count of trainable 

parameters in the model. It is a direct indicator of the model’s 

complexity and memory requirements. Models with a higher 

number of parameters might be capable of learning more 

detailed features but are also generally more computationally 

intensive and slower to train. FLOPs measure the 

computational complexity of the model, specifically the 

number of floating-point operations required to generate an 

output from a single input. This metric is crucial for 

understanding the computational demand of the model, 

particularly in deployment scenarios where processing power 

is a limiting factor. FPS measures the speed of the model in 

processing input frames. It is an essential metric for 

applications requiring real-time processing, such as video 

analysis and autonomous driving. Higher FPS indicates that 

the model can process more frames in a shorter amount of time, 

enhancing the responsiveness of the application. 

 

4.2 Experimental setup 

 

In this section, we provide a detailed description of the 

experimental setup used to train and evaluate the proposed 

model. This information is crucial for reproducibility and 

clarity regarding the model's performance. 

For all experiments, we used an input resolution of 640×640 

pixels. This resolution was chosen based on the balance 

between computational efficiency and detection accuracy, 

especially for real-time object detection tasks on edge devices. 

By using a fixed input resolution, we ensured consistency 

across all experiments and maintained the model’s real-time 

performance. We initialized our model using weights pre-

trained on the COCO dataset. Pre-training on COCO provides 

a strong starting point for object detection tasks as the dataset 

contains a wide variety of objects across many different 

categories, which helps the model learn basic features such as 

edges, textures, and object shapes. 

For the experimental evaluation of our proposed model, we 

utilized a hardware setup consisting of an Intel Core i7-

11700K CPU and an NVIDIA RTX 4080 GPU. This 

combination provides a robust platform for high-performance 

computation, necessary for handling the intensive demands of 

real-time object detection tasks. The model was trained using 

a batch size of 8 and an initial learning rate of 0.001, adjusted 

dynamically with a cosine annealing schedule to optimize 

convergence. We employed standard data augmentation 

techniques such as random cropping, rotation, and color 

adjustment to enhance the model's robustness to real-world 

variations in input data. Training was conducted over 100 

epochs, with early stopping implemented to prevent 

overfitting based on the validation loss. 

 

4.3 Comparison with other models 

 

We compared the performance of our model with various 

models on the BDD100K dataset, including MultiNet [29], 

Faster R-CNN [18], YOLOV5s, DLT-Net [30], YOLOP [31], 

and HybridNets [32]. The comparison results are presented in 

Table 1. The results demonstrate that our proposed model, 

which incorporates significant enhancements over the 

standard YOLOv5 architecture, outperforms most existing 

models in terms of both accuracy and speed. With a Recall of 

90.6% and an mAP50 of 77.8%, our model not only achieves 
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higher precision in object detection compared to models like 

MultiNet, Faster R-CNN, DLT-Net, and YOLOP but also 

surpasses the original YOLOv5s and is slightly more accurate 

than HybridNets. Crucially, it maintains a high detection 

accuracy while significantly boosting the inference speed to 

84 FPS, which is markedly higher than all compared models. 

This high performance can be attributed to the architectural 

improvements in our model. The Improved SPPF layer is 

designed to optimize inference speed without compromising 

accuracy, effectively balancing computational efficiency with 

robust detection capabilities. The refined neck architecture 

using Ghost and Partial Convolutions reduces the 

computational load while maintaining high-quality feature 

extraction. Additionally, the introduction of the Enhanced C3 

layer, replacing the standard C3 layer in YOLOv5, contributes 

to more effective feature representation and extraction, further 

boosting the model’s overall performance. These 

enhancements allow our model not only to perform 

exceptionally in terms of standard metrics but also to operate 

at a high speed, making it ideal for real-time applications such 

as autonomous driving. The significant improvement in FPS, 

in particular, underscores the model's suitability for 

deployment in scenarios where quick processing of visual data 

is critical. The blend of high recall and superior mAP50 also 

indicates that the model effectively minimizes false negatives 

and accurately identifies objects, which is paramount in 

scenarios that demand high reliability, such as in varying 

lighting and weather conditions encountered in autonomous 

vehicle navigation. Thus, our model stands out as a highly 

efficient and effective solution in the landscape of object 

detection technologies, particularly for applications in 

dynamic and challenging environments. 

To further demonstrate the generalizability of our approach 

beyond autonomous driving scenarios, we extended our 

evaluation to an additional widely-used object detection 

dataset: MS COCO [33]. This dataset is commonly used 

benchmark in the computer vision community and provide 

diverse images with a wide range of object categories, 

environments, and scene complexities. The MS COCO dataset 

contains over 330,000 images and 80 object categories, with 

challenging annotations that include both large and small 

objects in cluttered scenes. This dataset is ideal for testing the 

generalization of our model because it covers a wide variety 

of contexts that go beyond the autonomous driving domain. 

The COCO dataset also includes annotations for segmentation 

and keypoint detection, making it a comprehensive benchmark 

for real-world applications. Table 2 provides comparison 

results. The results in Table 2 show a clear trade-off between 

speed and accuracy among the various models. YOLOX-Tiny 

[34] and MobileNet-SSD [35] excel in terms of speed, 

achieving 150 FPS and 160 FPS, respectively, but have lower 

accuracy compared to our model. Our model strikes an optimal 

balance, with an mAP50 of 48.5% and a competitive speed of 

145 FPS, outperforming YOLOv5s in both accuracy and speed. 

While Faster R-CNN lags in speed at just 10 FPS, it also has 

the lowest mAP50, indicating that it is less suited for real-time 

edge deployment compared to other models. These results on 

MS COCO demonstrate the generalizability of the proposed 

model to a broader set of object detection tasks, validating its 

effectiveness across different domains beyond autonomous 

driving. 

When developing lightweight object detection models, one 

of the most critical factors is the trade-off between inference 

speed and accuracy. Models designed for edge deployment 

must be computationally efficient to ensure real-time 

processing while maintaining a high level of detection 

accuracy, particularly in complex environments where missed 

detections can be costly. Our proposed model strikes a fine 

balance between inference speed and accuracy through several 

architectural enhancements, including the Improved SPPF 

layer, PGhostNetV2, and the Enhanced C3 Layer. These 

innovations were specifically designed to optimize both 

computation and accuracy, addressing the typical limitations 

of lightweight models that prioritize one metric at the expense 

of the other. For inference speed, our model achieves an 

impressive 145 FPS, which is competitive with highly efficient 

models such as MobileNet-SSD and YOLOX-Tiny. Despite 

the high processing speed, our model still achieves higher 

accuracy. This is largely due to the inclusion of Ghost 

Convolutions and Partial Convolutions, which reduce the 

number of redundant operations, thus speeding up inference 

without losing critical feature extraction capabilities. In 

addition, the use of dilated convolutions in the Improved SPPF 

layer enables the model to capture multi-scale features without 

adding significant computational overhead, contributing to 

both speed and accuracy. 

 

Table 1. Comparison with other models on the BDD100K 

 
Models Recall mAP50 (%) Speed (FPS) 

MultiNet [29] 81.3 60.2 18 

Faster R-CNN [18] 77.2 55.6 16 

YOLOV5s 86.8 77.2 66 

DLT-Net [30] 89.4 68.4 25 

YOLOP [31] 89.2 76.5 45 

HybridNets [32] 92.8 77.3 24 

Our model 90.6 77.8 84 

 

Table 2. Comparison with other models on the MS COCO 

 
Models Recall mAP50 (%) Speed (FPS) 

MultiNet [29] 65.2 38.5 30 

Faster R-CNN [18] 61.0 37.5 10 

YOLOV5s 68.0 44.1 140 

DLT-Net [30] 69.5 41.2 55 

YOLOP [31] 70.8 42.9 55 

YOLOX-Tiny [34] 66.5 47.4 150 

MobileNet-SSD [35] 62.4 38.0 160 

Our model 71.2 48.5 145 

 

4.4 Comparison with the baseline model 
 

We also evaluated our model in various environments and 

compared the results with the baseline model, YOLOv5. The 

results presented in Table 3 illustrate the robust performance 

of our model across a variety of environmental scenarios when 

compared to the baseline model, YOLOv5. In urban settings 

such as city streets, highways, and residential areas, our model 

consistently outperforms YOLOv5, achieving mAP50 scores 

of 0.624, 0.602, and 0.645 respectively, compared to 0.572, 

0.539, and 0.608 by YOLOv5. This indicates a stronger ability 

to accurately detect objects in complex urban environments 

where diverse objects and movement patterns are present. 

Furthermore, our model demonstrates significant 

improvements in more controlled environments such as 

tunnels, gas stations, and parking lots, with the most notable 

increase seen in parking lots where the mAP50 score jumps 

from 0.654 to 0.760. This substantial improvement suggests 

that our model is particularly effective in environments with 

structured spaces and stationary objects. 
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Weather conditions also pose varying challenges; however, 

our model shows enhanced performance under all weather 

scenarios. For instance, in clear conditions, it achieves an 

mAP50 of 0.631 compared to 0.572 by YOLOv5, and even in 

more challenging foggy and snowy conditions, it scores 0.600 

and 0.617, respectively, outperforming the baseline. This 

enhanced capability under diverse weather conditions 

highlights the model’s adaptability and reliability, crucial for 

applications such as autonomous driving where weather 

variability is a significant factor. Additionally, the model's 

performance during different times of the day, daytime, night, 

and dawn/dusk, shows consistent improvements. It scores 

0.622, 0.607, and 0.621 in these conditions, respectively, 

compared to 0.572, 0.554, and 0.586 by YOLOv5. This 

improvement across various lighting conditions further 

confirms the model’s robustness in variable lighting, 

enhancing its utility in real-world applications where lighting 

can change unpredictably. Overall, the enhancements in our 

model have clearly contributed to its superior performance 

across different scenarios, making it a more versatile and 

reliable option for real-time object detection in diverse 

environments and conditions. 
 

Table 3. Performance results in various driving scenarios 

 

Scenarios Environments 
mAP50 

YOLOv5 Our Model 

Scenes 

City street 0.572 0.624 

Highway 0.539 0.602 

Residential 0.608 0.645 

Tunnel 0.641 0.674 

Gas stations 0.638 0.653 

Parking lot 0.654 0.760 

Weather 

Clear 0.572 0.631 

Overcast 0.578 0.617 

Rainy 0.607 0.632 

Foggy 0.576 0.600 

Snowy 0.548 0.617 

Undefined 0.559 0.603 

Time 

Daytime 0.572 0.622 

Night 0.554 0.607 

Dawn/dusk 0.586 0.621 

Table 4. The effect of each component 

 
Baseline Improved SPPF Layer PGhostNetV2 in the Neck Enhanced C3 Layer mAP50(%) Params GFLOPs FPS 

√    77.2 7 M 16.4 66 

√ √   77.3 6.2 M 15.2 68 

√  √  77.7 7.2 M 16.8 59 

√   √ 77.4 6.4 M 14.8 73 

√ √ √ √ 77.8 5.6 M 14.3 84 

 

4.5 Ablation study 

 

We conduct ablation experiments to evaluate the effect of 

each component proposed in this paper. Table 4 presents the 

ablation results. The ablation study presented in Table 4 

systematically evaluates the impact of various architectural 

enhancements on the performance of our model. This 

approach allows us to discern the individual and combined 

contributions of each proposed component: Improved SPPF 

layer, the refined neck architecture with PGhostNetV2 

modules, and Enhanced C3 layers. Starting with the baseline 

model, which achieves an mAP50 of 77.2%, we observe 

incremental improvements as each component is introduced. 

The introduction of the Improved SPPF layer slightly 

increases the mAP50 to 77.3%, while simultaneously reducing 

the model parameters to 6.2 million and GFLOPs to 15.2, thus 

enhancing both model efficiency and slight performance. This 

indicates that the Improved SPPF layer contributes to a more 

computationally efficient architecture without significantly 

impacting accuracy. Integrating PGhostNetV2 into the neck 

results in a slight improvement in detection accuracy, with the 

mAP50 increasing from 77.2% to 77.7%. This enhancement 

comes with a modest increase in the number of parameters 

(from 7M to 7.2M) and GFLOPs (from 16.4 to 16.8), 

reflecting a trade-off between computational complexity and 

accuracy. However, this integration also leads to a reduction 

in FPS from 66 to 59, indicating a decrease in inference speed 

due to the added computational demands. 

The addition of the Enhanced C3 layer to the baseline leads 

to the improvement in mAP50, reaching 77.4%, with a notable 

reduction in GFLOPs to 14.8 and parameters to 6.4 million, 

alongside an increase in FPS to 73. This demonstrates that the 

Enhanced C3 layer significantly contributes to both the 

efficiency and effectiveness of the model, optimizing feature 

extraction and representation capabilities more substantially 

than the other components. When all enhancements are 

combined, the model achieves an mAP50 of 77.8%, which is 

the highest score among the configurations. Additionally, this 

full configuration yields the most significant reductions in 

GFLOPs (14.3) and model parameters (5.6 million), while also 

achieving the highest FPS (84). These results highlight the 

synergistic effect of integrating all proposed improvements, 

leading to a model that not only performs better in terms of 

accuracy but is also substantially more efficient and faster. 

This combination makes it particularly suited for real-time 

applications where both performance and computational speed 

are critical. 

While our proposed lightweight object detection model 

demonstrates strong performance in terms of accuracy and 

efficiency, several practical deployment challenges must be 

considered when implementing the model on various edge 

devices. One of the most significant challenges when 

deploying deep learning models on edge devices is memory 

limitation. Although we have minimized the number of 

parameters in the model (5.6M parameters compared to 

YOLOv5s with 7M), further reductions might be necessary 

depending on the edge device. For instance, devices like 

microcontrollers or small embedded systems may not have 

enough memory to load the entire model, especially when 

handling large batches or higher-resolution inputs. Techniques 

such as model quantization, where weights are reduced from 

32-bit floats to 8-bit integers, can further reduce memory 

usage without significant loss of accuracy. Another option is 

model pruning, where unnecessary weights and neurons are 

removed post-training to reduce the model size. Both 

approaches can help address memory constraints during 

deployment on memory-limited edge devices. Another critical 

factor in edge deployment is the balance between power 
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consumption and latency. Many edge devices, particularly 

those operating in remote or resource-constrained 

environments, are battery-powered and have strict 

requirements for real-time performance. To address latency 

concerns, edge-cloud hybrid deployment models can be used, 

where more computationally intensive tasks are offloaded to 

the cloud, while real-time, lightweight tasks are handled 

locally on the edge device. 

 

4.6 Visualization results 

 

Figure 6 provides visualization results of our model in 

various environmental and lighting conditions. Across 

different scenarios, city streets, residential areas, gas stations, 

tunnels, highways, and parking lots, the model consistently 

demonstrates high accuracy in detecting vehicles, showcasing 

the effectiveness of the Improved SPPF, PGhostNetV2, and 

Enhanced C3 layers. In complex urban settings like city streets 

and residential areas, where multiple vehicles and pedestrians 

coexist, the model accurately identifies smaller and partially 

occluded objects, a testament to its refined feature extraction 

capabilities. In more controlled environments such as tunnels 

and parking lots, where lighting and background conditions 

are more uniform, the model performs exceptionally well, 

highlighting its capacity to maintain high detection standards 

even in less variable contexts. This is particularly notable in 

parking lots during dawn or dusk, where the model 

successfully delineates vehicles despite the challenging light 

conditions, indicating strong performance in low-light 

scenarios. 

 

 
 

Figure 6. Visualization results of our model in different scenarios 

 

Weather conditions, often a challenge for object detection 

systems, are adeptly handled by the model. In rain, fog, and 

overcast conditions, the model retains high detection accuracy. 

The clarity of object detection in rainy conditions underscores 

the model's resilience to visual distortions caused by water on 

the lens or other reflective surfaces. Furthermore, during 

night-time conditions, our model effectively utilizes available 

lighting, such as street lamps and vehicle headlights, to ensure 

reliable detection, which is critical for applications like 

autonomous driving that require 24/7 operational capabilities. 

Moreover, the distinct bounding boxes and labels visible in the 

images indicate precise localization and classification of each 

object, which are essential for real-time decision-making 

systems in autonomous vehicles. The enhanced feature 

extraction capabilities of the model, enabled by the 

architectural improvements, ensure that each vehicle is 

accurately tracked across different frames and conditions, 

facilitating reliable and safe navigational decisions. 

While our proposed lightweight object detection model 

demonstrates strong performance across various datasets, like 

all models, it is prone to certain failure modes. One of the most 

common failure modes is related to the detection of small 

objects. In scenarios where objects like pedestrians, traffic 

lights, or distant vehicles occupy only a few pixels in the 

image, the model sometimes struggles to accurately detect or 

classify them. This issue becomes more pronounced in 

cluttered scenes where multiple small objects overlap. One 

potential solution is to further enhance the multi-scale feature 
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extraction capabilities of the model. While the current use of 

dilated convolutions in the Improved SPPF layer helps capture 

multi-scale context, additional fine-tuning could be done to 

increase the model's sensitivity to smaller objects. Occlusion 

is another common failure mode where the model struggles to 

detect objects that are partially obstructed. For example, in 

autonomous driving scenarios, vehicles and pedestrians are 

often occluded by other objects like trees, signs, or other 

vehicles. In such cases, the model might miss detecting the 

partially visible objects. Improving the model’s ability to 

handle occlusions can be addressed by enhancing its 

contextual reasoning capabilities. For instance, the inclusion 

of attention mechanisms or feature pyramid networks with 

enhanced context-awareness could help the model understand 

the global context better and predict partially visible objects. 

In low-light conditions or under adverse weather (e.g., rain, 

fog), the model tends to generate false positives due to the lack 

of clear object boundaries. These false positives typically 

involve background elements being incorrectly classified as 

objects. One solution is to use domain-specific data 

augmentation, such as adding synthetic fog, rain, or low-light 

conditions to the training data to improve robustness in such 

scenarios. 

The analysis of these failure modes highlights the model’s 

strong performance in most scenarios but also points to areas 

where improvements can be made. By addressing the 

challenges of small object detection, occlusion handling, and 

false positives in adverse conditions, the robustness of the 

model can be further improved. 

 

 

5. CONCLUSIONS 

 

In this paper, we presented a series of enhancements to the 

YOLOv5 architecture, specifically aimed at improving the 

performance of object detection models on edge devices with 

limited computational resources. Our proposed model 

incorporates three key innovations: an Improved SPPF layer 

to expand the receptive field while maintaining computational 

efficiency, a refined neck architecture using Ghost and Partial 

Convolutions (PGhostNetV2) to reduce the computational 

load while preserving detailed spatial feature extraction, and 

an Enhanced C3 layer that utilizes GSConv for optimized 

feature representation. Through extensive experimentation on 

the BDD100K and MS COCO datasets, we demonstrated that 

our model achieves competitive performance in terms of 

accuracy while significantly reducing inference time and 

computational demands. These results highlight the potential 

of our approach for real-time applications, particularly in 

environments where processing power and energy efficiency 

are critical, such as autonomous vehicles, surveillance systems, 

and other edge computing scenarios. 

An important aspect of the proposed architectural changes 

is their generalizability. The enhancements introduced in this 

paper, such as Ghost Convolutions, Partial Convolutions, and 

the multi-scale feature extraction capability of the Improved 

SPPF layer, are not limited to YOLOv5 and can be applied to 

other backbone networks. For instance, these improvements 

can benefit architectures such as MobileNet, EfficientDet, or 

even more complex backbones like ResNet or DenseNet when 

used in lightweight or real-time detection scenarios. By 

integrating these modifications, other models could achieve 

similar reductions in computational overhead while 

maintaining or even improving detection accuracy. The 

modular nature of these enhancements makes them adaptable 

to a variety of network structures. Therefore, future work 

could explore applying the proposed improvements to 

alternative backbones, with the expectation that they would 

yield similar benefits in terms of inference speed and 

computational efficiency, particularly on resource-constrained 

devices. 
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