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Skin cancer is increasingly becoming a prominent community health hazard across the 

globe, and detecting its onset very early gives an edge in advancing patient care quality. This 

work introduces a novel approach, an advanced convolutional neural network model rooted 

in deep learning to effectively classify skin lesions, with the primary focus on improving 

accuracy by fine tuning the hyper parameters. The model is fitted and assessed using the 

HAM10000 dataset. The dataset has 10,015 dermoscopic pictures, encompassing a range of 

skin manifestations. To enhance the accuracy of our model, we employed several 

techniques, including batch normalization, dropout, data augmentation, and data balancing. 

The proposed model outperformed several existing models and achieved an impressive 

accuracy of 96% in classifying skin lesions, demonstrating its role as a key asset in assisting 

dermatologists and clinicians in diagnosing skin cancer. 
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1. INTRODUCTION

Skin cancer is distinguished by its high occurrence rate, 

experiencing a global surge in its incidence. Prompt and 

precise skin lesion diagnosis is vital for better treatment and 

patient results. Dermoscopy, a non-invasive imaging 

technique, has emerged as a beneficial aid for assisting 

dermatologists in diagnosing dermal malignancy in the initial 

stages. Manually interpreting dermoscopic images is time-

intensive and susceptible to observer differences. 

Recent progress in deep learning holds significant potential 

for automating skin lesion classification. Convolutional deep 

learning networks which are commonly abbreviated as CNNs, 

have exhibited impressive prowess in accomplishing image 

recognition tasks. In this study, we aim to harness the power 

of deep CNNs to develop a well calibrated and swift model for 

the identification and labelling of skin malignancies. 

We utilized the HAM10000 dataset, containing a 

comprehensive range of 10,015 dermoscopic pictures. The 

dataset encompasses seven categories of skin deformities. The 

proposed model’s effectiveness is enhanced by incorporating 

several techniques. Batch normalization was applied to ensure 

stable learning and faster convergence during the training 

process. Dropout regularization was utilized to reduce the risk 

of the model fitting to random noise in the training data and to 

enhance its robustness on data it hasn't encountered before. 

In addition, strategies like data augmentation were 

employed to the training dataset. This process involved 

applying geometric transformations that include rotation, 

scaling, and flipping, as well as introducing random noise to 

the images. This augmented dataset allowed the model to learn 

more robust representation of skin lesions, thereby improving 

its classification performance. 

Furthermore, data balancing techniques were utilized to 

tackle the issue of skewed class distribution in the data. As 

skin cancer is a relatively rare condition compared to benign 

lesions, imbalanced class distributions can adversely affect the 

model's performance. By oversampling the minority classes 

and down sampling the prevalent class, We strived to correct 

the imbalance among classes and uphold fair representation 

across the board during training. 

The outcomes of our investigations showcase the efficacy 

of our proposed model. Our DCNN produced an impressive 

accuracy of 94% when the count of images per each label 

(sample size) is 2000 per class and the accuracy increased to 

96% when the sample size is increased to 2800. With its 

impressive accuracy our DCNN model showcases its 

capability as a reliable instrument in assisting dermatologists 

to identify skin lesions properly. The development of 

automated classification systems greatly helps in making 

accurate and timely diagnoses, potentially reducing the burden 

on dermatologists and improving patient care. 

2. LITERATURE REVIEW

Gururaj et al. [1] used transfer learning methodology and 

trained their model using DenseNet169 and Resnet 50 and 

achieved an accuracy of 91.2% with under sampling and 83% 

with over sampling using a data split ratio of 80:20. Gong et 

al. [2] used an ensemble of multiple Convolutional Neural 

Networks (CNNs) in combination with Generative Adversial 

Networks (GANs) and achieved an accuracy of 92.6%. Zhou 

et al. [3] applied neural spiking architectures incorporating 
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spike-timing adjustment techniques resulting in an 88% 

accuracy rate. Son et al. [4] proposed a method in which 

segmentation is done first using UNET and then segmented 

images are classified using Efficient-Net and achieved an 

accuracy of 87.1%. Attention Residual Learning CNN (ARL-

CNN) is used for dermatological malignancy categorization 

and achieved an accuracy of 85% [5]. In a study by 

Thurnhofer-Hemsi et al. [6], a blend of neural networks based 

on convolution filters are synergistically employed with a 

systematically applied shifting technique, resulted in a 

noteworthy 83.5% accuracy for classifying skin lesions. 

Several CNNs are combined to create an ensemble by 

combining the class insights offered by the separate classifiers.  

Ahmed et al. [7] presented a strategy in which certain layers 

of ResNet-152 and ResNet-V2- Inception are finetuned with a 

triplet loss function. They achieved an accuracy of 84.91% 

with ResNet152 and with InceptionResNet-V2 the accuracy 

achieved is 87.42%. The HAM10000 dataset was employed 

with a novel segmentation approach using Shuffle-Net [8]. 

They calculated the cumulative moments of order one with 

entropy-based weighting (EW-FCM) of the skin image. Then 

using these moments, the required part of the lesion is isolated 

from the backdrop and this segmented part is fed as input to a 

new deep learning structure wide-Shuffle-Net and estimate the 

skin lesion category. This tactic achieved 86.33% accuracy. 

Tschandl et al. [9] developed the HAM10000 data set of skin 

lesions which can be used to train and test various 

classification algorithms. A fully convolutional residual 

network (FCRN) is integrated with a residual deep learning 

model to form a two stage frame work and achieved an 

accuracy of 85.5% [10].  

Harangi [11] obtained 86.6% accuracy by employing a 

fusion of GoogleNet, AlexNet, ResNet, and VGGNet within 

an ensemble framework. Demyanov et al. [12] achieved 88% 

accuracy. A partially supervised model is presented [13]. This 

model has a self-advised learning mechanism for automated 

recognition of melanocytic carcinoma. They employed an 

auto-correcting SVM model to improve categorization 

performance by addressing the impact of incorrectly classified 

data, resulting in 89% accuracy. Mahbod et al. [14] used a 

hybrid deep neural networks that resulted in an accuracy of 

84.7%. The approach revolves around harnessing the power of 

a pre-trained deep neural network (DNN) to autonomously 

extract a comprehensive array of distinctive features [15]. 

These features subsequently prove instrumental in the accurate 

diagnosis of skin lesions for malignancy. By leveraging the 

proficiency of the DNN, they streamlined the process of 

identifying key indicators within skin samples, facilitating a 

more refined and reliable diagnostic process for malignancy to 

record 93.64% of accuracy. Albahar [16] used a pre diction 

model with a novel regularizer that resulted in an accuracy of 

97.49%. Li and Shen [17] developed a deep learning 

framework consisting of two fully convolutional residual 

networks (FCRN) to simultaneously produce the segmentation 

result and the coarse classification result achieving an 

accuracy of 91.2% on ISIC 2017 data set. The model outlined 

in study [18] employs image segmentation, feature extraction 

and synthetic minority oversampling technique (SMOTE). 

The extracted features are applied to various ML classifiers 

and Random Forest gave the best accuracy when evaluated on 

the ISBI dataset. Ichim and Popescu [19] proposed a novel 

intelligent system for melanoma classification that leverages a 

two-tiered structure of interconnected neural networks. 

Characteristics such as texture, shape, color, size are captured 

in the first tier and in the second tier an objective perceptron-

based classifier aggregates the weighted outputs from the first 

tier, ultimately determining whether a lesion is melanoma or 

non-melanoma with an accuracy of 97.5%. 

Ali et al. [20] came up with a DCNN that is evaluated on 

the HAM10000 data set and resulted in a validation accuracy 

of 91.93%. Various EfficientNet architectures were validated 

on the same dataset and recorded a Top-1 accuracy of 87.91% 

[21]. Datta et al. [22] studied the effectiveness of soft-

weighted attention mechanism on the neural networks and 

observed that it boosted the performance by 4.7% and 

achieved an accuracy close to 94% on HAM10000 dataset. A 

high-performance data augmentation technique is used with a 

base line EfficientNet model and achieved 85.3% accuracy 

[23]. Calderón et al. [24] used a bilinear approach that includes 

an augmentation step and earned an accuracy of 93.21%. Qian 

et al. [25] introduced the concept of multi-scale attention 

blocks organized into a grouping (GMAB). These GMABs 

serve the purpose of capturing intricate details in the data, 

ultimately enhancing the neural network's overall performance 

with an accuracy of 91.6%. Murthy and Prasad [26] developed 

a generative model with adversarial features that is guided by 

transformer learning technique to proficiently categorize 

distinct lung cancer types. Brain tumour images are classified 

using ensemble classifiers that produced better results than 

traditional classifiers [27]. A technique that removes impulse 

noise from images using a residual CNN is discussed [28]. A 

CNN model based on segmentation and fusion techniques is 

developed to detect glaucoma [29]. 

 

 

3. METHODOLOGY 

 

The aim of this paper is to develop a Deep Convolutional 

Neural Network (DCNN) whose hyperparameters are fine 

tuned to achieve the highest possible accuracy with the 

simplest possible architecture. In most of the works the 

hyperparameters are selected randomly, but if care is taken and 

extra effort is put to tune them properly, we can achieve great 

improvement in the performance of a DCNN network. To fine 

tune the hyper parameters we adopted an iterative method. 

Three optimizers namely Adam, SGD, Adagrad are considered 

for evaluation with learning rates 0.1,0.01 and dropout rates 

0.2,0.4. The code snippet in python for the iterative method for 

tuning these parameters is provided in section 3.7. The model 

is designed and validated on HAM10000 image set. The 

DCNN consists of three Convolutional Layers. BN (batch 

normalization), DP (dropout) layers follow the CNN layers 

There are two dense layers and a flatten layer. 

The DCNN is developed using Python and training and 

testing is done using Kaggle. 

 

3.1 Data set 

 

Comprising dermatoscopic images of skin lesions, the 

HAM10000 dataset serves as a comprehensive collection in 

this field. It contains 10,015 images, which were gathered 

from different sources and hospitals. The dataset was 

specifically generated to drive innovations in skin cancer 

screening and the identification of melanoma, with the primary 

goal of contributing to research progress in this field. 

The HAM10000 dataset was compiled by a group of 

researchers from the Medical University of Vienna and the 

Austrian Society for Dermatology. The dataset includes 
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images of seven different types of skin lesions, with metadata 

providing information about the spread of the disease across 

sex, gender, and age groups. 

Each pic in the HAM10000 image set is accompanied by 

various clinical metadata and expert-annotated ground truth 

labels. This dataset has been broadly used in the research 

community for developing and evaluating machine learning 

networks and computer vision models for skin cancer 

screening, melanoma detection, and related tasks. Sample 

images of different classes are shown in Figure 1. 

 

 
 

Figure 1. Sample images from the data set for each class 

 

3.2 Data visualisation 

 

The image set has 7 classes of skin cancer images which are 

distributed in an unbalanced manner. Figure 2 shows the data 

distribution among the various classes according to cell type. 

In Table 1, a concise summary of class abbreviations along 

with the corresponding image counts for each category within 

the dataset is given. 

 

 
 

Figure 2. Data distribution before balancing 

 

3.3 Data resizing 

 

HAM10000 data set consists of images of size 600×450. If 

we try to train the DCNN with these images directly, the 

system memory will be overloaded and hence we shall reduce 

the size of the images, but reducing image size may result in 

loss of information and we might lose some of the crucial 

attributes and this may lead to reduced accuracy. When the 

image size is reduced to 32×32 an accuracy of 79.31% is 

achieved. After various trial and error attempts to achieve an 

optimal trade-off between accuracy and computational 

complexity, an optimum image size of 75×75 is chosen which 

resulted in an accuracy of 96%. The original and resized 

sample images are shown in Figure 3. 

 

Table 1. Various skin cancer classes and their count 

 

S.No 
Class Name/ 

Class Abreviation 

Number of 

Images 

1 NV - (Melanocytic- Nevus) 6705 

2 MEL - (Melanocytic- Nevus) 1113 

3 
BKL - (Benign or Seborrheic- Keratoses 

Lesions) 
1099 

4 BCC - (Basal- Cell- Carcinoma) 514 

5 
AKIEC - (Acnetic- Keratoses and 

Intraepithelial- Carcinoma) 
327 

6 VASC - (Vascular- Lesions) 142 

7 DF - (Dermatofibroma) 115 

 

 
 

Figure 3. Resized and filtered sample images 

 

3.4 2D Bilateral filtering 

 

The images are subjected to 2D Bilateral filtering before 

they are applied to the CNN. 2D Bilateral filtering resulted in 

minimum bilateral filtering is a non-linear image filtering 

technique used for various image processing tasks, including 

noise reduction, edge preservation, and image enhancement. It 

is designed to smooth images while preserving important 

edges and details. The "bilateral" part of the name stems from 

the reality that the filtering process considers both spatial 

proximity and pixel intensity differences. Employing 2D 

bilateral filtering prior to inputting images into a CNN model 

confers the advantage of enhancing data quality and 

robustness. This technique achieves noise reduction and 

preserves crucial image intricacies, ultimately leading to 

improved performance. Figure 3 shows the resized and filtered 

images. 

We can represent the input image I as a function of (x, y) 

that are the spatial coordinates of a pixel. The filtered output 

is indicated by O as a function of (x, y).  

The bilateral filter uses a Gaussian kernel to compute the 

weights for spatial proximity. The spatial weight is determined 

by the Euclidean distance between pixels. The Gaussian 

spatial kernel is defined as: 
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𝐺𝑠𝑝𝑎𝑐𝑖𝑎𝑙(𝑑) = exp (−
𝑑2

2𝜎𝑠𝑝𝑎𝑐𝑖𝑎𝑙
2 ) (1) 

 

Here, d indicates the pixel to pixel Euclidean displacement 

and σspatial is a parameter that controls the spatial decay of the 

weights. 

Similarly, the bilateral filter uses a Gaussian range kernel to 

compute the weights based on pixel intensity differences. The 

range weight is determined by the difference in pixel 

intensities. The Gaussian range kernel is defined as: 

 

𝐺𝑟𝑎𝑛𝑔𝑒(𝑟) = exp (−
𝑟2

2𝜎𝑟𝑎𝑛𝑔𝑒
2

) (2) 

 

where, r represents the difference in pixel intensities, and σrange 

is a parameter controlling the range decay of the weights. 

The filtered output pixel O(x,y) is figured as the average of 

the weighted pixel measurements I(u, v) within a defined 

neighbourhood centered around x,y: 

 

𝑂(𝑥, 𝑦) =
1

𝑊
∑𝐼(𝑢, 𝑣). 𝐺𝑠𝑝𝑎𝑐𝑖𝑎𝑙(||(𝑥, 𝑦)

− (𝑢, 𝑣)||). 𝐺𝑟𝑎𝑛𝑔𝑒(|𝐼(𝑥, 𝑦)

− 𝐼(𝑢, 𝑣)|) 

(3) 

 

Here, W is the normalization factor computed as the sum of 

the weights over the neighbourhood: 

 

𝑊 = ∑𝐺𝑠𝑝𝑎𝑐𝑖𝑎𝑙(||(𝑥, 𝑦)

− (𝑢, 𝑣)||). 𝐺𝑟𝑎𝑛𝑔𝑒(|𝐼(𝑥, 𝑦)

− 𝐼(𝑢, 𝑣)|) 

(4) 

 

The bilateral filter effectively smooths the image by 

considering both spatial proximity and pixel intensity 

differences. The spatial kernel controls the smoothing within 

the local neighbourhood, while the range kernel preserves 

edges and details based on intensity differences. 

By adjusting the parameters σspatial and σrange, you can 

control the amount of smoothing and the sensitivity to pixel 

intensity variations, respectively. 

The 2D bilateral filtering resulted in Mean Square Error 

(MSE) of 3.225 and PSNR of 43.335 dB. 

 

3.5 Data balancing 

 

Attaining balanced data holds paramount importance in 

CNN classification tasks, particularly when confronted with 

imbalanced datasets characterized by significant disparities in 

the sample counts across different classes. Here are some key 

reasons why data balancing is important in CNN classification 

problems: 

 

3.5.1 Mitigating bias towards majority classes 

Imbalanced datasets can result in skewed model training, 

causing the model to favour prevalent class due to its higher 

prevalence. 

 

3.5.2 Improved model performance 

Imbalanced datasets can diminish the effectiveness of the 

CNN model, particularly in accurately predicting the minority 

classes. 

 

3.5.3 Preventing overfitting 

Imbalanced datasets can promote overfitting, resulting in 

excessive specialization in predicting the majority class and 

fails to generalize well on unseen data. 

 

3.5.4 Preserving class boundaries 

When classes are imbalanced, the decision boundaries 

learned by the model may not accurately represent the 

underlying patterns and characteristics of the minority classes. 

 

3.5.5 Fair evaluation and interpretation 

Balanced datasets ensure fair evaluation and interpretation 

of model performance across all classes. To examine the 

model's proficiency, we need indicators like accuracy, that 

yields valuable insights, particularly when dealing with a 

balanced dataset. It allows for a fair comparison of model's 

proficiency across different categories and aids in identifying 

areas where the model may need improvement. 

Balancing the data in CNN classification problems is crucial 

for overcoming bias, improving model performance, 

preventing overfitting, preserving class boundaries, and 

ensuring fair evaluation. By addressing the class imbalance, 

the CNN model becomes more reliable, accurate, and capable 

of effectively classifying samples from all classes. 

 

Table 2. Data after balancing 

 

S.No 
Class Name/Class 

Abreviation 

Sample Size-1 

(Accuracy 

94%) 

Sample Size-2 

(Accuracy 

96%) 

1 
NV - (Melanocytic- 

Nevus) 
2000 2800 

2 
MEL - (Melanocytic- 

Nevus) 
2000 2800 

3 

BKL - (Benign or 

Seborrheic- Keratoses 

Lesions) 

2000 2800 

4 
BCC - (Basal- Cell- 

Carcinoma) 
2000 2800 

5 

AKIEC - (Acnetic- 

Keratoses and 

Intraepithelial– 

Carcinoma) 

2000 2800 

6 
VASC - (Vascular- 

Lesions) 
2000 2800 

7 DF - (Dermatofibroma) 2000 2800 

 

 
 

Figure 4. Data distribution after balancing 

 

As we can see from Table 1, there’s a lot of imbalances in 

the dataset. The class NV has highest number of images i.e. 

6705 while the class VASC has the lowest number of images 

i.e. 142. In order to balance the data, the classes whose number 
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of images are less are oversampled and the classes whose 

number of images are more are under sampled. 

The data balancing can be done in a number of ways. The 

image classes 1 to 7 where the number of images per class are 

less than 2800, are oversampled to 2800 while the images of 

class 0 which are 6705 in number are down sampled to 2800. 

The data after balancing is shown in Table 2 and is 

visualised as shown in the Figure 4. 

When the number of images sampled are taken as 500 for 

each class it resulted in an accuracy of 71.43%. When the 

sampled images for each class is increased to 1000 images per 

class the accuracy increased to 79.31%. When the sampled 

images for each class is increased to 2000 images per class the 

accuracy increased to 94% and with 2800 images for each 

class the accuracy further increased to 96%. Given the 

hardware capability of our system this is the highest sample 

size that we could take, Thus, the DCNN is trained with 2800 

images of each class split into 80:20 ratio that give 2240 

images for training and 560 images for testing. 

With the application of augmentation on-the-fly we created 

augmented images while training and this will increase 

diversity, robustness and avoids overfitting and addresses 

class imbalance. We used ‘ImageDataGenerator’ in Keras 

Tensorflow for augmentation. ‘ImageDataGenerator’ in 

TensorFlow does not increase the number of training images 

in your dataset but dynamically generates augmented versions 

of the existing images on-the-fly during the training process. 

This indicates that the count of unique pictures in your dataset 

remains the same while a new set of augmented images appear 

for training for each batch. 

In Figure 5 the original pics along with the augmented pics 

produced by ‘ImageDataGenerator’ are shown. 

 

 
 

Figure 5. Sample images and their augmented counterparts 

 

 

 

3.6 DCNN architecture 

 

The proposed DCNN architecture has four stages, stage 1 

has four layers one Convolution layer (Conv2D), one 

Maxpooling layer (MaxPool), one Batch normalization layer 

(BN) and one Dropout layer. Stage 2 and 3 also have similar 

layers. The data is flattened at the end of stage 3 and passed on 

to stage 4, this stage has a dense layer followed by Softmax 

layer. Figure 6. shows the architecture of DCNN and Table 3. 

shows the model summary. 

 

3.6.1 Conv2D layer 

This layer provides the Convolution filters. In the first stage 

a configuration of 256 filters, each possessing a 3x3 kernel and 

activated by the ReLU (Rectified Linear Unit) function. The 

first layer processes the raw image data by applying 256 

convolutional filters. Each filter learns to detect specific 

features or patterns in the image, such as edges or textures. By 

incorporating ReLU non-linearity is introduced into the output, 

enabling the network to effectively grasp intricate and 

complex relationships. In second stage we have 128 filters, 

stage 3 has 64 and stage 4 has 32 filters. 

 

3.6.2 MaxPool layer 

Stage 1 to 3 each have a MaxPooling layer with kernel size 

(2,2). MaxPooling diminishes the resolution of activation 

maps by extracting the highest value from a local window, 

typically a 2×2 grid, as it moves across the input data. This 

helps to down sample the data, lowering the parameter count 

and introducing some degree of translation invariance. 

 

3.6.3 BN layer (Batch-Normalization layer) 

BN Layer is commonly used to scale the weights of each 

layer, so that the learning phase will be more stable and 

efficient. It addresses internal covariate shift the problem, 

which refers to the change in the distribution of layer inputs 

during learning phase. 

Mathematically, batch normalization can be defined as 

follows: 

Given a mini-batch of activations, denoted as x of size (m, 

n). m stands for the batch size and n for the count of features. 

The steps for batch normalization are as follows: 

Estimate the centre value (mean) and variance for each 

feature dimension across the mini-batch: 

 

𝑚𝑒𝑎𝑛𝜇 =
1

𝑚
∑(𝑥) (5) 

 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝜎2 =
1

𝑚
∑(𝑥 − 𝜇)2 (6) 

 

Normalize the activations using the mean and variance: 

 

𝑥′ = (𝑥 − 𝜇)/√(𝜎2 + 𝜀) (7) 

 

Here, ε is a small constant (e.g., 10e-8) added for numerical 

stability to avoid division by zero. 

Scale and shift the normalized activations using learned 

parameters, typically a scaling factor (γ) and a bias term (β): 

 

𝑦 = 𝛾 ∗ 𝑥′ + 𝛽 (8) 
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Figure 6. DCNN architecture 

 

Table 3. DCNN model summary 

 
Type of the Layer Output Dim Params 

conv2d (None, 73, 73, 256) 7,168 

batch_normalization (None, 73, 73, 256) 1,024 

2D-Max-Pool (None, 36, 36, 256) 0 

dropout (None, 36, 36, 256) 0 

conv2d_1 (None, 34, 34, 128) 295,040 

batch_normalization_1 (None, 34, 34, 128) 512 

2D-Max-Pool-1 (None, 17, 17, 128) 0 

dropout_1 (None, 17, 17, 128) 0 

conv2d_2 (None, 15, 15, 64) 73,792 

batch_normalization_2 (None, 15, 15, 64) 256 

2D-Max-Pool-2 (None, 7, 7, 64) 0 

dropout_2 (None, 7, 7, 64) 0 

Flatt layer (None, 3136) 0 

Dense (None, 32) 100,384 

Dense_1 (None, 7)  231 

 

The parameters γ and β are learnable parameters and are 

applied to each feature dimension individually. 

During training, batch normalization also introduces 

additional parameters to the network, γ and β, which are 

learned during the optimization process. These parameters 

allow the network to undo the normalization if it is beneficial 

for the task at hand. 

Batch normalization helps in addressing the internal 

covariate shift problem and provides several benefits, 

including faster convergence, reduced sensitivity to the 

network's initialization, and regularization effects, which can 

improve generalization performance. 

It's worth noting that during inference or prediction, the 

mean and variance are typically estimated using the entire 

training set rather than the mini-batch statistics. This is 

because batch normalization is applied to individual samples 

during training, but during inference, we usually want the 

model to make predictions on individual samples without the 

need for mini-batches. 

 

3.6.4 Dropout layer 

Dropout stands as a regularization technique that introduces 

an element of randomness by selectively nullifying a portion 

of input units during each training iteration. It supports 

averting excessive fitting by alleviating the dependency on any 

individual unit, forcing the network to learn more fortified 

features. Dropout rates of 0.4, 0.3 and 0.2 are tested in this 

model and the dropout rate of 0.2 is selected as this produced 

the best results. 

3.6.5 Flatt layers 

The 2-D traits are mapped into a 1-D vector, by the flat 

layers, prepping the data for the subsequent fully connected 

layers. 

 

3.6.6 Dense and SoftMax layers 

The first dense layer produces 32 outputs which are reduced 

to 7 by the second dense layer and SoftMax activation function 

produces the seven probabilities for each class. 

 

3.7 Hyper parameter tuning 

 

While designing a Convolutional Neural Network we come 

across several hyper parameters. The most important of them 

are Optimizer, Learning rate and Dropout Rate. Improper 

tuning of these parameters may result in poor accuracy, 

excessive run time and even the model may not converge. 

 

3.7.1 Optimizer 

Various popular optimizers available are Adam, SGD, 

Adagrad. 

Stochastic Gradient Descent (SGD): SGD is a distinct 

foundational optimizer used in computational tasks and deep 

learning to train models by minimizing a given loss function. 

The algorithm is a version of the gradient descent and is 

notably suitable for bigger datasets. 

SGD begins by initializing the model's parameters 

randomly or using some predefined values. 

Unlike traditional gradient descent, where the entire dataset 

is utilized to estimate the gradient of the loss function in each 

iteration, SGD operates on smaller sub groups of the data 

called mini-batches. In every training loop, a mini-batch of 

data points is randomly sampled from the entire dataset. This 

randomness helps introduce stochasticity into the optimization 

process, which can be beneficial for escaping local minima 

and speeding up convergence. 

For each mini-batch the loss function's gradient concerning 

the model's parameters is estimated. This gradient represents 

the direction in which the parameters ought to be tuned to 

mitigate the loss. The parameters are then updated using the 

negative gradient direction and a learning rate. 

SGD's main advantage lies in its efficiency with large 

datasets since it only requires a subset of the data in each 

iteration. This can lead to faster training times compared to 

using the entire dataset. However, SGD can exhibit noisy 

updates due to the random mini-batch sampling, which can 
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cause the optimization process to be less stable and take longer 

to converge. 

Adaptive Gradient Algorithm (Adagrad): Adagrad is 

another optimizer used often in computational tasks. It is 

designed to automatically modulate the rate of learning for 

every network parameter depending on the information about 

the history of the gradient. Adagrad is particularly best-suited 

for handling sparse data and scenarios where the features have 

significantly different scales. 

Adagrad initializes a vector ‘G’ of the same dimension as 

the model's parameters. This vector keeps track of the sum of 

squared gradients for each parameter. In each training iteration, 

Adagrad calculates the derivative of the cost function 

concerning the model’s parameters. 

The key feature of Adagrad is the adaptive learning rate. As 

the optimization progresses, the vector ‘G’ accumulates the 

squared gradients for each parameter. Parameters associated 

with frequent or large gradients will have smaller effective 

learning rates, as their corresponding elements in ‘G’ grow. 

Conversely, parameters associated with infrequent or small 

gradients will have larger effective learning rates. 

While Adagrad’s adaptive learning rates can be 

advantageous, they can also lead to diminishing learning rates 

over time, making it difficult for the optimization process to 

escape from valleys with flat gradients. This issue is especially 

pronounced in deep networks and can slow down convergence. 

Adaptive Moment Estimation (Adam): Adam optimizer is a 

popular choice for optimization used in machine learning and 

deep learning to train models by minimizing a given loss 

function. It amalgamates the positive aspects of two 

techniques: Dynamic learning rates from RMSProp and 

momentum-influenced updates. Adam is designed to provide 

efficient and effective optimization across a wide range of 

tasks. 

Adam maintains two sets of exponentially decaying moving 

averages: 

 

• m: The first moment estimate, which is a running 

average of gradients. 

• v: The second moment estimate, which is a running 

average of squared gradients. 

 

Both m and v are initialized to zero vectors of the same 

dimension as the model's hyperparameters. 

With each loop of training, Adam calculates the slope of the 

loss function concerning the model's parameters. It then 

updates the moving averages. The moving averages m and v 

are initialized with zeros and can be biased towards zero, 

especially during the initial iterations. To correct this bias, 

Adam performs bias correction. Finally, Adam uses the bias-

corrected moment estimates to update the model's parameters. 

Adam's combination of adaptive learning rates and 

momentum from the moving averages allows it to perform 

well on a wide range of optimization problems. 

 

3.7.2 Learning rate 

The learning rate stands as a hyper-parameter governing the 

rate at which the model's parameters receive updates in the 

optimization process. It determines the pace at which the 

model adjusts to the training data. 

When training a CNN, the goal is to reduce the loss function 

that quantifies how well the model's predictions match the 

actual target values. The learning rate plays a crucial role in 

this process. 

Large Learning Rate: Using a large learning rate can result 

in rapid updates to the model's parameters. While this might 

help the model converge quickly, it could also lead to 

overshooting the optimal solution, causing the optimization 

process to oscillate or even diverge. 

Small Learning Rate: A small learning rate will result in 

slower parameter updates. This might be helpful for fine-

tuning when the optimization is close to the smallest value of 

the loss function. However, using an excessively small 

learning rate can make the optimization process very slow and 

could get stuck in local minima. 

Picking an apt learning rate helps in striking a balance amid 

fast convergence and stable optimization. 

 

3.7.3 Dropout rate 

Dropout functions as a regularization strategy commonly 

used in CNNs and other types of neural networks to prevent 

overfitting. Overfitting materializes when a model exhibits 

strong performance during the learning phase while faltering 

to generalize effectively to novel data. Dropout helps address 

this issue by reducing the interdependencies between neurons 

and stimulating the network towards enhanced learning of 

robust and generalizable features. 

Dropout involves "dropping out" a random subset of 

neurons (both hidden and input) in each training iteration. This 

means that these neurons are temporarily removed from the 

network architecture during that iteration. The probability of a 

neuron being dropped out is dictated by a parameter referred 

to as the dropout rate.  

During inference (when the trained model is used to make 

predictions), all neurons are active, but their outputs are scaled 

down by the dropout rate. This scaling ensures that the 

expected output of each neuron during inference remains close 

to its average behaviour during training. 

 

• Regularization: By randomly dropping neurons, 

dropout keeps the network from being overly reliant 

on any single neuron. This encourages the network to 

distribute its learning across multiple neurons and, 

subsequently, learn more robust features. 

• Reduced Overfitting: Dropout reduces the risk of 

overfitting by introducing noise during training. This 

compels the network to acquire a broader, more 

universal understanding of the data. 

• Ensemble Effect: During training, dropout creates 

many different network architectures by randomly 

dropping neurons. 

• When making predictions, these different 

architectures are combined, acting as an ensemble. 

• This ensemble effect can lead to improved 

generalization. 

 

Dropout is a powerful technique, but it requires careful 

tuning of the dropout rate, especially for different layers in the 

network. It's common to start with a moderate dropout rate 

(e.g., 0.2 to 0.5) and adjust it through experimentation based 

on the model's efficacy on a validation set. It's also crucial to 

note that dropout is generally not applied during inference, as 

the goal during inference is to make accurate predictions 

without introducing randomness. 

We adopted an iterative method to tune the hyper 

parameters, the code snippet used to fine tune the hyper 

parameters is given below. 

# Hyperparameter search space 
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dropout_values =[0.2, 0.3, 0.4] 

optimizer_values =['adam', 'adagrad', 'sgd'] 

learning_rate_values =[0.1, 0.01] 

 

for dropout_rate in dropout_values: 

  for optimizer in optimizer_values: 

    for learning_rate in learning_rate_values: 

      model = Sequential () 

 #add Conv2D with 256 filters and size (3, 3),  

input_shape=(SIZE, SIZE, 3))) 

      # add BN Layer 

      # add MaxPool 2D layer of size (2, 2) 

      # add dropout layer 

 

      # add Conv2D with 128 filters and size (3, 3) 

      # add BN Layer 

      # add MaxPool 2D layer of size (2, 2) 

      # add dropout layer 

 

      # add Conv2D with 64 filters and size (3, 3) 

      # add BN Layer 

      # add MaxPool 2D layer of size (2, 2) 

      # add dropout layer 

      # add Flat layer 

 

      #add Dense layer with 32 filters, activation='relu' 

 #add Dense layer with filters=num_classes and  

activation='softmax')) 

      # Choose the optimizer based on the hyperparameter 

      #Write code for choosing one of the three optimizers 

using a if-else loop  

       raise ValueError("Invalid optimizer") 

      #Compile the model 

  # Fit the model 

 

Table 3 displays the metrics with different combinations of 

optimizer, learning rate and dropout rate. 

The results of hyper parameter tuning shown in Table 4. 

tells that the best combination is to use Adam as an optimizer 

with Learning Rate of 0.1 and Dropout Rate of 0.2.In our 

proposed method while tuning the hyper parameters we 

observed that Adam resulted in the best performance for the 

given data set. 

 

Table 4. Impact of hyper parameter tuning on various metrics 

 
Optimizer Learning_Rate Dropout_Rate Accuracy (%) Precision Recall F1-Score Specificity Sensitivity 

Adagrad 

0.1 0.4 78 0.78 0.78 0.79 0.96 0.78 

0.1 0.2 88 0.88 0.88 0.88 0.98 0.88 

0.01 0.4 77 0.77 0.76 0.76 0.95 0.76 

0.01 0.2 88 0.89 0.88 0.88 0.98 0.88 

SGD 

0.1 0.4 80 0.84 0.80 0.80 0.96 0.80 

0.1 0.2 93 0.93 0.93 0.93 0.99 0.93 

0.01 0.4 89 0.89 0.89 0.89 0.98 0.89 

0.01 0.2 95 0.95 0.95 0.95 0.99 0.95 

Adam 

0.1 0.4 91 0.92 0.91 0.91 0.98 0.91 

0.1 0.2 96 0.96 0.96 0.96 0.99 0.96 

0.01 0.4 94 0.94 0.94 0.94 0.99 0.94 

0.01 0.2 79 0.85 0.80 0.80 0.96 0.80 

 

 

4. RESULTS AND DISCUSSION 

 

With the above architecture the DCNN achieved an 

Accuracy of 96%. A confusion matrix is a tabular 

representation that numerically represents the performance of 

a classification model by displaying the counts of TPos, TNeg,. 

FPoss, FNeg predictions. It's a useful tool for assessing the quality 

of predictions made by a model and understanding where it 

might be making errors. 

The Confusion Matrix gives the information about the 

following 

 

• TPos: These are instances where your model 

accurately identified the positive class (the desired 

condition), and the actual classification was indeed 

positive. 

• TNeg: These are instances where your model correctly 

recognized the negative class, and the actual 

classification was indeed negative. 

• FPoss: These are instances where your model predicted 

the positive class, but the actual classification was 

negative. This is also referred to as a Type I error. 

• FNeg: These are instances where your model predicted 

the negative class, but the actual classification was 

positive. This is also referred to as a Type II error. 

Various performance metrics that can be used to estimate 

the predictive capabilities of DCNN are given below: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝑜𝑠 + 𝑇𝑁𝑒𝑔

𝑇𝑃𝑜𝑠 + 𝑇𝑁𝑒𝑔 + 𝐹𝑃𝑜𝑠 + 𝐹𝑁𝑒𝑔
 (9) 

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑜𝑠

𝑇𝑃𝑜𝑠 + 𝐹𝑃𝑜𝑠
 (10) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑜𝑠

𝑇𝑃𝑜𝑠 + 𝐹𝑁𝑒𝑔
 (11) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑇𝑃𝑜𝑠

2 ∗ 𝑇𝑃𝑜𝑠 + 𝑇𝑁𝑒𝑔 + 𝐹𝑃𝑜𝑠 + 𝐹𝑁𝑒𝑔
 (12) 

 

Figure 7 shows the confusion matrix while Figure 8 shows 

the classification reports. Figure 9 shows the ROC curve. In 

Table 4, the performance metrics for various combinations of 

learning rate, dropout and optimizer are given. By observing 

Table 4, we understand the impact of hyperparameter tuning 

and it turns out that Adam leads to the best results with a 

learning rate of 0.1 and a dropout rate of 0.2. The second-best 

result is given when learning rate is 0.01, dropout 0.2 and SGD 

is the optimizer. Table 5 gives the impact of train-test split on 
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the performance of the model. We observe that a split of 80:20 

gave the best results. 

 

 
 

Figure 7. Confusion matrix of DCNN 

 

 
 

Figure 8. Classification report of DCNN 

 

 
 

Figure 9. ROC curve of DCNN 

 
 

Figure 10. Training vs testing loss 
 

 
 

Figure 11. Training vs testing accuracy 

 

A classification report is a concise summary of various 

performance metrics for a classification model. It provides 

valuable insights into how well the model performs across 

different classes and gives a more detailed evaluation than just 

looking at accuracy. Figure 8 shows the classification report 

of the DCNN for the case with learning rate 0.1, dropout 0.2 

with Adam optimizer. The classification report generally 

provides benchmarks like precision, recall, F1-score, and the 

number of instances for each class. 

The ROC curve (Receiver Operating Characteristic curve) 

is shown in Figure 9. The mean Area Under the Curve (AUC) 

is 0.99 with a Standard Deviation (STD) of 0.01. the legend 

provided in the figure shows the AUC for individual classes. 

The loss and accuracy curves for training phase and testing 

phase can be seen in Figure 10 and Figure 11 respectively. 

Table 6 shows the comparative results of our proposed 

DCNN with some of the existing state of the art works. We 

can see that our DCNN did extremely well and out performed 

many of the published works. 

Table 7 shows the models performance with respect to the 

other prominent data sets like PH2 [30], ISIC 2016 [31] and 

ISIC 2017 [32]. The findings in Table 7 suggests that the 

model is robust and consistent. 
 

Table 5. Impact of train-test split ratio on various metrics 
 

S.No. Train-Test Split Ratio Accuracy (%) Precision Recall F1-Score Specificity Sensitivity 

1 90:10 94 0.94 0.94 0.94 0.99 0.94 

2 80:20 96 0.96 0.96 0.96 0.99 0.96 

3 70:30 95 0.95 0.95 0.95 0.99 0.95 

4 60:40 93 0.93 0.93 0.93 0.99 0.93 

5 50:50 92 0.92 0.92 0.92 0.99 0.92 
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Table 6. Accuracy, specificity, sensitivity comparison with the published models that used HAM10000 data set 

 
S.No Existing Model Accuracy Specificity Sensitivity 

1 Gong et al. [2] 92.6% 0.977 0.483 

2 Zhou et al. [3] 87.7% 0.847 0.903 

3 Son et al. [4] 87.1% 0.919 0.873 

4 Thurnhofer-Hemsi et al. [6] 83.5% 0.954 0.656 

5 Hoang et al. [8] 86.33% 0.977 0.863 

6 Shen et al. [23] 85.3% 0.973 0.789 

7 Our work 96% 0.96 0.99 

 

Table 7. Performance of DCNN on various data sets 

 
S.No. Dataset Accuracy (%) Specificity Sensitivity 

1 PH2 200 images 97.2 0.99 0.968 

2 ISIC 2016 900 images 96.7 0.99 0.96 

3 ISIC 2017 96.5 0.99 0.965 

4 HAM10000 10015 images 96 0.99 0.96 

 

 

5. CONCLUSION AND FUTURE WORK 

 

The findings demonstrate that the suggested DCNN model 

has delivered encouraging outcomes, boasting an accuracy 

rate of 96%, a mean precision of 0.96, a mean recall of 0.96, 

and a mean F1-score of 0.96, specificity of 0.96 and sensitivity 

of 0.99. Moreover, the model has surpassed the performance 

of numerous established models. 

The model further needs to be tested on big datasets like 

ISIC 2019 (25,331 images) and ISIC 2020 (33,126 images) 

which are very huge. There is a scope to increase the accuracy 

and other performance metrics by using ensemble method 

where we can integrate our DCNN with the well-established 

classification models like DenseNet, INCEPTION-v3. 
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