
A Deep Convolutional Neural Network (DCNN) with Fine Tuned Hyper Parameters for

Skin Cancer Classification

Abdul Rahaman Shaik1,2* , Rajesh Kumar Pullagura1

1 Department of ECE, AU College of Engineering, Visakhapatnam 530003, India
2 Department of ECE, Vishnu Institute of Technology, Bhimavaram 534202, India

Corresponding Author Email: abdulrahman.s@vishnu.edu.in

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.410535 ABSTRACT

Received: 13 September 2023

Revised: 14 March 2024

Accepted: 12 July 2024

Available online: 31 October 2024

Skin cancer is increasingly becoming a prominent community health hazard across the

globe, and detecting its onset very early gives an edge in advancing patient care quality. This

work introduces a novel approach, an advanced convolutional neural network model rooted

in deep learning to effectively classify skin lesions, with the primary focus on improving

accuracy by fine tuning the hyper parameters. The model is fitted and assessed using the

HAM10000 dataset. The dataset has 10,015 dermoscopic pictures, encompassing a range of

skin manifestations. To enhance the accuracy of our model, we employed several

techniques, including batch normalization, dropout, data augmentation, and data balancing.

The proposed model outperformed several existing models and achieved an impressive

accuracy of 96% in classifying skin lesions, demonstrating its role as a key asset in assisting

dermatologists and clinicians in diagnosing skin cancer.

Keywords:

neural network, skin cancer, classification,

normalization, dropout, data augmentation

1. INTRODUCTION

Skin cancer is distinguished by its high occurrence rate,

experiencing a global surge in its incidence. Prompt and

precise skin lesion diagnosis is vital for better treatment and

patient results. Dermoscopy, a non-invasive imaging

technique, has emerged as a beneficial aid for assisting

dermatologists in diagnosing dermal malignancy in the initial

stages. Manually interpreting dermoscopic images is time-

intensive and susceptible to observer differences.

Recent progress in deep learning holds significant potential

for automating skin lesion classification. Convolutional deep

learning networks which are commonly abbreviated as CNNs,

have exhibited impressive prowess in accomplishing image

recognition tasks. In this study, we aim to harness the power

of deep CNNs to develop a well calibrated and swift model for

the identification and labelling of skin malignancies.

We utilized the HAM10000 dataset, containing a

comprehensive range of 10,015 dermoscopic pictures. The

dataset encompasses seven categories of skin deformities. The

proposed model’s effectiveness is enhanced by incorporating

several techniques. Batch normalization was applied to ensure

stable learning and faster convergence during the training

process. Dropout regularization was utilized to reduce the risk

of the model fitting to random noise in the training data and to

enhance its robustness on data it hasn't encountered before.

In addition, strategies like data augmentation were

employed to the training dataset. This process involved

applying geometric transformations that include rotation,

scaling, and flipping, as well as introducing random noise to

the images. This augmented dataset allowed the model to learn

more robust representation of skin lesions, thereby improving

its classification performance.

Furthermore, data balancing techniques were utilized to

tackle the issue of skewed class distribution in the data. As

skin cancer is a relatively rare condition compared to benign

lesions, imbalanced class distributions can adversely affect the

model's performance. By oversampling the minority classes

and down sampling the prevalent class, We strived to correct

the imbalance among classes and uphold fair representation

across the board during training.

The outcomes of our investigations showcase the efficacy

of our proposed model. Our DCNN produced an impressive

accuracy of 94% when the count of images per each label

(sample size) is 2000 per class and the accuracy increased to

96% when the sample size is increased to 2800. With its

impressive accuracy our DCNN model showcases its

capability as a reliable instrument in assisting dermatologists

to identify skin lesions properly. The development of

automated classification systems greatly helps in making

accurate and timely diagnoses, potentially reducing the burden

on dermatologists and improving patient care.

2. LITERATURE REVIEW

Gururaj et al. [1] used transfer learning methodology and

trained their model using DenseNet169 and Resnet 50 and

achieved an accuracy of 91.2% with under sampling and 83%

with over sampling using a data split ratio of 80:20. Gong et

al. [2] used an ensemble of multiple Convolutional Neural

Networks (CNNs) in combination with Generative Adversial

Networks (GANs) and achieved an accuracy of 92.6%. Zhou

et al. [3] applied neural spiking architectures incorporating

Traitement du Signal
Vol. 41, No. 5, October, 2024, pp. 2623-2633

Journal homepage: http://iieta.org/journals/ts

2623

https://orcid.org/0000-0003-1844-2408
https://orcid.org/0000-0003-1088-7920
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410535&domain=pdf

spike-timing adjustment techniques resulting in an 88%

accuracy rate. Son et al. [4] proposed a method in which

segmentation is done first using UNET and then segmented

images are classified using Efficient-Net and achieved an

accuracy of 87.1%. Attention Residual Learning CNN (ARL-

CNN) is used for dermatological malignancy categorization

and achieved an accuracy of 85% [5]. In a study by

Thurnhofer-Hemsi et al. [6], a blend of neural networks based

on convolution filters are synergistically employed with a

systematically applied shifting technique, resulted in a

noteworthy 83.5% accuracy for classifying skin lesions.

Several CNNs are combined to create an ensemble by

combining the class insights offered by the separate classifiers.

Ahmed et al. [7] presented a strategy in which certain layers

of ResNet-152 and ResNet-V2- Inception are finetuned with a

triplet loss function. They achieved an accuracy of 84.91%

with ResNet152 and with InceptionResNet-V2 the accuracy

achieved is 87.42%. The HAM10000 dataset was employed

with a novel segmentation approach using Shuffle-Net [8].

They calculated the cumulative moments of order one with

entropy-based weighting (EW-FCM) of the skin image. Then

using these moments, the required part of the lesion is isolated

from the backdrop and this segmented part is fed as input to a

new deep learning structure wide-Shuffle-Net and estimate the

skin lesion category. This tactic achieved 86.33% accuracy.

Tschandl et al. [9] developed the HAM10000 data set of skin

lesions which can be used to train and test various

classification algorithms. A fully convolutional residual

network (FCRN) is integrated with a residual deep learning

model to form a two stage frame work and achieved an

accuracy of 85.5% [10].

Harangi [11] obtained 86.6% accuracy by employing a

fusion of GoogleNet, AlexNet, ResNet, and VGGNet within

an ensemble framework. Demyanov et al. [12] achieved 88%

accuracy. A partially supervised model is presented [13]. This

model has a self-advised learning mechanism for automated

recognition of melanocytic carcinoma. They employed an

auto-correcting SVM model to improve categorization

performance by addressing the impact of incorrectly classified

data, resulting in 89% accuracy. Mahbod et al. [14] used a

hybrid deep neural networks that resulted in an accuracy of

84.7%. The approach revolves around harnessing the power of

a pre-trained deep neural network (DNN) to autonomously

extract a comprehensive array of distinctive features [15].

These features subsequently prove instrumental in the accurate

diagnosis of skin lesions for malignancy. By leveraging the

proficiency of the DNN, they streamlined the process of

identifying key indicators within skin samples, facilitating a

more refined and reliable diagnostic process for malignancy to

record 93.64% of accuracy. Albahar [16] used a pre diction

model with a novel regularizer that resulted in an accuracy of

97.49%. Li and Shen [17] developed a deep learning

framework consisting of two fully convolutional residual

networks (FCRN) to simultaneously produce the segmentation

result and the coarse classification result achieving an

accuracy of 91.2% on ISIC 2017 data set. The model outlined

in study [18] employs image segmentation, feature extraction

and synthetic minority oversampling technique (SMOTE).

The extracted features are applied to various ML classifiers

and Random Forest gave the best accuracy when evaluated on

the ISBI dataset. Ichim and Popescu [19] proposed a novel

intelligent system for melanoma classification that leverages a

two-tiered structure of interconnected neural networks.

Characteristics such as texture, shape, color, size are captured

in the first tier and in the second tier an objective perceptron-

based classifier aggregates the weighted outputs from the first

tier, ultimately determining whether a lesion is melanoma or

non-melanoma with an accuracy of 97.5%.

Ali et al. [20] came up with a DCNN that is evaluated on

the HAM10000 data set and resulted in a validation accuracy

of 91.93%. Various EfficientNet architectures were validated

on the same dataset and recorded a Top-1 accuracy of 87.91%

[21]. Datta et al. [22] studied the effectiveness of soft-

weighted attention mechanism on the neural networks and

observed that it boosted the performance by 4.7% and

achieved an accuracy close to 94% on HAM10000 dataset. A

high-performance data augmentation technique is used with a

base line EfficientNet model and achieved 85.3% accuracy

[23]. Calderón et al. [24] used a bilinear approach that includes

an augmentation step and earned an accuracy of 93.21%. Qian

et al. [25] introduced the concept of multi-scale attention

blocks organized into a grouping (GMAB). These GMABs

serve the purpose of capturing intricate details in the data,

ultimately enhancing the neural network's overall performance

with an accuracy of 91.6%. Murthy and Prasad [26] developed

a generative model with adversarial features that is guided by

transformer learning technique to proficiently categorize

distinct lung cancer types. Brain tumour images are classified

using ensemble classifiers that produced better results than

traditional classifiers [27]. A technique that removes impulse

noise from images using a residual CNN is discussed [28]. A

CNN model based on segmentation and fusion techniques is

developed to detect glaucoma [29].

3. METHODOLOGY

The aim of this paper is to develop a Deep Convolutional

Neural Network (DCNN) whose hyperparameters are fine

tuned to achieve the highest possible accuracy with the

simplest possible architecture. In most of the works the

hyperparameters are selected randomly, but if care is taken and

extra effort is put to tune them properly, we can achieve great

improvement in the performance of a DCNN network. To fine

tune the hyper parameters we adopted an iterative method.

Three optimizers namely Adam, SGD, Adagrad are considered

for evaluation with learning rates 0.1,0.01 and dropout rates

0.2,0.4. The code snippet in python for the iterative method for

tuning these parameters is provided in section 3.7. The model

is designed and validated on HAM10000 image set. The

DCNN consists of three Convolutional Layers. BN (batch

normalization), DP (dropout) layers follow the CNN layers

There are two dense layers and a flatten layer.

The DCNN is developed using Python and training and

testing is done using Kaggle.

3.1 Data set

Comprising dermatoscopic images of skin lesions, the

HAM10000 dataset serves as a comprehensive collection in

this field. It contains 10,015 images, which were gathered

from different sources and hospitals. The dataset was

specifically generated to drive innovations in skin cancer

screening and the identification of melanoma, with the primary

goal of contributing to research progress in this field.

The HAM10000 dataset was compiled by a group of

researchers from the Medical University of Vienna and the

Austrian Society for Dermatology. The dataset includes

2624

images of seven different types of skin lesions, with metadata

providing information about the spread of the disease across

sex, gender, and age groups.

Each pic in the HAM10000 image set is accompanied by

various clinical metadata and expert-annotated ground truth

labels. This dataset has been broadly used in the research

community for developing and evaluating machine learning

networks and computer vision models for skin cancer

screening, melanoma detection, and related tasks. Sample

images of different classes are shown in Figure 1.

Figure 1. Sample images from the data set for each class

3.2 Data visualisation

The image set has 7 classes of skin cancer images which are

distributed in an unbalanced manner. Figure 2 shows the data

distribution among the various classes according to cell type.

In Table 1, a concise summary of class abbreviations along

with the corresponding image counts for each category within

the dataset is given.

Figure 2. Data distribution before balancing

3.3 Data resizing

HAM10000 data set consists of images of size 600×450. If

we try to train the DCNN with these images directly, the

system memory will be overloaded and hence we shall reduce

the size of the images, but reducing image size may result in

loss of information and we might lose some of the crucial

attributes and this may lead to reduced accuracy. When the

image size is reduced to 32×32 an accuracy of 79.31% is

achieved. After various trial and error attempts to achieve an

optimal trade-off between accuracy and computational

complexity, an optimum image size of 75×75 is chosen which

resulted in an accuracy of 96%. The original and resized

sample images are shown in Figure 3.

Table 1. Various skin cancer classes and their count

S.No
Class Name/

Class Abreviation

Number of

Images

1 NV - (Melanocytic- Nevus) 6705

2 MEL - (Melanocytic- Nevus) 1113

3
BKL - (Benign or Seborrheic- Keratoses

Lesions)
1099

4 BCC - (Basal- Cell- Carcinoma) 514

5
AKIEC - (Acnetic- Keratoses and

Intraepithelial- Carcinoma)
327

6 VASC - (Vascular- Lesions) 142

7 DF - (Dermatofibroma) 115

Figure 3. Resized and filtered sample images

3.4 2D Bilateral filtering

The images are subjected to 2D Bilateral filtering before

they are applied to the CNN. 2D Bilateral filtering resulted in

minimum bilateral filtering is a non-linear image filtering

technique used for various image processing tasks, including

noise reduction, edge preservation, and image enhancement. It

is designed to smooth images while preserving important

edges and details. The "bilateral" part of the name stems from

the reality that the filtering process considers both spatial

proximity and pixel intensity differences. Employing 2D

bilateral filtering prior to inputting images into a CNN model

confers the advantage of enhancing data quality and

robustness. This technique achieves noise reduction and

preserves crucial image intricacies, ultimately leading to

improved performance. Figure 3 shows the resized and filtered

images.

We can represent the input image I as a function of (x, y)

that are the spatial coordinates of a pixel. The filtered output

is indicated by O as a function of (x, y).

The bilateral filter uses a Gaussian kernel to compute the

weights for spatial proximity. The spatial weight is determined

by the Euclidean distance between pixels. The Gaussian

spatial kernel is defined as:

2625

𝐺𝑠𝑝𝑎𝑐𝑖𝑎𝑙(𝑑) = exp (−
𝑑2

2𝜎𝑠𝑝𝑎𝑐𝑖𝑎𝑙
2) (1)

Here, d indicates the pixel to pixel Euclidean displacement

and σspatial is a parameter that controls the spatial decay of the

weights.

Similarly, the bilateral filter uses a Gaussian range kernel to

compute the weights based on pixel intensity differences. The

range weight is determined by the difference in pixel

intensities. The Gaussian range kernel is defined as:

𝐺𝑟𝑎𝑛𝑔𝑒(𝑟) = exp⁡ (−
𝑟2

2𝜎𝑟𝑎𝑛𝑔𝑒
2

) (2)

where, r represents the difference in pixel intensities, and σrange

is a parameter controlling the range decay of the weights.

The filtered output pixel O(x,y) is figured as the average of

the weighted pixel measurements I(u, v) within a defined

neighbourhood centered around x,y:

𝑂(𝑥, 𝑦) =
1

𝑊
∑𝐼(𝑢, 𝑣). 𝐺𝑠𝑝𝑎𝑐𝑖𝑎𝑙(||(𝑥, 𝑦)

− (𝑢, 𝑣)||). 𝐺𝑟𝑎𝑛𝑔𝑒(|𝐼(𝑥, 𝑦)

− 𝐼(𝑢, 𝑣)|)

(3)

Here, W is the normalization factor computed as the sum of

the weights over the neighbourhood:

𝑊 = ∑𝐺𝑠𝑝𝑎𝑐𝑖𝑎𝑙(||(𝑥, 𝑦)

− (𝑢, 𝑣)||). 𝐺𝑟𝑎𝑛𝑔𝑒(|𝐼(𝑥, 𝑦)

− 𝐼(𝑢, 𝑣)|)

(4)

The bilateral filter effectively smooths the image by

considering both spatial proximity and pixel intensity

differences. The spatial kernel controls the smoothing within

the local neighbourhood, while the range kernel preserves

edges and details based on intensity differences.

By adjusting the parameters σspatial and σrange, you can

control the amount of smoothing and the sensitivity to pixel

intensity variations, respectively.

The 2D bilateral filtering resulted in Mean Square Error

(MSE) of 3.225 and PSNR of 43.335 dB.

3.5 Data balancing

Attaining balanced data holds paramount importance in

CNN classification tasks, particularly when confronted with

imbalanced datasets characterized by significant disparities in

the sample counts across different classes. Here are some key

reasons why data balancing is important in CNN classification

problems:

3.5.1 Mitigating bias towards majority classes

Imbalanced datasets can result in skewed model training,

causing the model to favour prevalent class due to its higher

prevalence.

3.5.2 Improved model performance

Imbalanced datasets can diminish the effectiveness of the

CNN model, particularly in accurately predicting the minority

classes.

3.5.3 Preventing overfitting

Imbalanced datasets can promote overfitting, resulting in

excessive specialization in predicting the majority class and

fails to generalize well on unseen data.

3.5.4 Preserving class boundaries

When classes are imbalanced, the decision boundaries

learned by the model may not accurately represent the

underlying patterns and characteristics of the minority classes.

3.5.5 Fair evaluation and interpretation

Balanced datasets ensure fair evaluation and interpretation

of model performance across all classes. To examine the

model's proficiency, we need indicators like accuracy, that

yields valuable insights, particularly when dealing with a

balanced dataset. It allows for a fair comparison of model's

proficiency across different categories and aids in identifying

areas where the model may need improvement.

Balancing the data in CNN classification problems is crucial

for overcoming bias, improving model performance,

preventing overfitting, preserving class boundaries, and

ensuring fair evaluation. By addressing the class imbalance,

the CNN model becomes more reliable, accurate, and capable

of effectively classifying samples from all classes.

Table 2. Data after balancing

S.No
Class Name/Class

Abreviation

Sample Size-1

(Accuracy

94%)

Sample Size-2

(Accuracy

96%)

1
NV - (Melanocytic-

Nevus)
2000 2800

2
MEL - (Melanocytic-

Nevus)
2000 2800

3

BKL - (Benign or

Seborrheic- Keratoses

Lesions)

2000 2800

4
BCC - (Basal- Cell-

Carcinoma)
2000 2800

5

AKIEC - (Acnetic-

Keratoses and

Intraepithelial–

Carcinoma)

2000 2800

6
VASC - (Vascular-

Lesions)
2000 2800

7 DF - (Dermatofibroma) 2000 2800

Figure 4. Data distribution after balancing

As we can see from Table 1, there’s a lot of imbalances in

the dataset. The class NV has highest number of images i.e.

6705 while the class VASC has the lowest number of images

i.e. 142. In order to balance the data, the classes whose number

2626

of images are less are oversampled and the classes whose

number of images are more are under sampled.

The data balancing can be done in a number of ways. The

image classes 1 to 7 where the number of images per class are

less than 2800, are oversampled to 2800 while the images of

class 0 which are 6705 in number are down sampled to 2800.

The data after balancing is shown in Table 2 and is

visualised as shown in the Figure 4.

When the number of images sampled are taken as 500 for

each class it resulted in an accuracy of 71.43%. When the

sampled images for each class is increased to 1000 images per

class the accuracy increased to 79.31%. When the sampled

images for each class is increased to 2000 images per class the

accuracy increased to 94% and with 2800 images for each

class the accuracy further increased to 96%. Given the

hardware capability of our system this is the highest sample

size that we could take, Thus, the DCNN is trained with 2800

images of each class split into 80:20 ratio that give 2240

images for training and 560 images for testing.

With the application of augmentation on-the-fly we created

augmented images while training and this will increase

diversity, robustness and avoids overfitting and addresses

class imbalance. We used ‘ImageDataGenerator’ in Keras

Tensorflow for augmentation. ‘ImageDataGenerator’ in

TensorFlow does not increase the number of training images

in your dataset but dynamically generates augmented versions

of the existing images on-the-fly during the training process.

This indicates that the count of unique pictures in your dataset

remains the same while a new set of augmented images appear

for training for each batch.

In Figure 5 the original pics along with the augmented pics

produced by ‘ImageDataGenerator’ are shown.

Figure 5. Sample images and their augmented counterparts

3.6 DCNN architecture

The proposed DCNN architecture has four stages, stage 1

has four layers one Convolution layer (Conv2D), one

Maxpooling layer (MaxPool), one Batch normalization layer

(BN) and one Dropout layer. Stage 2 and 3 also have similar

layers. The data is flattened at the end of stage 3 and passed on

to stage 4, this stage has a dense layer followed by Softmax

layer. Figure 6. shows the architecture of DCNN and Table 3.

shows the model summary.

3.6.1 Conv2D layer

This layer provides the Convolution filters. In the first stage

a configuration of 256 filters, each possessing a 3x3 kernel and

activated by the ReLU (Rectified Linear Unit) function. The

first layer processes the raw image data by applying 256

convolutional filters. Each filter learns to detect specific

features or patterns in the image, such as edges or textures. By

incorporating ReLU non-linearity is introduced into the output,

enabling the network to effectively grasp intricate and

complex relationships. In second stage we have 128 filters,

stage 3 has 64 and stage 4 has 32 filters.

3.6.2 MaxPool layer

Stage 1 to 3 each have a MaxPooling layer with kernel size

(2,2). MaxPooling diminishes the resolution of activation

maps by extracting the highest value from a local window,

typically a 2×2 grid, as it moves across the input data. This

helps to down sample the data, lowering the parameter count

and introducing some degree of translation invariance.

3.6.3 BN layer (Batch-Normalization layer)

BN Layer is commonly used to scale the weights of each

layer, so that the learning phase will be more stable and

efficient. It addresses internal covariate shift the problem,

which refers to the change in the distribution of layer inputs

during learning phase.

Mathematically, batch normalization can be defined as

follows:

Given a mini-batch of activations, denoted as x of size (m,

n). m stands for the batch size and n for the count of features.

The steps for batch normalization are as follows:

Estimate the centre value (mean) and variance for each

feature dimension across the mini-batch:

𝑚𝑒𝑎𝑛⁡𝜇 =
1

𝑚
∑(𝑥) (5)

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒⁡𝜎2 =
1

𝑚
∑(𝑥 − 𝜇)2 (6)

Normalize the activations using the mean and variance:

𝑥′ = (𝑥 − 𝜇)/√(𝜎2 + 𝜀) (7)

Here, ε is a small constant (e.g., 10e-8) added for numerical

stability to avoid division by zero.

Scale and shift the normalized activations using learned

parameters, typically a scaling factor (γ) and a bias term (β):

𝑦 = 𝛾 ∗ 𝑥′ + 𝛽 (8)

2627

Figure 6. DCNN architecture

Table 3. DCNN model summary

Type of the Layer Output Dim Params

conv2d (None, 73, 73, 256) 7,168

batch_normalization (None, 73, 73, 256) 1,024

2D-Max-Pool (None, 36, 36, 256) 0

dropout (None, 36, 36, 256) 0

conv2d_1 (None, 34, 34, 128) 295,040

batch_normalization_1 (None, 34, 34, 128) 512

2D-Max-Pool-1 (None, 17, 17, 128) 0

dropout_1 (None, 17, 17, 128) 0

conv2d_2 (None, 15, 15, 64) 73,792

batch_normalization_2 (None, 15, 15, 64) 256

2D-Max-Pool-2 (None, 7, 7, 64) 0

dropout_2 (None, 7, 7, 64) 0

Flatt layer (None, 3136) 0

Dense (None, 32) 100,384

Dense_1 (None, 7) 231

The parameters γ and β are learnable parameters and are

applied to each feature dimension individually.

During training, batch normalization also introduces

additional parameters to the network, γ and β, which are

learned during the optimization process. These parameters

allow the network to undo the normalization if it is beneficial

for the task at hand.

Batch normalization helps in addressing the internal

covariate shift problem and provides several benefits,

including faster convergence, reduced sensitivity to the

network's initialization, and regularization effects, which can

improve generalization performance.

It's worth noting that during inference or prediction, the

mean and variance are typically estimated using the entire

training set rather than the mini-batch statistics. This is

because batch normalization is applied to individual samples

during training, but during inference, we usually want the

model to make predictions on individual samples without the

need for mini-batches.

3.6.4 Dropout layer

Dropout stands as a regularization technique that introduces

an element of randomness by selectively nullifying a portion

of input units during each training iteration. It supports

averting excessive fitting by alleviating the dependency on any

individual unit, forcing the network to learn more fortified

features. Dropout rates of 0.4, 0.3 and 0.2 are tested in this

model and the dropout rate of 0.2 is selected as this produced

the best results.

3.6.5 Flatt layers

The 2-D traits are mapped into a 1-D vector, by the flat

layers, prepping the data for the subsequent fully connected

layers.

3.6.6 Dense and SoftMax layers

The first dense layer produces 32 outputs which are reduced

to 7 by the second dense layer and SoftMax activation function

produces the seven probabilities for each class.

3.7 Hyper parameter tuning

While designing a Convolutional Neural Network we come

across several hyper parameters. The most important of them

are Optimizer, Learning rate and Dropout Rate. Improper

tuning of these parameters may result in poor accuracy,

excessive run time and even the model may not converge.

3.7.1 Optimizer

Various popular optimizers available are Adam, SGD,

Adagrad.

Stochastic Gradient Descent (SGD): SGD is a distinct

foundational optimizer used in computational tasks and deep

learning to train models by minimizing a given loss function.

The algorithm is a version of the gradient descent and is

notably suitable for bigger datasets.

SGD begins by initializing the model's parameters

randomly or using some predefined values.

Unlike traditional gradient descent, where the entire dataset

is utilized to estimate the gradient of the loss function in each

iteration, SGD operates on smaller sub groups of the data

called mini-batches. In every training loop, a mini-batch of

data points is randomly sampled from the entire dataset. This

randomness helps introduce stochasticity into the optimization

process, which can be beneficial for escaping local minima

and speeding up convergence.

For each mini-batch the loss function's gradient concerning

the model's parameters is estimated. This gradient represents

the direction in which the parameters ought to be tuned to

mitigate the loss. The parameters are then updated using the

negative gradient direction and a learning rate.

SGD's main advantage lies in its efficiency with large

datasets since it only requires a subset of the data in each

iteration. This can lead to faster training times compared to

using the entire dataset. However, SGD can exhibit noisy

updates due to the random mini-batch sampling, which can

2628

cause the optimization process to be less stable and take longer

to converge.

Adaptive Gradient Algorithm (Adagrad): Adagrad is

another optimizer used often in computational tasks. It is

designed to automatically modulate the rate of learning for

every network parameter depending on the information about

the history of the gradient. Adagrad is particularly best-suited

for handling sparse data and scenarios where the features have

significantly different scales.

Adagrad initializes a vector ‘G’ of the same dimension as

the model's parameters. This vector keeps track of the sum of

squared gradients for each parameter. In each training iteration,

Adagrad calculates the derivative of the cost function

concerning the model’s parameters.

The key feature of Adagrad is the adaptive learning rate. As

the optimization progresses, the vector ‘G’ accumulates the

squared gradients for each parameter. Parameters associated

with frequent or large gradients will have smaller effective

learning rates, as their corresponding elements in ‘G’ grow.

Conversely, parameters associated with infrequent or small

gradients will have larger effective learning rates.

While Adagrad’s adaptive learning rates can be

advantageous, they can also lead to diminishing learning rates

over time, making it difficult for the optimization process to

escape from valleys with flat gradients. This issue is especially

pronounced in deep networks and can slow down convergence.

Adaptive Moment Estimation (Adam): Adam optimizer is a

popular choice for optimization used in machine learning and

deep learning to train models by minimizing a given loss

function. It amalgamates the positive aspects of two

techniques: Dynamic learning rates from RMSProp and

momentum-influenced updates. Adam is designed to provide

efficient and effective optimization across a wide range of

tasks.

Adam maintains two sets of exponentially decaying moving

averages:

• m: The first moment estimate, which is a running

average of gradients.

• v: The second moment estimate, which is a running

average of squared gradients.

Both m and v are initialized to zero vectors of the same

dimension as the model's hyperparameters.

With each loop of training, Adam calculates the slope of the

loss function concerning the model's parameters. It then

updates the moving averages. The moving averages m and v

are initialized with zeros and can be biased towards zero,

especially during the initial iterations. To correct this bias,

Adam performs bias correction. Finally, Adam uses the bias-

corrected moment estimates to update the model's parameters.

Adam's combination of adaptive learning rates and

momentum from the moving averages allows it to perform

well on a wide range of optimization problems.

3.7.2 Learning rate

The learning rate stands as a hyper-parameter governing the

rate at which the model's parameters receive updates in the

optimization process. It determines the pace at which the

model adjusts to the training data.

When training a CNN, the goal is to reduce the loss function

that quantifies how well the model's predictions match the

actual target values. The learning rate plays a crucial role in

this process.

Large Learning Rate: Using a large learning rate can result

in rapid updates to the model's parameters. While this might

help the model converge quickly, it could also lead to

overshooting the optimal solution, causing the optimization

process to oscillate or even diverge.

Small Learning Rate: A small learning rate will result in

slower parameter updates. This might be helpful for fine-

tuning when the optimization is close to the smallest value of

the loss function. However, using an excessively small

learning rate can make the optimization process very slow and

could get stuck in local minima.

Picking an apt learning rate helps in striking a balance amid

fast convergence and stable optimization.

3.7.3 Dropout rate

Dropout functions as a regularization strategy commonly

used in CNNs and other types of neural networks to prevent

overfitting. Overfitting materializes when a model exhibits

strong performance during the learning phase while faltering

to generalize effectively to novel data. Dropout helps address

this issue by reducing the interdependencies between neurons

and stimulating the network towards enhanced learning of

robust and generalizable features.

Dropout involves "dropping out" a random subset of

neurons (both hidden and input) in each training iteration. This

means that these neurons are temporarily removed from the

network architecture during that iteration. The probability of a

neuron being dropped out is dictated by a parameter referred

to as the dropout rate.

During inference (when the trained model is used to make

predictions), all neurons are active, but their outputs are scaled

down by the dropout rate. This scaling ensures that the

expected output of each neuron during inference remains close

to its average behaviour during training.

• Regularization: By randomly dropping neurons,

dropout keeps the network from being overly reliant

on any single neuron. This encourages the network to

distribute its learning across multiple neurons and,

subsequently, learn more robust features.

• Reduced Overfitting: Dropout reduces the risk of

overfitting by introducing noise during training. This

compels the network to acquire a broader, more

universal understanding of the data.

• Ensemble Effect: During training, dropout creates

many different network architectures by randomly

dropping neurons.

• When making predictions, these different

architectures are combined, acting as an ensemble.

• This ensemble effect can lead to improved

generalization.

Dropout is a powerful technique, but it requires careful

tuning of the dropout rate, especially for different layers in the

network. It's common to start with a moderate dropout rate

(e.g., 0.2 to 0.5) and adjust it through experimentation based

on the model's efficacy on a validation set. It's also crucial to

note that dropout is generally not applied during inference, as

the goal during inference is to make accurate predictions

without introducing randomness.

We adopted an iterative method to tune the hyper

parameters, the code snippet used to fine tune the hyper

parameters is given below.

Hyperparameter search space

2629

dropout_values =[0.2, 0.3, 0.4]

optimizer_values =['adam', 'adagrad', 'sgd']

learning_rate_values =[0.1, 0.01]

for dropout_rate in dropout_values:

 for optimizer in optimizer_values:

 for learning_rate in learning_rate_values:

 model = Sequential ()

 #add Conv2D with 256 filters and size (3, 3),

input_shape=(SIZE, SIZE, 3)))

 # add BN Layer

 # add MaxPool 2D layer of size (2, 2)

 # add dropout layer

 # add Conv2D with 128 filters and size (3, 3)

 # add BN Layer

 # add MaxPool 2D layer of size (2, 2)

 # add dropout layer

 # add Conv2D with 64 filters and size (3, 3)

 # add BN Layer

 # add MaxPool 2D layer of size (2, 2)

 # add dropout layer

 # add Flat layer

 #add Dense layer with 32 filters, activation='relu'

 #add Dense layer with filters=num_classes and

activation='softmax'))

 # Choose the optimizer based on the hyperparameter

 #Write code for choosing one of the three optimizers

using a if-else loop

 raise ValueError("Invalid optimizer")

 #Compile the model

 # Fit the model

Table 3 displays the metrics with different combinations of

optimizer, learning rate and dropout rate.

The results of hyper parameter tuning shown in Table 4.

tells that the best combination is to use Adam as an optimizer

with Learning Rate of 0.1 and Dropout Rate of 0.2.In our

proposed method while tuning the hyper parameters we

observed that Adam resulted in the best performance for the

given data set.

Table 4. Impact of hyper parameter tuning on various metrics

Optimizer Learning_Rate Dropout_Rate Accuracy (%) Precision Recall F1-Score Specificity Sensitivity

Adagrad

0.1 0.4 78 0.78 0.78 0.79 0.96 0.78

0.1 0.2 88 0.88 0.88 0.88 0.98 0.88

0.01 0.4 77 0.77 0.76 0.76 0.95 0.76

0.01 0.2 88 0.89 0.88 0.88 0.98 0.88

SGD

0.1 0.4 80 0.84 0.80 0.80 0.96 0.80

0.1 0.2 93 0.93 0.93 0.93 0.99 0.93

0.01 0.4 89 0.89 0.89 0.89 0.98 0.89

0.01 0.2 95 0.95 0.95 0.95 0.99 0.95

Adam

0.1 0.4 91 0.92 0.91 0.91 0.98 0.91

0.1 0.2 96 0.96 0.96 0.96 0.99 0.96

0.01 0.4 94 0.94 0.94 0.94 0.99 0.94

0.01 0.2 79 0.85 0.80 0.80 0.96 0.80

4. RESULTS AND DISCUSSION

With the above architecture the DCNN achieved an

Accuracy of 96%. A confusion matrix is a tabular

representation that numerically represents the performance of

a classification model by displaying the counts of TPos, TNeg,.

FPoss, FNeg predictions. It's a useful tool for assessing the quality

of predictions made by a model and understanding where it

might be making errors.

The Confusion Matrix gives the information about the

following

• TPos: These are instances where your model

accurately identified the positive class (the desired

condition), and the actual classification was indeed

positive.

• TNeg: These are instances where your model correctly

recognized the negative class, and the actual

classification was indeed negative.

• FPoss: These are instances where your model predicted

the positive class, but the actual classification was

negative. This is also referred to as a Type I error.

• FNeg: These are instances where your model predicted

the negative class, but the actual classification was

positive. This is also referred to as a Type II error.

Various performance metrics that can be used to estimate

the predictive capabilities of DCNN are given below:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝑜𝑠 + 𝑇𝑁𝑒𝑔

𝑇𝑃𝑜𝑠 + 𝑇𝑁𝑒𝑔 + 𝐹𝑃𝑜𝑠 + 𝐹𝑁𝑒𝑔
 (9)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑜𝑠

𝑇𝑃𝑜𝑠 + 𝐹𝑃𝑜𝑠
 (10)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑜𝑠

𝑇𝑃𝑜𝑠 + 𝐹𝑁𝑒𝑔
 (11)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑇𝑃𝑜𝑠

2 ∗ 𝑇𝑃𝑜𝑠 + 𝑇𝑁𝑒𝑔 + 𝐹𝑃𝑜𝑠 + 𝐹𝑁𝑒𝑔
 (12)

Figure 7 shows the confusion matrix while Figure 8 shows

the classification reports. Figure 9 shows the ROC curve. In

Table 4, the performance metrics for various combinations of

learning rate, dropout and optimizer are given. By observing

Table 4, we understand the impact of hyperparameter tuning

and it turns out that Adam leads to the best results with a

learning rate of 0.1 and a dropout rate of 0.2. The second-best

result is given when learning rate is 0.01, dropout 0.2 and SGD

is the optimizer. Table 5 gives the impact of train-test split on

2630

the performance of the model. We observe that a split of 80:20

gave the best results.

Figure 7. Confusion matrix of DCNN

Figure 8. Classification report of DCNN

Figure 9. ROC curve of DCNN

Figure 10. Training vs testing loss

Figure 11. Training vs testing accuracy

A classification report is a concise summary of various

performance metrics for a classification model. It provides

valuable insights into how well the model performs across

different classes and gives a more detailed evaluation than just

looking at accuracy. Figure 8 shows the classification report

of the DCNN for the case with learning rate 0.1, dropout 0.2

with Adam optimizer. The classification report generally

provides benchmarks like precision, recall, F1-score, and the

number of instances for each class.

The ROC curve (Receiver Operating Characteristic curve)

is shown in Figure 9. The mean Area Under the Curve (AUC)

is 0.99 with a Standard Deviation (STD) of 0.01. the legend

provided in the figure shows the AUC for individual classes.

The loss and accuracy curves for training phase and testing

phase can be seen in Figure 10 and Figure 11 respectively.

Table 6 shows the comparative results of our proposed

DCNN with some of the existing state of the art works. We

can see that our DCNN did extremely well and out performed

many of the published works.

Table 7 shows the models performance with respect to the

other prominent data sets like PH2 [30], ISIC 2016 [31] and

ISIC 2017 [32]. The findings in Table 7 suggests that the

model is robust and consistent.

Table 5. Impact of train-test split ratio on various metrics

S.No. Train-Test Split Ratio Accuracy (%) Precision Recall F1-Score Specificity Sensitivity

1 90:10 94 0.94 0.94 0.94 0.99 0.94

2 80:20 96 0.96 0.96 0.96 0.99 0.96

3 70:30 95 0.95 0.95 0.95 0.99 0.95

4 60:40 93 0.93 0.93 0.93 0.99 0.93

5 50:50 92 0.92 0.92 0.92 0.99 0.92

2631

Table 6. Accuracy, specificity, sensitivity comparison with the published models that used HAM10000 data set

S.No Existing Model Accuracy Specificity Sensitivity

1 Gong et al. [2] 92.6% 0.977 0.483

2 Zhou et al. [3] 87.7% 0.847 0.903

3 Son et al. [4] 87.1% 0.919 0.873

4 Thurnhofer-Hemsi et al. [6] 83.5% 0.954 0.656

5 Hoang et al. [8] 86.33% 0.977 0.863

6 Shen et al. [23] 85.3% 0.973 0.789

7 Our work 96% 0.96 0.99

Table 7. Performance of DCNN on various data sets

S.No. Dataset Accuracy (%) Specificity Sensitivity

1 PH2 200 images 97.2 0.99 0.968

2 ISIC 2016 900 images 96.7 0.99 0.96

3 ISIC 2017 96.5 0.99 0.965

4 HAM10000 10015 images 96 0.99 0.96

5. CONCLUSION AND FUTURE WORK

The findings demonstrate that the suggested DCNN model

has delivered encouraging outcomes, boasting an accuracy

rate of 96%, a mean precision of 0.96, a mean recall of 0.96,

and a mean F1-score of 0.96, specificity of 0.96 and sensitivity

of 0.99. Moreover, the model has surpassed the performance

of numerous established models.

The model further needs to be tested on big datasets like

ISIC 2019 (25,331 images) and ISIC 2020 (33,126 images)

which are very huge. There is a scope to increase the accuracy

and other performance metrics by using ensemble method

where we can integrate our DCNN with the well-established

classification models like DenseNet, INCEPTION-v3.

REFERENCES

[1] Gururaj, H.L., Manju, N., Nagarjun, A., Aradhya, V.M.,

Flammini, F. (2023). DeepSkin: A deep learning

approach for skin cancer classification. IEEE Access, 11:

50205-50214.

https://doi.org/10.1109/ACCESS.2023.3274848

[2] Gong, A., Yao, X., Lin, W. (2020). Classification for

dermoscopy images using convolutional neural networks

based on the ensemble of individual advantage and group

decision. IEEE Access, 8: 155337-155351.

https://doi.org/10.1109/ACCESS.2020.3019210

[3] Zhou, Q., Shi, Y., Xu, Z., Qu, R., Xu, G. (2020).

Classifying melanoma skin lesions using convolutional

spiking neural networks with unsupervised STDP

learning rule. IEEE Access, 8: 101309-101319.

https://doi.org/10.1109/ACCESS.2020.2998098

[4] Son, H.M., Jeon, W., Kim, J., Heo, C.Y., Yoon, H.J.,

Park, J.U., Chung, T.M. (2021). AI-based localization

and classification of skin disease with erythema.

Scientific Reports, 11(1): 5350.

https://doi.org/10.1038/s41598-021-84593-z

[5] Zhang, J., Xie, Y., Xia, Y., Shen, C. (2019). Attention

residual learning for skin lesion classification. IEEE

Transactions on Medical Imaging, 38(9): 2092-2103.

https://doi.org/10.1109/TMI.2019.2893944

[6] Thurnhofer-Hemsi, K., López-Rubio, E., Dominguez, E.,

Elizondo, D.A. (2021). Skin lesion classification by

ensembles of deep convolutional networks and regularly

spaced shifting. IEEE Access, 9: 112193-112205.

https://doi.org/10.1109/ACCESS.2021.3103410

[7] Ahmad, B., Usama, M., Huang, C.M., Hwang, K.,

Hossain, M.S., Muhammad, G. (2020). Discriminative

feature learning for skin disease classification using deep

convolutional neural network. IEEE Access, 8: 39025-

39033. https://doi.org/10.1109/ACCESS.2020.2975198

[8] Hoang, L., Lee, S.H., Lee, E.J., Kwon, K.R. (2022).

Multiclass skin lesion classification using a novel

lightweight deep learning framework for smart

healthcare. Applied Sciences, 12(5): 2677.

https://doi.org/10.3390/app12052677

[9] Tschandl, P., Rosendahl, C., Kittler, H. (2018). The

HAM10000 dataset, a large collection of multi-source

dermatoscopic images of common pigmented skin

lesions. Scientific Data, 5(1): 1-9.

https://doi.org/10.1038/sdata.2018.161

[10] Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A. (2016).

Automated melanoma recognition in dermoscopy images

via very deep residual networks. IEEE Transactions on

Medical Imaging, 36(4): 994-1004.

https://doi.org/10.1109/TMI.2016.2642839

[11] Harangi, B. (2018). Skin lesion classification with

ensembles of deep convolutional neural networks.

Journal of Biomedical Informatics, 86: 25-32.

https://doi.org/10.1016/j.jbi.2018.08.006

[12] Demyanov, S., Chakravorty, R., Abedini, M., Halpern,

A., Garnavi, R. (2016). Classification of dermoscopy

patterns using deep convolutional neural networks. In

2016 IEEE 13th International Symposium on Biomedical

Imaging (ISBI), Prague, Czech Republic, pp. 364-368.

https://doi.org/10.1109/ISBI.2016.7493284

[13] Masood, A., Al-Jumaily, A., Anam, K. (2015). Self-

supervised learning model for skin cancer diagnosis. In

2015 7th International IEEE/EMBS Conference on

Neural Engineering (NER), Montpellier, France, pp.

1012-1015. https://doi.org/10.1109/NER.2015.7146798

[14] Mahbod, A., Schaefer, G., Wang, C., Ecker, R., Ellinge,

I. (2019). Skin lesion classification using hybrid deep

neural networks. In ICASSP 2019-2019 IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Brighton, UK, pp. 1229-

1233. https://doi.org/10.1109/ICASSP.2019.8683352

[15] Pomponiu, V., Nejati, H., Cheung, N.M. (2016).

Deepmole: Deep neural networks for skin mole lesion

2632

classification. In 2016 IEEE International Conference on

Image Processing (ICIP), Phoenix, AZ, USA, pp. 2623-

2627. https://doi.org/10.1109/ICIP.2016.7532834

[16] Albahar, M. A. (2019). Skin lesion classification using

convolutional neural network with novel regularizer.

IEEE Access, 7: 38306-38313.

https://doi.org/10.1109/ACCESS.2019.2906241

[17] Li, Y., Shen, L. (2018). Skin lesion analysis towards

melanoma detection using deep learning network.

Sensors, 18(2): 556. https://doi.org/10.3390/s18020556

[18] Javaid, A., Sadiq, M., Akram, F. (2021). Skin cancer

classification using image processing and machine

learning. In 2021 International Bhurban Conference on

Applied Sciences and Technologies (IBCAST),

Islamabad, Pakistan, pp. 439-444.

https://doi.org/10.1109/IBCAST51254.2021.9393198

[19] Ichim, L., Popescu, D. (2020). Melanoma detection using

an objective system based on multiple connected neural

networks. IEEE Access, 8: 179189-179202.

https://doi.org/10.1109/ACCESS.2020.3028248

[20] Ali, M.S., Miah, M.S., Haque, J., Rahman, M.M., Islam,

M.K. (2021). An enhanced technique of skin cancer

classification using deep convolutional neural network

with transfer learning models. Machine Learning with

Applications, 5: 100036.

https://doi.org/10.1016/j.mlwa.2021.100036

[21] Ali, K., Shaikh, Z.A., Khan, A.A., Laghari, A.A. (2022).

Multiclass skin cancer classification using EfficientNets-

a first step towards preventing skin cancer. Neuroscience

Informatics, 2(4): 100034.

https://doi.org/10.1016/j.neuri.2021.100034

[22] Datta, S.K., Shaikh, M.A., Srihari, S.N., Gao, M. (2021).

Soft attention improves skin cancer classification

performance. In Interpretability of Machine Intelligence

in Medical Image Computing, and Topological Data

Analysis and Its Applications for Medical Data: 4th

International Workshop, iMIMIC 2021, and 1st

International Workshop, TDA4MedicalData 2021, Held

in Conjunction with MICCAI 2021, Strasbourg, France,

Proceedings. Springer International Publishing. Springer,

Cham, 4: 13-23. https://doi.org/10.1007/978-3-030-

87444-5_2

[23] Shen, S., Xu, M., Zhang, F., Shao, P., Liu, H., Xu, L.,

Zhang, C., Liu, P., Yao, P., Xu, R.X. (2022). A low-cost

high-performance data augmentation for deep learning-

based skin lesion classification. BME Frontiers, 2022.

https://doi.org/10.34133/2022/9765307

[24] Calderón, C., Sanchez, K., Castillo, S., Arguello, H.

(2021). BILSK: A bilinear convolutional neural network

approach for skin lesion classification. Computer

Methods and Programs in Biomedicine Update, 1:

100036. https://doi.org/10.1016/j.cmpbup.2021.100036

[25] Qian, S., Ren, K., Zhang, W., Ning, H. (2022). Skin

lesion classification using CNNs with grouping of multi-

scale attention and class-specific loss weighting.

Computer Methods and Programs in Biomedicine, 226:

107166. https://doi.org/10.1016/j.cmpb.2022.107166

[26] Murthy, S.V.S.N., Prasad, P.M.K. (2023). Adversarial

transformer network for classification of lung cancer

disease from CT scan images. Biomedical Signal

Processing and Control, 86: 105327.

https://doi.org/10.1016/j.bspc.2023.105327

[27] Subbarao, M.V., Ram, G.C., Kumar, D.G., Terlapu, S.K.

(2022). Brain tumor classification using ensemble

classifiers. In 2022 International Conference on

Electronics and Renewable Systems (ICEARS),
Tuticorin, India, pp. 875-878.

https://doi.org/10.1109/ICEARS53579.2022.9752177

[28] Varma, A.K.C., Dileep, M., Prudhvi Raj, B., Prasanna

Kumar, G. (2023). Impulse noise removal using residual

convolutional neural networks. In AIP Conference

Proceedings. AIP Publishing, 290(1).

https://doi.org/10.1063/5.0178635

[29] Shaik, A.R., Chandra, K.R., Raju, B.E., Budumuru, P.R.

(2021). Glaucoma identification based on segmentation

and fusion techniques. In 2021 International Conference

on Advances in Computing, Communication, and

Control (ICAC3), Mumbai, India, pp. 1-4.

https://doi.org/10.1109/ICAC353642.2021.9697174

[30] Mendonça, T., Ferreira, P.M., Marques, J.S., Marcal,

A.R., Rozeira, J. (2013). PH 2-A dermoscopic image

database for research and benchmarking. In 2013 35th

Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC).

IEEE. Osaka, Japan, pp. 5437-5440.

https://doi.org/10.1109/EMBC.2013.6610779

[31] Gutman, D., Codella, N.C., Celebi, E., Helba, B.,

Marchetti, M., Mishra, N., Halpern, A. (2016). Skin

lesion analysis toward melanoma detection: A challenge

at the international symposium on biomedical imaging

(ISBI) 2016, hosted by the international skin imaging

collaboration (ISIC). arXiv Preprint arXiv: 1605.01397.

https://doi.org/10.48550/arXiv.1605.01397

[32] Codella, N.C., Gutman, D., Celebi, M.E., Helba, B.,

Marchetti, M.A., Dusza, S.W., Kalloo, A., Liopyris, K.,

Mishra, N., Kittler, H., Halpern, A. (2018). Skin lesion

analysis toward melanoma detection: A challenge at the

2017 international symposium on biomedical imaging

(ISBI), hosted by the international skin imaging

collaboration (ISIC). In 2018 IEEE 15th International

Symposium on Biomedical Imaging (ISBI 2018),
Washington, DC, USA, pp. 168-172.

https://doi.org/10.1109/ISBI.2018.8363547

2633

