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In this paper, we propose a low-complexity adaptive post-whitening discrete cosine least 
mean square (LC-POW-DCT-LMS) algorithm. The fundamental concept introduced in this 
new algorithm consists of designing an adaptive post-whitening process of first order by 
appropriately exploiting the fact that the adaptation process of the decorrelation coefficients 
becomes slow when the step size parameter takes relatively small values. For a given 
iteration, this new post-whitening requires the computation of only one transformation of 
length N, 5N+2 additions and 7N+5 multiplications, whereas the corresponding post-
whitening of the existing POW-DCT-LMS algorithm requires the computation of two 
transformations each of length N, 4N+2 additions and 7N+4 multiplications. Therefore, the 
LC-POW-DCT-LMS algorithm substantially reduces the arithmetic complexity. Moreover, 
by considering echo cancellation application, we demonstrate that the performance of this 
new algorithm, for both mean square error (MSE) and normalized misalignment (MSI) 
convergence speed as well as for the reached steady state, is comparable to that of the 
existing POW-DCT-LMS algorithm. 
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1. INTRODUCTION

In adaptive filtering, robust, simple, and computationally
efficient algorithms such as the least mean square (LMS) are 
broadly used [1-5]. Nevertheless, their convergence 
performance is significantly affected when the input signal 
autocorrelation matrix is characterized by a significant spread 
of eigenvalues [6-9]. Several time-domain whitening 
techniques have been suggested in studies [10-13] to reduce 
such eigenvalue spreads. The time-domain whitening is 
achieved using the adaptive predictive decorrelation to 
decorrelate the input signal or jointly decorrelate the input 
signal with the error signal. This offers improvements in the 
behavior of the mean square error (MSE) convergence, which 
depends on the initial convergence speed and reached steady 
state [14-16]. 

The whitening of correlated input signals is also adopted in 
the transform-domain LMS (TDLMS) algorithm [17, 18], 
which is considered as a good alternative to the time-domain 
LMS algorithm. This whitening is achieved by exploiting the 
decorrelation property of orthogonal transforms such as the 
discrete cosine transform (DCT), discrete Fourier transform 
(DFT) and discrete Hartley transform (DHT). As a result, a 
significant reduction in the eigenvalue spread of the 
transformed and power-normalized autocorrelation matrix 
signal has been obtained, and the MSE convergence has then 
been improved. However, the performance of the existing 
TDLMS in terms of convergence is still limited due to the fact 
that the decorrelation capability of the transforms is limited 
[19]. 

To overcome this problem by reinforcing the decorrelation 
skills of the transforms, an efficient pre-whitening TDLMS 
(PW-TDLMS) algorithm has been designed in paper [19] by 
introducing at the input of the TDLMS a pre-whitening filter 
of first order. The role of this filter is to decrease the spread of 
the eigenvalues of the autocorrelation matrix corresponding to 
the resulting transformed and power normalized signal, and 
subsequently improve the MSE convergence performance. As 
demonstrated in paper [19], the PW-TDLMS adaptive noise 
canceller algorithm exhibits good performance in speech 
denoising applications, where the processed noise is employed 
mutually in filtering and adaptation steps. In order to reinforce 
the decorrelation ability of the employed orthogonal 
transforms and improve the MSE convergence of the TDLMS 
algorithm for the purpose of identifying systems, where the 
input signal characteristics needs to be kept unchanged during 
the filtering step and can only be altered during the adaptation 
step, a post-whitening TDLMS (POW-TDLMS) algorithm has 
been designed in paper [20]. This algorithm post-whitens the 
transformed signal and reduces the eigenvalue spread of the 
autocorrelation matrix of the post-whitened and power-
normalized signal. Moreover, it has been shown in paper [20] 
that the MSE convergence of POW-DCT-LMS algorithm is 
superior to that of POW-DFT-LMS and POW-DHT-LMS 
algorithms. Additionally, past research has also shown that the 
DCT outperforms the DFT and DHT in a range of practical 
signal models [5, 18, 19, 21]. Although POW-DCT-LMS 
algorithm is very attractive for adaptive acoustic echo 
cancellation, it presents high arithmetic complexity primarily 
arising due to the necessity of computing two transforms 
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during each iteration. This crucial limitation becomes 
extremely serious in real-time applications such as 
stereophonic and teleconferencing systems [22-24] and hence 
should be addressed. 

In this paper, we develop a low-complexity POW-DCT-
LMS (LC-POW-DCT-LMS) algorithm for adaptive acoustic 
echo cancellation by exploiting the fact that the adaptation 
process of the decorrelation coefficients slows down with 
relatively small values of the step size parameter. This leads to 
a new first-order adaptive post-whitening process allowing 
substantial reduction in the complexity and permitting our LC-
POW-DCT-LMS algorithm to require for the calculation of 
one iteration only one transform. 

The rest of this paper is organized as follows. Section 2 
presents a brief review on the POW-DCT-LMS algorithm 
reported in paper [20]. In Section 3, we propose a LC-POW-
DCT-LMS algorithm. The arithmetic complexity analysis of 
this algorithm is presented in Section 4 and its performance 
analysis is carried out in Section 5 in terms of eigenvalue 
spread, stability and performance measure. In Section 6, we 
apply our algorithm in the context of echo cancellation and 
perform a comparison with existing algorithms by considering 
both the normalized misalignment (MSI) and MSE 
convergence metrics. Some conclusions are included in 
Section 7. 

2. POW-DCT-LMS ALGORITHM

Figure 1. System identification based on the POW-DCT-
LMS 

In this section, we present a brief review of the POW-DCT-
LMS algorithm developed in paper [20] for system 
identification purposes. It is indicated in Figure 1 for each time 
sample k. The time domain input vector x𝑘𝑘 =
[𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘−1, … , 𝑥𝑥𝑘𝑘−𝑁𝑁+1]𝑇𝑇 of length 𝑁𝑁 generated from the AR (1) 
process as 𝑥𝑥𝑘𝑘 = 𝜌𝜌𝑥𝑥𝑘𝑘−1 + 𝜔𝜔𝑘𝑘 , where 𝜌𝜌  is the coefficient of 
correlation, which falls within the interval (0,1) , 𝜔𝜔𝑘𝑘  is a 
Gaussian white noise, and (. )𝑇𝑇denotes the transpose operation. 
The signal x𝑘𝑘  is first transformed to X𝑘𝑘 = T𝑁𝑁x𝑘𝑘 =
[𝑋𝑋𝑘𝑘(0),𝑋𝑋𝑘𝑘(1), … ,𝑋𝑋𝑘𝑘(𝑁𝑁 − 1)]𝑇𝑇 , with T𝑁𝑁  being the DCT 
matrix of size 𝑁𝑁 × 𝑁𝑁. Then, the transformed signal X𝑘𝑘  is post-
whitened as: 

X�𝑘𝑘 = X𝑘𝑘 − T𝑁𝑁 × diag(𝑎𝑎𝑘𝑘−1, 𝑎𝑎𝑘𝑘−2, … , 𝑎𝑎𝑘𝑘−𝑁𝑁) × x𝑘𝑘−1  (1) 

with 𝑎𝑎𝑘𝑘 , 𝑘𝑘 = 0, 1, … being the coefficients of a first order 
adaptive time-domain decorrelation filter computed as: 

𝑎𝑎𝑘𝑘 = 𝑎𝑎𝑘𝑘−1 + 𝛾𝛾𝑥𝑥�𝑘𝑘𝑥𝑥𝑘𝑘−1 (2) 

where, 𝑥𝑥�𝑘𝑘 is the decorrelated input signal obtained as: 

𝑥𝑥�𝑘𝑘 = 𝑥𝑥𝑘𝑘 − 𝑎𝑎𝑘𝑘−1𝑥𝑥𝑘𝑘−1 (3) 

and 𝛾𝛾 is the adaptation step size, which takes values in the 
interval �0, 2

𝜆𝜆max
� [25], with 𝜆𝜆max being the largest eigenvalue 

of the autocorrelation matrix of x𝑘𝑘. 
Let us now describe the adaptive filtering process of the 

POW-DCT-LMS algorithm. The adaptive filter weight vector 
w𝑘𝑘 = [𝑤𝑤𝑘𝑘(0),𝑤𝑤𝑘𝑘(1), … ,𝑤𝑤𝑘𝑘(𝑁𝑁 − 1)]𝑇𝑇 is adapted using the 
post-whitened real-valued signal X�𝑘𝑘 given by (1) as: 

w𝑘𝑘+1 = w𝑘𝑘 + 𝜇𝜇𝑒𝑒𝑘𝑘P�𝑘𝑘−1X�𝑘𝑘 (4) 

with 𝜇𝜇 being the adaptation step size parameter controlling the 
algorithm convergence and 𝑒𝑒𝑘𝑘  the error, which can be 
computed as: 

𝑒𝑒𝑘𝑘 = 𝑑𝑑𝑘𝑘 − �𝑤𝑤𝑘𝑘

𝑁𝑁−1

𝑖𝑖=0

(𝑖𝑖)𝑋𝑋𝑘𝑘(𝑖𝑖) (5) 

where, 𝑑𝑑𝑘𝑘 = x𝑘𝑘 ∗ h + 𝑛𝑛𝑘𝑘  is the desired signal, h =
[ℎ0, ℎ1, . . , ℎ𝑁𝑁−1]𝑇𝑇  is the filter system to be found, 𝑛𝑛𝑘𝑘  is the 
additive white Gaussian noise and (∗) denotes the convolution 
operation. In (4), the vector P�𝑘𝑘 of length 𝑁𝑁 allows the power 
normalization of the post whitened signal X�𝑘𝑘 , and can be 
obtained as: 

P�𝑘𝑘 = diag�𝜎𝜎�𝑘𝑘2(0),𝜎𝜎�𝑘𝑘2(1), … ,𝜎𝜎�𝑘𝑘2(𝑁𝑁 − 1)� (6) 

where, the elements 𝜎𝜎�𝑘𝑘2(𝑖𝑖), with 𝑖𝑖 = 0, 1, … N-1, represent the 
power estimates of X�𝑘𝑘 and are computed by: 

𝜎𝜎�𝑘𝑘2(𝑖𝑖) = 𝛽𝛽𝜎𝜎�𝑘𝑘−12 (𝑖𝑖) + (1 − 𝛽𝛽)�𝑋𝑋�𝑘𝑘(𝑖𝑖)�2 (7) 

with  𝛽𝛽 being the smoothing factor having values from the 
interval (0, 1). 

3. PROPOSED LC-POW-DCT-LMS ALGORITHM

The POW-DCT-LMS algorithm reviewed in Section 2
corresponds of post-whitening and adaptive filtering. The aim 
of this section is to design a low-complexity POW-DCT-LMS 
(LC-POW-DCT-LMS) algorithm by developing a low-
complexity first order adaptive post-whitening. For this 
purpose, let us start by observing that the adaptation process 
of the decorrelation coefficients 𝑎𝑎𝑘𝑘 in (2) becomes slow when 
the step size parameter 𝛾𝛾 takes relatively small values. 

Assuming that the value taken by the adaptation step size 𝛾𝛾 
within the interval suggested in Section 2 is small enough to 
slowdown the process of adapting the decorrelation 
coefficients defined by (2). 

Therefore, at each iteration 𝑘𝑘, the term 𝛾𝛾𝑥𝑥�𝑘𝑘𝑥𝑥𝑘𝑘−1  will not 
introduce a significant alteration to the values taken by 𝑎𝑎𝑘𝑘 . 
Thus, we can assume that the values (𝑎𝑎𝑘𝑘−1, 𝑎𝑎𝑘𝑘−2, … , 𝑎𝑎𝑘𝑘−𝑁𝑁) 
taken over a finite duration 𝑁𝑁 are nearly equal. 
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Figure 2. Suggested low-complexity adaptive post-whitening 
 

 
 

Figure 3. Suggested low-complexity adaptive post-whitening DCT-LMS algorithm 
 
With this assumption in mind, the vectors 

[𝑎𝑎𝑘𝑘−1, 𝑎𝑎𝑘𝑘−2, … , 𝑎𝑎𝑘𝑘−𝑁𝑁]𝑇𝑇  and [𝑎𝑎�𝑘𝑘 , 𝑎𝑎�𝑘𝑘 , … , 𝑎𝑎�𝑘𝑘]𝑇𝑇 are 
asymptotically equal, where 𝑎𝑎�𝑘𝑘 is the mean value of the vector 
[𝑎𝑎𝑘𝑘−1, 𝑎𝑎𝑘𝑘−2, … , 𝑎𝑎𝑘𝑘−𝑁𝑁]𝑇𝑇, i.e. 

 

𝑎𝑎�𝑘𝑘 =
1
𝑁𝑁
�𝑎𝑎𝑘𝑘−𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (8) 

 
By replacing the vector [𝑎𝑎𝑘𝑘−1, 𝑎𝑎𝑘𝑘−2, … , 𝑎𝑎𝑘𝑘−𝑁𝑁]𝑇𝑇 in (1) by the 
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approximated vector [𝑎𝑎�𝑘𝑘, 𝑎𝑎�𝑘𝑘, … ,𝑎𝑎�𝑘𝑘]𝑇𝑇 , the post-whitening 
given by (1) can be rewritten as: 

 
X�𝑘𝑘 = X𝑘𝑘 − T𝑁𝑁 × diag(𝑎𝑎�𝑘𝑘 , 𝑎𝑎�𝑘𝑘, … , 𝑎𝑎�𝑘𝑘) × x𝑘𝑘−1 (9) 

 
The term T𝑁𝑁 × diag(𝑎𝑎�𝑘𝑘 , 𝑎𝑎�𝑘𝑘 , … , 𝑎𝑎�𝑘𝑘) × x𝑘𝑘−1  can be 

rearranged as 𝑎𝑎�𝑘𝑘 × T𝑁𝑁 × x𝑘𝑘−1 , and then, (9) becomes X�𝑘𝑘 =
X𝑘𝑘 − 𝑎𝑎�𝑘𝑘 × T𝑁𝑁 × x𝑘𝑘−1. 

Consequently, 
 

X�𝑘𝑘 = X𝑘𝑘 − 𝑎𝑎�𝑘𝑘 × X𝑘𝑘−1 (10) 
 

where, X𝑘𝑘−1 = T𝑁𝑁 × x𝑘𝑘−1. 
Finally, a simplified form of the post-whitening process of 

X𝑘𝑘  is obtained in (10) and illustrated in Figure 2. 
Now, we appropriately replace the post-whitening process 

of the POW-DCT-LMS algorithm, which is reviewed in 
Section 2, by the suggested post-whitening process obtained 
in Figure 2 to design the LC-POW-DCT-LMS algorithm 
illustrated in Figure 3. 

 
 

4. ARITHMETIC COMPLEXITY 
 
Here, we compare the complexities of the conventional 

DCT-LMS, existing POW-DCT-LMS and new LC-POW-
DCT-LMS algorithms. It is obvious that the post whitening 

given by (1) requires, for one iteration, N multiplications, one 
transform and then N subtractions. In contrast, the low-
complexity post whitening given by (10) requires only N 
multiplications and N subtractions. Therefore, it achieves 
savings of the entire complexity of the transform T𝑁𝑁 of length 
N at the expense of N-1 additions and one multiplication 
required for computing 𝑎𝑎�𝑘𝑘 in (8). It should be noted that X𝑘𝑘−1 
in (10) is computed during the time sample k-1 and hence does 
not need an extra complexity at the time sample k. 

The arithmetic complexity of the conventional DCT-LMS 
algorithm requires the computation of a single transformation, 
together with 6N+1 multiplications and 3N additions per 
iteration [19, 26]. Consequently, the LC-POW-DCT-LMS 
algorithm, as detailed earlier, requires the computation of only 
one transformation of length N, 5N+2 additions, and 7N+5 
multiplications for a given iteration. In contrast, the existing 
POW-DCT-LMS algorithm necessitates the computation of 
two transformations, each of length N, 4N+2additions, and 
7N+4 multiplications. Hence, the new algorithm achieves 
substantial savings in the arithmetic complexity. 

Therefore, by considering the arithmetic complexity of the 
fast algorithm devised in paper [27] to implement the DCT, 
Table 1 shows the complexities of the conventional DCT-LMS 
[19], existing POW-DCT-LMS [20] and new LC-POW-DCT-
LMS algorithms, for a single iteration with various values of 
N. In this table, 𝑀𝑀𝑁𝑁  and 𝐴𝐴𝑁𝑁  denote, respectively, the total 
number of additions and multiplications. 

 
Table 1. Arithmetic complexity of different algorithms for various values of N 

 

N DCT-LMS  POW-DCT-LMS New LC-POW-DCT-LMS 
𝑀𝑀𝑁𝑁 𝐴𝐴𝑁𝑁 𝑀𝑀𝑁𝑁 𝐴𝐴𝑁𝑁 𝑀𝑀𝑁𝑁 𝐴𝐴𝑁𝑁 

16 129 129 180 228 149 163 
32 273 305 388 548 309 371 
64 577 705 836 1284 645 835 

128 1217 1601 1796 2948 1349 1859 
256 2561 3585 3844 6660 2821 4099 
512 5377 7937 8196 14852 5893 8963 
1024 11265 17409 17412 32772 12293 19459 

 
 

5. PERFORMANCE ANALYSIS OF THE LC-POW-
DCT-LMS 

 
In this section, we analyze the eigenvalue spread, stability 

and performance measures of the LC-POW-DCT-LMS. 
 

5.1 Eigenvalue spread analysis 
 
As mentioned in Section 3, the value of the step size 

parameter 𝛾𝛾 has a direct effect on the adaptation process of the 
decorrelation coefficients 𝑎𝑎𝑘𝑘 given by (2) and used in (8) to 
calculate the mean value 𝑎𝑎�𝑘𝑘  required in the new low 
complexity post-whitening given by (9). 

In addition, the spread of the eigenvalues of the 
autocorrelation matrix S�𝑁𝑁  obtained from the post-whitened 
signal and normalized by the power as P�𝑘𝑘−1X�𝑘𝑘 has a significant 
influence on the convergence of the algorithm. 

The autocorrelation matrix B�𝑁𝑁 of X�𝑘𝑘 after performing post 
whitening using the LC-POW process given by (10) can be 
computed as: 

 
B�𝑁𝑁 = 𝐸𝐸 �X�𝑘𝑘X�𝑘𝑘

𝐻𝐻� (11) 
 

where, ( )H denotes the Hermitian transpose operation. 
After transformation and power normalization, the 

autocorrelation matrix is obtained in studies [6, 19, 20] by 
rearranging the elements such that X�𝑘𝑘 transforms its elements 
𝑋𝑋�𝑘𝑘(𝑖𝑖), 𝑖𝑖 = 0,1 … . ,𝑁𝑁 − 1  into 𝑋𝑋�𝑘𝑘(𝑖𝑖) �Power of 𝑋𝑋�𝑘𝑘(𝑖𝑖)⁄ , with 
the power of 𝑋𝑋�𝑘𝑘(𝑖𝑖) being placed on the main diagonal of B�𝑁𝑁. 

 
S�𝑁𝑁 = �diagB�𝑁𝑁�

−1 2⁄ B�𝑁𝑁�diagB�𝑁𝑁�
−1 2⁄

 (12) 
 
The eigenvalue spread of S�𝑁𝑁 is computed numerically for 

T𝑁𝑁 being the DCT. Therefore, it is of great interest to find an 
interval for appropriate values of 𝛾𝛾  ensuring a small 
eigenvalue spread. 

We now analyze numerically, for the conventional DCT-
LMS, existing POW-DCT-LMS and new LC-POW-DCT-
LMS algorithms, the eigenvalue spread of the autocorrelation 
matrix S�𝑁𝑁  for different values of 𝛾𝛾  in the interval [0, 0.1], 
various correlation coefficient values ρ=0.9, 0.7, and 0.5, and 
filter length N=16. The results of this analysis are depicted in 
Figures 4-6. 

It is clear from these figures that the DCT-LMS algorithm 
presents a worse performance, whereas the eigenvalue spreads 
obtained using the LC-POW-DCT-LMS algorithm are 

2638



comparable to those of the POW-DCT-LMS with a slight 
increase in the case of relatively high values of 𝛾𝛾. Therefore, 
the interval for appropriate values of 𝛾𝛾 is ]0, 0.002[. 

 

 
 

Figure 4. Eigenvalue spreads of the DCT-LMS, POW-DCT-
LMS and LC-POW-DCT-LMS for 𝜌𝜌 = 0.9,𝑁𝑁 = 16 and 

different values of the step size 𝛾𝛾 
 

 
 

Figure 5. Eigenvalue spreads of the DCT-LMS, POW-DCT-
LMS and LC-POW-DCT-LMS for 𝜌𝜌 = 0.7,𝑁𝑁 = 16 and 

different values of the step size 𝛾𝛾 
 

 
 

Figure 6. Eigenvalue spreads of the DCT-LMS, POW-DCT-
LMS and LC-POW-DCT-LMS for 𝜌𝜌 = 0.5,𝑁𝑁 = 16 and 

different values of the step size 𝛾𝛾 

5.2 Stability analysis 
 
Similarly, to the analysis conducted for the existing POW-

DCT-LMS algorithm [20], we analyze in this section the mean 
convergence of our LC-POW-DCT-LMS algorithm. 

It is obvious from (4) that normalizing the power by P� k
-1 

affects the step size parameter and enhances the MSE 
convergence, but complicates stability analysis. To simplify 
this, we perform on the post-whitened vector X�k

  the power 
normalization by multiplying (4) by P�k

1/2. 
 

P�k
1/2wk+1

 = P� k
1/2wk

 +μekP�k
-1/2X�k

  (13) 
 
By assuming that X�k

  is a stationary process with zero mean 
value, P�k

1/2≈P�k+1
1/2 . This allows (13) to be formulated as 

P�k+1
1/2wk+1

 =P�k
1/2wk

 +μekP�k
-1/2X�k

 , and then becomes: 
 

w�k+1
 =w�k

 +μekVk
  (14) 

 
where, w�k

 = P�k
1/2wk

  and Vk
 =P�k

-1/2X�k
 . 

In stationary or mildly non-stationary environments, the 
weight vector w�k

  from (14) converges to P�  
1/2TNwo , where 

P�=E{P�k}. This implies that (4) and (14) are equivalent forms. 
We now subtract the quantity P�  

1/2TNwo , obtained by 
transforming and normalizing Wiener filter, from (14), and 
then reformulate the result as: 

 
w�k+1

 = w�k
 +μekVk

  (15) 
 

where, w�k
 =w�k

 –P�  
1/2TNwo representing the weight-error vector. 

By assuming the convergence of the decorrelation filter 
defined by (2) and (3), the decorrelation coefficients 𝑎𝑎𝑘𝑘 
converge to the optimal scalar coefficient 𝑎𝑎𝑜𝑜 belonging to the 
range ]0, 1[. Hence, (8) becomes: 

 

𝑎𝑎�𝑘𝑘 =
1
𝑁𝑁
�𝑎𝑎𝑜𝑜
𝑁𝑁

𝑖𝑖=1

= 𝑎𝑎𝑜𝑜, (16) 

 
The approximated vector [𝑎𝑎�𝑘𝑘 , 𝑎𝑎�𝑘𝑘 , … , 𝑎𝑎�𝑘𝑘]𝑇𝑇  of length 𝑁𝑁 tends 

to [𝑎𝑎𝑜𝑜, 𝑎𝑎𝑜𝑜 , … , 𝑎𝑎𝑜𝑜]𝑇𝑇 , and (10), which corresponds to the low 
complexity post whitening, reduces to: 

 
X�k

 =Xk
 –𝑎𝑎𝑜𝑜Xk-1

  (17) 
 
The expression for ek in terms of X�k

  is given by [20]: 
 

ek=dk–(wk
 )H�αX�k

 –φ𝓌𝓌k
 � (18) 

 
where, 𝓌𝓌k

 = 𝑇𝑇𝑁𝑁 × ω𝑘𝑘  and ω𝑘𝑘 = [𝜔𝜔𝑘𝑘 ,𝜔𝜔𝑘𝑘−1, … ,𝜔𝜔𝑘𝑘−𝑁𝑁+1]𝑇𝑇  is 
zeros mean white gaussian noise. α= ρ 

ρ – 𝑎𝑎𝑜𝑜
, φ= a

ρ – 𝑎𝑎𝑜𝑜
, 0<ρ<1, ρ 

is the correlation coefficient and 𝑎𝑎𝑜𝑜≠ρ, and the expression of 
the obtained ek given by (18) in terms of w�k

  and Vk
  is: 

 

ek=eo– �αVk
 –φP�k

-1/2𝓌𝓌k
 �

H
w�k

  (19) 
 

where, eo=dk– �αVk
 –φP�k

-1/2𝓌𝓌k
 �

H
P�  

1/2TNwo
  representing the 

error when the filter is optimum. 
The substitution of (19) in (15) leads to: 
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w�k+1
 = w�k

  +  
𝜇𝜇 �Vk

 eo – �αVk
 (Vk

 )H– φVk
 (𝓌𝓌k

 )HP�k
-1/2

 �
 
w�k

 �
 
 (20) 

 
At time 𝑘𝑘, it is assumed that there is independence between 

the coefficients of w�k
 , Vk

 , 𝓌𝓌k
 , and P�k

-1/2, which is justified by 
considering small values of 𝜇𝜇 . The computation of the 
expectation of (20), leads to: 

 
E{w�k+1

 }=�I–μαS�N�E{w�k
 }+μφE �Vk

 (wk
 )HP�k

-1/2�E{w�k
 } (21) 

 
where, E{Vk

 eo}=0, and S�N=E{Vk
 (Vk

 )H}. 
By assuming that the algorithm is convergent, (21) becomes: 
 

E{w�k+1
 }=�I–μS�N�E{w�k

 } (22) 
 
From (22), it is clear that the equivalent forms of (4) and (14) 

are stabilized in the mean-square sense under the resulting 
necessary condition. 

 
�1–μ3tr�S�N��<1 (23) 

 
Therefore, we are able to express: 
 

0<μ<
2

3tr�S�N�
 (24) 

 
where, tr (∙) denotes the trace of matrix and 

 
tr�S�N� = 𝑁𝑁 (25) 

 
Consequently, the stability criterion (24) becomes: 
 

0<μ<
2

3N
 (26) 

 
where, 𝑁𝑁 is the length of the filter. 

Therefore, the stability condition of the LC-POW-DCT-
LMS algorithm is similar to the stability conditions of the 
existing POW-DCT-LMS and conventional DCT-LMS 
algorithm. 

 
5.3 Performance measure 

 
The performance assessment of different algorithms is 

conducted in decibel (dB), utilizing different performance 
metrics, namely: the MSE, the normalized misalignment 
(MSI), the steady state MSE also known as the excess MSE 
(EMSE) and the steady-state excess MSE (EMSE𝑠𝑠𝑠𝑠). 

At each time sample 𝑘𝑘, the MSE𝑘𝑘 is defined as: 
 

MSE𝑘𝑘(𝑑𝑑𝑑𝑑) = 10 × 𝐿𝐿𝐿𝐿𝐿𝐿10(𝐸𝐸{𝑒𝑒𝑘𝑘2}) (27) 
 
Here, 𝑒𝑒𝑘𝑘 represents the error measured at the time sample k. 
The normalized misalignment 𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘 is defined as: 
 

MSI𝑘𝑘(𝑑𝑑𝑑𝑑) = 20 × 𝐿𝐿𝐿𝐿𝐿𝐿10 �
‖w𝑘𝑘 − h‖2
‖h‖2

� (28) 

 
where, w𝑘𝑘 is the weight vector estimated at the time sample 𝑘𝑘, 
h is the echo channel impulse response and ‖∙‖2 refers to the 
ℓ2 norm. 

The EMSE𝑘𝑘 is defined as [19]: 
 

EMSE𝑘𝑘 =
1
𝑀𝑀
� |𝑒𝑒𝑘𝑘−𝑛𝑛|2
𝑀𝑀−1

𝑛𝑛=0

 (29) 

 
M denotes the number of samples utilized in estimating the 

EMSE𝑘𝑘. The EMSE𝑠𝑠𝑠𝑠, which is determined by averaging the 
EMSE𝑘𝑘 values after the algorithm reaches a steady state, and 
has the following definition [19]: 

 

EMSE𝑠𝑠𝑠𝑠 = �
1

𝐾𝐾 − 𝑆𝑆
�� EMSE𝑘𝑘

𝐾𝐾−1

𝑘𝑘=𝑆𝑆

 (30) 

 
with K representing the total number of samples and S is the 
number of samples that the algorithm needs to attain the 
steady-state. 

 
 

6. SIMULATIONS AND DISCUSSIONS 
 
In this section, the performance of the suggested LC-POW-

DCT-LMS algorithm is evaluated and compared to that of the 
POW-DCT-LMS and DCT-LMS algorithms in the context of 
network echo cancellation. The echo path impulse response of 
length 𝐿𝐿 = 128 is shown in Figure 7, corresponding to the 4th 
impulse response of ITU-T Recommendation G.168 [28, 29]. 
Different simulations are performed for the AR (1) process 
described in Section 2, with 𝜌𝜌 = 0.9, and for the speech signal 
depicted in Figure 8. The sampling frequency employed is 
8kHz and a filter length of N=128. For the AR (1) process, the 
chosen step sizes and regularization parameters are 𝜇𝜇 =
0.0008 and 𝜀𝜀 = 0.00001, respectively, while for the speech 
signal, the values utilized are 𝜇𝜇 = 0.0003 and 𝜀𝜀 = 0.0005 . 
The POW and the LC-POW process are adapted using the step 
size 𝛾𝛾 = 0.001. The simulation results, obtained at a signal to 
noise ratio (SNR) of 20dB and shown in Figures 9-12, depict 
the convergence of various algorithms for diverse input signals, 
showcasing both MSE and MSI. It should be noted that the 
results of the simulations corresponding to the AR (1) input 
signal are obtained for 200 different realizations, while those 
corresponding to the speech signal are obtained for the first 
realization of white gaussian noise. 

These figures show clearly that the LC-POW-DCT-LMS 
algorithm exhibits performance, in terms of MSE and MSI 
convergence, analogous to that of the POW-DCT-LMS, and is 
superior to that of the DCT-LMS in both the convergence rate 
and reaching steady state. 

 

 
 

Figure 7. Echo path impulse response [28, 29]
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Figure 8. Speech signal 
 

 
 

Figure 9. MSE convergence of the DCT-LMS, POW-DCT-
LMS and LC-POW-DCT-LMS obtained for AR (1) input 

signal, N=128 and SNR = 20dB 
 

 
 

Figure 10. MSI convergence of the DCT-LMS, POW-DCT-
LMS and LC-POW-DCT-LMS obtained for AR (1) input 

signal, N=128 and SNR = 20dB 

 
 

Figure 11. MSE convergence of the DCT-LMS, POW-DCT-
LMS and LC-POW-DCT-LMS obtained for speech input 

signal, N=128 and SNR = 20dB 
 

 
 

Figure 12. MSI convergence of the DCT-LMS, POW-DCT-
LMS and LC-POW-DCT-LMS obtained for speech input 

signal, N=128 and SNR = 20dB  
 

Table 2 illustrates the correlation between the obtained 
results and the theoretical analysis of arithmetic complexity, 
showcasing the arithmetic details necessary to achieve 
convergence for the three algorithms. 

In order to effectively compare the results obtained for the 
different algorithms, we use the EMSE𝑘𝑘  and the EMSE𝑠𝑠𝑠𝑠 
performance measures. Figures 9 and 11 show the MSE 
convergence of the DCT-LMS, POW-DCT-LMS, and LC-
POW-DCT-LMS algorithms obtained for AR (1) process and 
speech input signal, respectively, with a filter length of 𝑁𝑁=128 
and an SNR of 20dB. 

 
Table 2. Correlation between the obtained results and the theoretical analysis of arithmetic complexity 

 

 
Number of 

Iterations Required 
for Convergence 

Number of Operations Performed to Achieve 
Convergence 

Computational Savings 
(LC-POW-DCT-

LMS/POW-DCT-LMS) 

Time 
Savings 

𝑀𝑀128 ×Iterations 𝐴𝐴128 ×Iterations M A  
 
 
 

40.8% 

DCT-LMS 83235 101296995 133259235  
 
 

24.89% 

 
 
 

36.94% 

POW-DCT-LMS 70249 126167204 207094052 
Suggested 

LC-POW-DCT-LMS 70249 94765901 130592891 
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It is clear from Figure 9 that the new LC-POW-DCT-LMS 
and existing POW-DCT-LMS algorithms achieve a steady-
state MSE level of -20dB after 4202 iterations, while the 
conventional DCT-LMS algorithm achieves the same level of 
steady-state MSE after 6020 iterations. 

It should be noted that the curves in Figure 11, which 
correspond to a speech input signal, are obtained by smoothing 
the corresponding quadratic errors of each algorithm for each 
iteration, using the relationship 𝑒̂𝑒𝑘𝑘2 = 𝛿𝛿𝑒̂𝑒𝑘𝑘−12 + (1 − 𝛿𝛿)𝑒𝑒𝑘𝑘2 , 
where, 𝑒̂𝑒𝑘𝑘2  is the obtained smoothed square error, 𝑒𝑒𝑘𝑘  is the 
estimated error described in (5), and 𝛿𝛿 is the smoothing factor 
of value equal to 0.9999. This figure shows clearly that the 
new LC-POW-DCT-LMS and existing POW-DCT-LMS 
algorithms converge after 70249 iterations and achieve an 
EMSE𝑠𝑠𝑠𝑠 level of -20.15dB, while the conventional DCT-LMS 
algorithm converges after 83235 iterations and achieves an 
EMSE𝑠𝑠𝑠𝑠 level of -20dB. 

7. CONCLUSION

An efficient LC-POW-DCT-LMS algorithm has been
developed in this paper by designing a novel first-order 
adaptive post-whitening procedure. This procedure has been 
established by appropriately exploiting the fact that the 
adaptation process of the decorrelation coefficients becomes 
slow when the step size parameter takes relatively small values. 
This has allowed as to use only the mean value of the 
decorrelation coefficients in the post-whitening process. As a 
result, this new post-whitening requires for a given iteration 
only the computation of one transformation of length N, 5N+2 
additions and 7N+5 multiplications, whereas the 
corresponding post-whitening of the existing POW-DCT-
LMS algorithm requires the computation of two 
transformations each of length N, 4N+2 additions and 7N+4 
multiplications. The new LC-POW-DCT-LMS algorithm 
achieves savings of about 40% in computational time 
compared to the existing POW-DCT-LMS algorithm, making 
it suitable and highly desirable for real-time applications such 
as adaptive acoustic echo cancellation employed in modern 
stereophonic and teleconferencing systems. Furthermore, we 
have carried out performance analysis of our algorithm by 
considering the echo cancellation application to demonstrate 
that the significantly obtained reduction in the arithmetic 
complexity does not affect the performance of the algorithm. 
Indeed, the simulation results have shown clearly that the 
convergence speed and reached steady state obtained by the 
new LC-POW-DCT-LMS algorithm are similar to those 
obtained by the existing POW-DCT-LMS algorithm. 
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