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As the global prevalence of hypertension continues to rise, researchers have increasingly 

explored the potential of artificial intelligence (AI) for developing self-tracking blood 

pressure (BP) monitoring systems. An ideal approach would utilize photoplethysmography 

(PPG) signals, as they enable non-invasive wearable-based hypertension monitoring without 

reliance on cuff-based devices. This study investigated a PPG-based system for automated 

BP classification using an ensemble bagging technique with 200 decision trees. Given the 

nonstationary properties and motion artifact susceptibility of PPG signals, time-frequency 

(TF) analysis was conducted using Fourier Synchrosqueezed Transforms (FSST) to generate 

high-resolution TF representations. A set 44 features were extracted from the transformed 

signals, revealing the dynamic statistical properties over time. Three experimental models 

were trained on datasets incorporating different FSST variables. Unlike prior studies using 

small datasets, the models were trained on a large dataset comprising 46,572 subject-

segments across varied BP ranges, collected from the MIMIC-III intensive care database. 

This large dataset allowed boosting models accuracies and generalizability, achieving 100% 

training accuracy and 95.7% to 96.9% testing accuracy across the FSST experimental 

settings. The system also showed excellent results on three different classification tasks - 

normotension vs. hypertension, normotension vs. prehypertension, and non-hypertension vs. 

hypertension - with F1 scores reaching 99.1%. Moreover, the lightweight decision tree 

models enabled training in just minutes on this large dataset, indicating low computational 

complexity. Overall, this study presents an efficient PPG-based hypertension classification 

system. Results suggest potential for convenient clinical-grade BP monitoring beyond 

healthcare settings. 
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1. INTRODUCTION

Hypertension, a prevalent health condition defined by 

elevated BP, poses a significant global health burden, affecting 

more than 1.28 billion adults aged 30-79 years globally, as 

stated by the World Health Organization (WHO) [1]. 

Unfortunately, many hypertensive individuals remain unaware 

of their condition until they experience severe health 

complications, such as kidney failure, strokes, heart failure, 

and heart attacks [2]. Consequently, accurate and timely BP 

measurement and monitoring are imperative for effective 

hypertension management.  

BP is a quantification of the force generated by the 

ventricular contraction in order to circulate blood throughout 

the cardiovascular system, is typically categorized into 

systolic and diastolic determinations. Systolic blood pressure 

(SBP) represents the peak arterial pressure attained during 

ventricular contraction while diastolic blood pressure (DBP) 

reflects the minimum arterial pressure registered just before 

the subsequent contraction [3]. Although invasive 

catheterization serves as the gold standard for accurate ABP 

measurement [4], it is primarily reserved for critically ill 

patients due to its invasiveness and associated complications, 

such as arterial thrombosis, infection, nerve damage, and 

exsanguination [5].  

To overcome the limitations of invasive techniques, non-

invasive methods like cuff-based BP monitoring present safer 

and more cost-effective alternatives. Nevertheless, challenges 

persist, including discomfort during cuff use, the need for 

trained personnel to perform manual readings, and 

inaccuracies resulting from improperly fitting cuff sizes or 

unique arm dimensions [6-10]. Vascular unloading, which 

employs a variable finger cuff and PPG sensor, provides 

another non-invasive avenue for intra-arterial pressure 

estimation [11]. While some validated finger cuff devices have 

shown promise as alternatives for BP measurement in patients 

unfit for classical arm cuffs [12], prolonged use of finger cuffs 

can cause discomfort, numbness, and arterial congestion [13]. 

Alternatively, arterial tonometry (AT) offers a cuff-less 

approach for continuous ABP measurement using a pressure 

transducer to compress an artery. However, it may not be 

recommended for obese individuals due to the slowed 

propagation of pulse waves to the skin [13]. Considering the 

limitations of the aforementioned techniques, researchers have 
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turned their attention to explore the potential of AI in 

estimating ABP using PPG signals [14, 15], owing to the close 

correlation between these signals [16] and their similar shape 

characteristics (Figure 1).  

 

 
 

Figure 1. ABP and PPG shape characteristics 

 

PPG is a non-invasive technique that employ optical sensing 

to quantify variations in blood volume over time, providing a 

pulsatile waveform (PPG signal) for monitoring various 

physiological parameters related to blood circulation [17]. 

Various algorithms and models were suggested to estimate BP 

via these optical signals, with some studies meeting the 

guidelines established by the British Hypertension Society 

(BHS) and the Association for the Advancement of Medical 

Instrumentation (AAMI) for BP estimation [18, 19].  

One approach involved employing a convolutional neural 

network (CNN) and transfer learning to estimate BP from PPG 

signals, attaining BHS grade A for diastolic and grade C for 

systolic estimates [20]. In another study, Maher et al. [21] 

proposed a calibration-free approach that attained Grade A 

ratings for both systolic and diastolic BP estimates based on 

the same BHS benchmarks. Additionally, El-hajj and 

Kyriacou [22] developed several PPG-based models applying 

recurrent neural networks with bidirectional connections and 

attention mechanisms, yielding results in line with the AAMI 

standards. In a separate study, the authors explored the 

potential of various PPG features and deep recurrent models 

for cuffless BP estimation, once more fulfilling the 

association's norms [23]. Furthermore, a hybrid neural 

network architecture was introduced by Qiu et al. [24], 

meeting both BHS and AAMI criteria for BP estimation.  

Despite these promising advancements in non-invasive BP 

measurement techniques, the real-world implementation for 

hypertension management may face challenges due to poor 

knowledge among hypertensive individuals regarding 

acceptable BP values [25]. A study conducted in London 

revealed that over half of the participants were unable to 

correctly estimate an acceptable BP range [26], emphasizing 

the need for simplicity in designing BP monitoring systems in 

addition to non-invasiveness. An ideal monitoring method 

would involve providing patients with a system that notifies 

them promptly if their BP is abnormal. In this regard, 

classification methods using machine learning (ML) or deep 

learning (DL) algorithms may be more suitable than regression 

approaches. Accordingly, the current study introduces a BP 

classification framework that utilizes PPG signals as inputs to 

an ensemble machine learning method known as bagged trees 

(BT). The study contributes to the existing literature in the 

following ways:  

Timely notification system: The proposed system notifies 

the users instantly if their blood pressure is elevated, allowing 

for timely intervention and proactive management of 

hypertension.  

Enhanced dataset: Unlike previous studies, we utilize a 

dataset containing a higher number of samples, which 

enhances the predictive capabilities of the proposed model, 

leading to more reliable and accurate BP classification.  

Addressing motion artefacts: Despite the non-invasive 

benefit of PPG signals, they are susceptible to motion artefacts 

[27]. To overcome this challenge, a suitable feature extraction 

procedure is implemented. The study adopts Time-Frequency 

Reassignment (TFR), which offers more representative 

features and reduces the complexity of the extraction process. 

FSST is employed to leverage the sparsity in the time-varying 

oscillatory properties of PPG signals, resulting in a more 

concentrated TF representation compared to conventional 

techniques like Short-Time Fourier Transform (STFT) [28].  

Dataset diversity: The reliability of a BP classification 

system heavily depends on acquiring diverse SBP and DBP 

values for each BP class level. During our data collection 

process, we ensure the inclusion of varied SBP and DBP 

values, providing the BT algorithm with a more representative 

dataset during the learning stage.  

Computational efficiency: Dealing with large datasets 

conventionally prompts a preference for DL algorithms over 

ML due to their ability to handle complex and high-

dimensional data. However, DL models are computationally 

intensive and time-consuming to train and infer. In contrast, 

the BT model offers faster and less computationally intensive 

performance, particularly when working with substantial 

datasets.  

The remainder of this paper is structured as follows. Section 

2 describes relevant studies and state of the art knowledge 

related to our study requirements. Section 3 provides a detailed 

description of the proposed methodology. Section 4 presents 

the experimental results and discusses the implications of the 

findings by identifying potential avenues for future research. 

Finally, Section 5 concludes the paper and summarizes the 

main contributions of this work. 

 

 

2. PRIOR RESEARCH AND FOUNDATIONAL 

CONCEPTS 

 

2.1 PPG-based hypertension detection systems 

 

Several studies have investigated the use of ML and DL 

algorithms for predicting the risk of hypertension. For 

instance, Yen et al. [29] focused on enhancing hypertension 

classification accuracy using PPG signals from the PPG-BP 

figshare database [30]. They developed DL models designed 

with varying parameters and different architectures, including 

long short-term memory (LSTM), bidirectional long short-

term memory (BLSTM), deep residual network convolutional 

neural network (ResNetCNN) and Extreme Inception 

(Xception). The best-performing model was a combination of 

Xception and BLSTM, achieving 48% precision, 45% recall, 
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and 76% accuracy. However, the results showed relatively low 

recall and precision values, implying a significant number of 

false negatives and false positives, which could lead to 

undetected hypertension cases and unnecessary interventions 

with higher healthcare costs.  

On the other hand, Tjahjadi et al. [31] achieved better results 

in hypertension classification using the same dataset. They 

used TF-based PPG features and a BLSTM architecture, 

obtaining accuracy, recall, and specificity of 94.64%, 88.09%, 

and 98.57%, respectively. Nevertheless, the BLSTM required 

considerable training time (30 min and 26 secs) despite using 

a relatively small dataset (900 observations). In a different 

approach, Tjahjadi and Ramli [32] used the K-nearest 

neighbors (KNN) algorithm with 2100 PPG samples, 

obtaining accuracy, recall, and specificity of 86.77%, 74.28%, 

and 91.86%, respectively, for hypertension class level. While 

these studies [31, 32] outperformed Yen et al. [29], their 

datasets lacked diversity in SBP and DBP values as presented 

in Figure 2 and Figure 3, respectively.  

 

 
 

Figure 2. Histograms of SBP values taken from the figshare 

database 

 

 
 

Figure 3. Histograms of DBP values taken from the figshare 

database 

 

In another study, Liang et al. [33] experimented with four 

ML models (AdaBoost, KNN, BT, and Logistic Regression) 

using various feature sets, including pulse arrival time (PAT), 

PPG morphology features, and a combination of PPG and PAT 

features. They conducted three classification trials: 

normotension vs. hypertension (NT vs. HT), normotension vs. 

prehypertension (NT vs. PHT), and normotension plus 

prehypertension vs. hypertension (NT+PHT vs. HT). The 

KNN model with the combined features showed the best 

performance, achieving F1 scores of 84.34%, 94.84%, and 

88.49% for the respective trials. However, using PAT as a 

feature is not practical for hypertension management, as it 

requires an additional sensor for electrocardiogram (ECG) 

signals. Besides, the features extraction process demands high-

quality PPG signals [34], which is difficult due to their 

susceptibility to motion artefacts [27]. 

In a different study, the same researchers explored utilizing 

TF analysis via the continuous wavelet transform (CWT) 

method for transforming the signals into scalogram 

representations with three color channels. The resultant 

representations were then fed as RGB images into a pretrained 

CNN model [34]. The F1 score results for the classification 

trials were 92.55%, 80.52%, and 82.95% for NT vs. HT, NT 

vs. PHT, and NT+PHT vs. HT, respectively. While this 

approach improved the feature extraction process, the 

methodology was tested with a relatively small dataset, 

indicating the need for validation with a larger and more 

diverse dataset containing a wider range of SBP and DBP 

values. 

 

2.2 FSST 

 

PPG signals are non-stationary bio-signals characterized by 

time-varying properties resulting from dynamic physiological 

processes. Traditional frequency analysis techniques, such as 

the Fourier Transform (FT), face challenges when dealing with 

these signals due to their changing frequency components over 

time [35]. The FT operates under the supposition that the 

signal displays stationary behavior through an unchanging 

frequency constitution over its temporal evolution. This 

assumption is embedded in the fundamental definition of the 

FT, which provides a frequency-domain representation of a 

signal without considering time variations. The continuous FT 

of a signal 𝑠(𝑡) is given by: 

 

𝑆(𝑓) = ∫ 𝑠(𝑡)𝑒−2𝑖𝜋𝑓𝑡
+∞

−∞

𝑑𝑡 (1) 

 

where, 𝑆(𝑓) is the Fourier Transform of 𝑠(𝑡), and f represents 

frequency. This integral transforms the entire signal 𝑠(𝑡) into 

the frequency domain, assuming that the signal's frequency 

components are constant over the entire duration of the signal.  

For non-stationary signals, such as PPG, where the 

frequency content changes over time, this assumption is 

invalid. The FT fails to capture these time-varying 

characteristics, as it provides only a global frequency 

representation, losing all time-related information. To address 

this issue, TF analysis has been employed to gain insights into 

signal behavior, facilitating the effective analysis of non-

stationary signals by capturing the evolving frequency content 

throughout time. One of the widely used methods for TF 

analysis is the STFT. STFT attempts to address the challenge 

of non-stationarity by applying a window function to the 

signal, allowing the analysis of frequency content within small 

time segments  [36]. The local frequency content of the signal 

is calculated using the equation: 
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𝑉𝑆
𝐷(𝑡, 𝛾) = ∫ 𝑆(𝛼)𝐷(𝛼 − 𝑡)𝑒−2𝑖𝜋𝛾(𝛼−𝑡)

+∞

−∞

𝑑𝛼 (2) 

 

where, S(α) is the input signal, D(t) represents the window 

function, t denotes the time index, γ corresponds to frequency, 

and α serves as a time-variable of integration.  

However, STFT suffers from the classic trade-off between 

time and frequency resolution due to fixed window sizes [37]. 

A narrow window provides good time resolution but poor 

frequency resolution, while a wide window offers good 

frequency resolution but poor time resolution. This restricts 

STFT's ability to effectively capture rapid changes in both time 

and frequency that often appear in non-stationary signals like 

PPG. 

To overcome these limitations, the FSST offers an 

innovative solution by applying a nonlinear post-processing 

mapping to the conventional STFT [38]. FSST aims to 

enhance the time-frequency representation by reassigning the 

signal's energy more accurately, resulting in better localization 

of frequency components [39]. The concept of reassignment 

in FSST facilitates signal interpretation through the 

redistribution of energy, and synchrosqueezing provides 

robust visualization and manipulation capabilities [28]. The 

FSST formula can be expressed as: 

 

𝑇𝑆
𝐷(𝑡, 𝜔) = ∫ 𝑉𝑆

𝐷(𝑡, 𝛾)𝛿(𝜔 − 𝐼𝑆(𝑡, 𝛾))
+∞

−∞

𝑑𝛾 (3) 

 

where, 𝛿(𝜔) is the Dirac distribution, while 𝐼𝑆(𝑡, 𝛾) denotes 

the instantaneous frequency estimation at time 𝑡  and 

frequency 𝛾 obtained using the following expression: 

 

𝐼𝑆(𝑡, 𝛾) =
𝜕 arg 𝑉𝑆

𝐷(𝑡, 𝛾)

𝜕𝑡
= ℝ {

1

2𝑖𝜋

𝜕𝑡 𝑉𝑆
𝐷(𝑡, 𝛾)

𝑉𝑆
𝐷(𝑡, 𝛾)

} 

such that 𝑉𝑆
𝐷(𝑡, 𝛾) ≠ 0 

(4) 

 

In FSST, the synchrosqueezing process significantly 

enhances the precision of frequency localization in the TF 

plane. This is achieved by reassigning the time-frequency 

representation 𝑉𝑆
𝐷(𝑡, 𝛾)  obtained from the STFT to 

concentrate the signal's energy more precisely around the true 

instantaneous frequency trajectories 𝐼𝑆(𝑡, 𝛾). By dynamically 

adjusting the representation of the signal 𝑠(𝑡), FSST mitigates 

the trade-off between time 𝑡 and frequency 𝛾 resolution. The 

signal's energy, initially spread over a broader area in the TF 

plane due to the fixed window function 𝐷(𝑡) in STFT, is more 

accurately focused around 𝜔  using the Dirac distribution 

𝛿(𝜔 − 𝐼𝑆(𝑡, 𝛾)) . This process allows 𝑇𝑆
𝐷(𝑡, 𝜔)  to better 

capture the non-stationary characteristics of PPG signals by 

following the rapid changes in frequency components 𝛾 over 

time 𝑡 . Consequently, FSST provides improved time 𝑡  and 

frequency 𝛾 resolution, facilitating more detailed and accurate 

feature extraction from PPG signals for applications such as 

BP classification. A visual comparison between the resolution 

of FSST and STFT for a PPG signal is presented in Figure 4. 

 

 
(a) Normalized PPG signal 

 
(b) STFT representation 

 
(c) FSST representation 

 

Figure 4. TF representations of a PPG signal 

 

 

3. PROPOSED METHODOLOGY 

 

This section presents our proposed method for BP 

classification using TF analysis. The main steps involved in 

designing the system are visually depicted in Figure 5. 

The process begins with the acquisition of a suitable dataset 

that satisfies the requirements of our approach, ensuring an 

adequate sample size and diversity in both SBP and DBP 

values to enhance the model's generalizability.  

Next, we proceed to segment the PPG signals into discrete 

windows, each assigned to its corresponding BP label. This 

step allows us to isolate relevant temporal segments of the 

PPG signals for further analysis. 

Following the segmentation, a set of features is extracted 

from each TF component of a given PPG segment. 

In the final step, we carefully organize the dataset, taking 

into consideration factors such as potential bias and 

dependency of the test set on the training set. Once the dataset 

is prepared, we feed it into the BT algorithm for the actual 

classification process. 

 

3.1 Data source 

 

The dataset utilized in the current research originates from 

the MIMIC-III (Medical Information Mart for Intensive Care 

III) database, an openly accessible storage repository holding 

anonymized medical information from individuals to intensive 

care unit (ICU) [40]. MIMIC-III is widely recognized for its 

extensive size and widespread adoption within the medical 

research community, making it a valuable resource for 

research and analysis. Within the MIMIC-III database, various 

data types are available, including clinical records, 

demographic information, laboratory results, medication 

details, and waveform data. In particular, the MIMIC-III 
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waveform database comprises over 3 million hours of 

waveform recordings across 67,830 records [41]. This 

includes simultaneously recorded ABP and PPG signals from 

thousands of ICU patients, sampled at 125 Hz. 

 

3.2 Research subjects 

 

To ensure diversity in BP values, a process was 

implemented during data collection whereby each acquisition 

of an ABP record was inspected for SBP and DBP values. This 

process continued until a wide feasible range of BP values was 

achieved. Each 1-minute ABP signal was collected with its 

corresponding 1-minute PPG signal, both containing 7500 

data points. This process yielded ABP signals with SBP 

spanning 69-216 mmHg and DBP spanning 34-115 mmHg. 

Figure 6 provides a visual comparison of the BP values in this 

dataset versus those utilized in previous related works [29-32]. 

 

 
 

Figure 5. Methodological steps 

 

 
 

Figure 6. BP distribution comparison 
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Figure 7. PPG signal segmentation 

 

Table 1. JNC 7 BP classification [42] 

 
BP level SBP (mmHg)  DBP (mmHg) 

NT < 120 and < 80 

PHT 120 to 140 or 80 to 90 

HT > 140 or > 90 

 

Next, the acquired signals underwent processing to generate 

input subjects for the classification system. Specifically, the 

PPG signals were segmented into 2-second windows (250 

samples each) initiating at the onset of each pulse wave, as 

detailed in Figure 7. The resulting segments were then 

categorized into three groups, each corresponding to a specific 

BP class label: HT, PHT, and NT, following the Joint National 

Committee 7 (JNC7) guidelines [42] (Table 1). 

However, it is important to note that a single BP reading is 

insufficient for a hypertension diagnosis, which requires 

multiple readings due to the fluctuation of BP over time, as 

emphasized in clinical literatures [43-45]. Therefore, the 

average SBP and DBP values ((SBP), (DBP)) were calculated 

within each 1-minute ABP record. The BP class labels were 

then determined by comparing the (SBP) and (DBP) values to 

the JNC7 criteria. As a result, the final dataset comprises 6,068 

hypertensive subjects, 9,010 prehypertensive subjects, and 

16,024 normotensive subjects. 

 

3.3 Time-frequency PPG features 

 

The feature extraction process aims to reduce the input 

dimensions per subject while retaining their predictive 

capabilities for BP classification. It involves two main steps: 

representing the PPG signal's time-varying spectrum using the 

FSST and reducing the dimensionality of the FSST output 

matrix.  

The process begins by computing the STFT of a given 2-

second PPG signal. Specifically, the signal is divided into 20 

short segments, each windowed using a 20-sample Hamming 

window. Overlapping windows with 19-sample overlap are 

used for smooth spectral tracking over time. Within each 

segment, the fast Fourier transform (FFT) is applied to capture 

the frequency information. This generates a TF representation, 

showing how spectral content evolves over time. Figure 8 

displays the 3D views of TF planes representing signals from 

each BP level group. 

Next, the Fourier coefficients from the STFT are reassigned 

to new time locations based on instantaneous frequency 

estimates using Eq. (3), creating the FSST (Figure 9). This 

squeezing process sharpens the PPG signal's time-varying 

spectrum and provides a more concentrated view in the TF 

plane compared to the smeared STFT in Figure 8. 

 

 

 
 

Figure 8. STFT 3D-representation of labeled PPG signals 
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Figure 9. FSST 3D-representation of labeled PPG signals 

 

The FSST outputs a 250×11 complex-valued matrix, with 

rows representing reassigned time instances and columns 

representing frequency bins. The 250 rows correspond to the 

original 250 signal samples, indicating continuous time after 

reassignment. The 11 columns represent the unique frequency 

components needed to characterize the real input signal's 

spectrum. Specifically, due to conjugate symmetry of the FT 

of real signals, the full spectrum can be compactly represented 

using only 11 non-redundant frequency bins, rather than the 

full FFT length.  

Finally, to reduce dimensionality, each frequency bin 

column is processed to derive four statistical features, instead 

of using all 250 complex time values. This compresses the 

FSST matrix into 4×11, while retaining predictive information 

about the behavior of the reassigned time instances in each 

frequency bin. As a result, a set of 44 input features are used 

for BP classification per subject. Furthermore, three 

classification experiments are adopted within this study, each 

consisting of a different reference variable to compute the 

input features, including the magnitude (absolute value), real 

and imaginary parts of the complex values. Let’s consider 𝑋𝑟 

a sequence of the reassigned coefficients denoted as:  

 

𝑋𝑟 = {𝑥1, 𝑥2, 𝑥𝑛, … , 𝑥𝑁} (4) 

 

where, 𝑟 is the frequency index, N is the sequence length and 

𝑥 is the expected complex-value from a given sample index n 

and defined as: 

 

𝑥𝑛 = 𝑎𝑛 + 𝑗𝑏𝑛 (5) 

 

where, 𝑎𝑛  is the real part, 𝑏𝑛  is the imaginary part and 𝑗 

denotes the imaginary unit. The magnitude of 𝑥𝑛 becomes: 

 

|𝑥𝑛| = √𝑎𝑛
2 + 𝑏𝑛

2
 (6) 

 

The first feature provides an overall sense of the central 

tendency of the values in the frequency bin and is defined as 

the mean, or average: 

 

𝐹𝑀 =
1

𝑁
∑ 𝐶𝑛

𝑒𝑥

𝑁

𝑛=1

 (7) 

 

𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {

𝐶𝑛
𝑒𝑥 = 𝑎𝑛         𝑤ℎ𝑒𝑛  𝑒𝑥 = 1 

𝐶𝑛
𝑒𝑥 = 𝑏𝑛         𝑤ℎ𝑒𝑛  𝑒𝑥 = 2 

𝐶𝑛
𝑒𝑥 = |𝑥𝑛|      𝑤ℎ𝑒𝑛  𝑒𝑥 = 3 

 (8) 

 

The second feature measures how far the values spread out 

from the mean. It is calculated using the variance equation: 

 

𝐹𝑉 =
∑ (𝐶𝑛

𝑒𝑥 − 𝐹𝑀)2𝑁
𝑛=1

𝑁
 (9) 

 

The third feature examines the asymmetry of the 

distribution using skewness. Skewness quantifies the extent 

that values are unevenly distributed to one side versus the 

other side of the data's mean. A positive evaluation suggests 

the values tail off more to the right, whereas a negative 

evaluation indicates they tail off more to the left [46]. The 

skewness formula can be expressed as: 

 

𝐹𝑆𝐾 = √
∑ (𝐶𝑛

𝑒𝑥 − 𝐹𝑀)3𝑁
𝑛=1

𝑁√𝐹𝑉

 (10) 

 

The fourth feature is derived using the kurtosis, which 

measures the heaviness of the tails of the values relative to the 

normal distribution [47] and is defined as: 

 

𝐹𝐾𝑅 =

1
𝑁

 ∑ (𝐶𝑛
𝑒𝑥 − 𝐹𝑀)4𝑁

𝑛=1

(
1
𝑁

 ∑ (𝐶𝑛
𝑒𝑥 − 𝐹𝑀)2𝑁

𝑛=1 )
2 (11) 

 

3.4 Data management 

 

In this study, we generated three classification models, each 

trained on an experimental dataset created using one of the 

FSST variables ( 𝐶𝑛
1 , 𝐶𝑛

2 ; 𝐶𝑛
3 ), as detailed in the features 

extraction section. Prior to model development, the datasets 

were partitioned into separate training and test sets to allow for 

proper evaluation on new data. The training sets included 

5,568 HT subjects, 8,510 PHT subjects, and 15,524 NT 

subjects. The test sets contained 500 subjects from each class. 

To account for class imbalance, the minority classes (HT 

and PHT) were oversampled in the training sets until all 

classes had equal representation. Oversampling was done after 

partitioning to avoid test set contamination which can 

artificially inflate the classification performance.  As a result, 

the total dataset contained 48,072 subjects with the training set 

comprising 15,524 subjects for each class and the test set 

comprising 500 subjects for each class. 

 

3.5 Ensemble learning classifier 

 

In this study, an ensemble bagging approach was 

implemented for classification, with decision trees (DTs) as 

base learners. Ensemble methods combine multiple base 

models to improve predictive performance compared to single 

models [48]. Bagging involves training each base model on a 

bootstrap replica of the training data randomly drawn with 
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replacement [49]. This decorrelates the learners and reduces 

overfitting compared to a single model trained on all data [50, 

51]. 

In total, 200 decision trees were trained using bootstrap 

sampling with replacement. At each split, a random subset of 

features was selected to enhance diversity [52]. Out-of-bag 

estimation was also used to evaluate model error without 

needing a separate validation set. Table 2 summarizes the key 

parameters used to design the bagged trees ensemble. 

Table 2. Bagged trees setting components 

Parameters Detail 

Samples (N) 46,572 

Predictors (P) 44 

Learner Decision Tree 

Maximum number of splits N − 1 

Number of learners 200 

Number of predictors per split √P
Resampling On

Resampling fraction 100%

Replacement On

Minimum leaf size 1 

Learning rate 1 

To validate the performance of the BT model, we conducted 

empirical comparisons against several state-of-the-art 

ensemble learning-based classification algorithms for BP 

classification using PPG signals. Specifically, we compared 

our proposed BT model to: 

Boosted Trees (BOT): An ensemble algorithm that builds 

a series of weak learners (typically DTs) sequentially [53], 

where each tree is trained to correct the errors of its 

predecessor, enhancing model performance through iterative 

refinement.  

Random Under-sampling Boosted Trees (RUSBT): An 

adaptation of BOT that incorporates random under-sampling 

during training to handle class imbalance [54]. RUS 

selectively removes majority class instances to balance the 

class distributions, which can enhance the model's ability to 

learn from minority class examples.  

Subspace KNN (SKNN): An ensemble technique that 

leverages multiple KNN classifiers, each trained on a different 

random subspace of the original feature set [55]. 

Subspace Discriminant (SD): Implements multiple linear 

discriminant analysis (LDA) models, each trained on a 

different random subspace of the input features.  

3.6 Evaluation metrics 

To evaluate model performance, we utilized several 

standard classification metrics, including specificity, 

sensitivity, accuracy, precision and F1 score. These metrics 

provide important insights into different aspects of a 

classifier's predictive capabilities: 

-Sensitivity or recall reflects the ability to identify true

positive rate by measuring the percentage of positive instances 

correctly detected: 

𝑆𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(12) 

High sensitivity indicates the model is effective at detecting 

the positive class.  

-Specificity reflects the ability to identify true negative rate

by measuring the percentage of negative instances correctly 

detected: 

𝑆𝐸 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(13) 

High specificity indicates the model is effective at 

excluding the negative class.  

-Precision quantifies the proportion of positive predictions

that are correct: 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(14) 

High precision denotes low false positive rate. 

-Accuracy measures overall correctness of predictions:

𝐴𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(15) 

F1 Score combines precision and recall as the harmonic 

mean: 

𝐹1 =
2(𝑆𝐸 × 𝑃𝑅)

𝑆𝐸 + 𝑃𝑅
(16) 

In the equations above, TP (True Positives) represents cases 

correctly predicted as positive. FP (False Positives) represents 

incorrect positive predictions. TN (True Negatives) represents 

cases correctly predicted as negative. FN (False Negatives) 

represents incorrect negative predictions.  

4. RESULTS AND DISCUSSION

4.1 Classification results 

We designed an ensemble learning-based classification 

system using MATLAB (version R2020a) to non-invasively 

determine BP levels from PPG signals. To validate the 

effectiveness of the proposed BT model, we conducted 

empirical comparisons against several state-of-the-art 

ensemble classifiers for this task. Specifically, we evaluated 

the BT model against BOT, SKNN, RUSBT, and SD methods. 

All classifiers were implemented as integrated in the 

MATLAB's Classification Learner application interface, 

where each model consisted of 30 base learners. To evaluate 

the models' sensitivity to variations in data size, we trained 

them on three different proportions of the full dataset: 10%, 

30%, and 50%. Tables 3-5 report the classification results 

achieved by each algorithm over three trials for the 10%, 30%, 

and 50% data subsamples, respectively. This systematic 

validation framework allowed for an impartial assessment of 

the BT model's performance relative to other prominent 

ensemble techniques, under varying data availability. 

To validate and compare the classification performance of 

models, we utilized a standardized evaluation framework. 

Specifically, we employed an 80:20 train-test split on the 3 

subsets of the dataset created using the 𝐶𝑛
3  variable, which

encapsulates both real and imaginary components of the FSST 

features. To ensure robust and unbiased estimates, we adopted 

a k-fold cross-validation approach. Specifically, we randomly 

partitioned each 𝐶𝑛
3  sub-datasets into 5 equal mutually

exclusive subsets (folds). Then, each model was trained on 4 

folds and directly evaluated on the held-out fold, repeating this 

2270



 

process 10 times such that each fold was used once for 

validation. The average classification accuracy across the 10 

iterations was then computed to provide a reliable aggregate 

performance metric for each model, minimizing variability 

that could arise from a single train-test split.  

 

Table 3. Models performance using 10% of the data 

 
Results BT BOT SKNN RUSBT SD 

Training accuracy 

(%) 
96.7 81.9 94.5 76.2 73.9 

Training time (sec) 16 32 40 25 14 

Prediction speed 

(obs/sec) 
6500 6300 450 8400 5500 

Test accuracy 91.5 79.2 87.4 76.7 74.2 
Notes: 1. obs: observation. 2. sec: second. 

 

Table 4. Models performance using 30% of the data 

 
Results BT BOT SKNN RUSBT SD 

Training 

accuracy (%) 
98.5 82.3 96.9 76.8 74.9 

Training time 

(sec) 
46 111 661 109 25 

Prediction speed 

(obs/sec) 
16000 20000 110 23000 9400 

Test accuracy 95.3 78.8 90 67.4 71.2 

 

Table 5. Models performance using 50% of the data 

 
Results BT BOT SKNN RUSBT SD 

Training 

accuracy (%) 
98.5 80.8 97.1 75.1 74.1 

Training time 

(sec) 
89 218 3342 221 43 

Prediction speed 

(obs/sec) 
21000 31000 42 34000 9100 

Test accuracy 96.2 77.8 91.6 64.4 71.9 

 

The results across Tables 3-5 indicate that increasing the 

proportion of data generally improved performance of the BT 

and SKNN models. Specifically, the SKNN algorithm 

achieved training accuracies ranging from 94.5% to 97.1% and 

test accuracies ranging from 87.4% to 91.6% as the set size 

increased from 10% to 50% of the full dataset. The BT model 

demonstrated relatively superior and more consistent 

classification ability, with training accuracies varying between 

96.7-98.5% and test accuracies from 91.5-96.2% over the 

different data sizes. However, the BOT, RUSBT and SD 

algorithms did not exhibit substantial gains in accuracy despite 

being provided with larger subsets. This suggests they may 

have been less capable of effectively learning the underlying 

patterns from the FSST-based feature space, likely attributable 

to inherent limitations in their respective architectures for this 

particular classification task and dataset. 

For instance, the BOT model achieved a peak training 

accuracy of 82.3% and test accuracy of 79.2%. This 

suboptimal performance can be attributed to the fact that 

boosting algorithms are highly sensitive to noise and 

overfitting, especially in datasets with complex, non-linear 

relationships. The sequential nature of BOT means that any 

noise in the training data can be amplified [56], leading to poor 

generalization on the test set. Similarly, the RUSBT model 

attained a maximum training accuracy of 76.8% and validation 

accuracy of 76.7%.  RUSBT combines random undersampling 

with boosting to handle class imbalance. However, the random 

undersampling process can lead to the loss of important 

information, especially in small or moderately sized datasets. 

This loss of information, coupled with the boosting process's 

sensitivity to noise, likely hindered the RUSBT model's ability 

to learn effectively. 

The SD model achieved a maximum training accuracy of 

74.9% and test accuracy of 74.2%. The SD approach employs 

LDA on random subspaces of the feature space. However, 

LDA rests on the stringent assumption that data is linearly 

separable between classes [57]. PPG signals exhibit inherent 

nonlinearity and non-stationarity due to their complex 

physiological origin. Thus, the linear decision boundaries used 

by LDA are insufficiently expressive to accurately capture the 

intricate, nonlinear relationships embedded within the PPG 

feature space mapped by the FSST. Ultimately, while the BT 

and SKNN models demonstrated strong performance and 

robustness across different dataset sizes, the BOT, RUSBT, 

and SD models struggled due to their sensitivity to noise, loss 

of information during undersampling, and assumptions of 

linear separability, respectively. This analysis underscores the 

importance of selecting appropriate models that align with the 

data's characteristics to achieve optimal classification 

performance. 

In terms of computational efficiency, the BT and SD models 

exhibited the most favorable training time scaling as the 

proportion of data was increased. Specifically, BT required 16, 

46, and 89 seconds to train on 10%, 30%, and 50% of the full 

dataset, respectively. Comparatively, SD took 14, 25, and 43 

seconds over the same training sizes. However, during model 

prediction the BT approach significantly outperformed SD in 

terms of speed, with observed throughput of up to 21,000 

obs/sec versus 9,400 obs/sec for SD. This discrepancy can be 

attributed to inherent differences in their algorithmic 

architectures. BT leverages the parallelizable and efficient 

tree-based structure to rapidly classify new samples. In 

contrast, SD's classification mechanism involves more 

computationally intensive Linear Discriminant Analysis 

calculations during each prediction. 

The remaining models exhibited less favorable scaling of 

training time with increasing data proportions compared to BT 

and SD. Notably, despite using a modest ensemble of only 30 

base learners, the SKNN algorithm was significantly slower 

during model fitting. Specifically, SKNN required 3342 

seconds to train on 50% of the full dataset, two orders of 

magnitude longer than BT or SD, with a correspondingly low 

prediction throughput of 42 obs/sec. This inefficiency stems 

from KNN's underlying classification mechanism, which 

involves calculating the distance between each new sample 

and all examples in the training set [58]. As data volume 

grows, this distance computation becomes prohibitively 

expensive from a complexity standpoint. While SKNN 

achieved good prediction accuracy, its quadratic 

computational complexity severely limits the algorithm's 

potential for further tuning by increasing hyperparameters like 

ensemble size or training data proportions. Any such 

adjustments would excessively prolong training time at the 

detriment of runtime performance required for real-time 

applications. 

Training time also scaled less favorably for the BOT and 

RUSBT models as dataset proportions increased. BOT's 

sequential approach, whereby each additional tree is fit to 

emphasize mistaken examples from previous trees, 

intrinsically demands greater computational burden relative to 

a purely parallel ensemble method like BT. Moreover, RUSBT 
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compounds this complexity by incorporating random 

undersampling during training. The added steps of 

subsampling and sequential boosting accumulation elongate 

its training relative to simpler bootstrapping-based techniques.  

 

 
(a) Model 1  

 
(b) Model 2 

 
(c) Model 3 

 

Figure 10. BT tuning process 

 

Ultimately, BT emerged as the preferable algorithmic 

choice for this real-time BP classification application owing to 

its balanced optimization of accuracy, efficiency, and 

scalability. Its parallelizable tree-based framework facilitates 

rapid model fitting and prediction even on larger datasets 

through sample-wise decomposition and averaging. This 

makes BT well-suited for applications requiring timely 

inference, such as continuous hemodynamic monitoring using 

PPG sensors. In contrast, approaches like BOT and RUSBT 

that impose sequential dependencies exhibited poorer 

calibration of computational demand to growing data volumes. 

Therefore, BT's combination of robust performance and 

favorable runtime properties support its suitability for the 

proposed real-time blood pressure estimation system. 

To gain further insights into the BT model, we conducted 

parameter optimization by systematically increasing the 

number of base learner trees from 10 to 200. This tuning 

process employed a held-out validation subset comprising 

20% of the original data. Figure 10 depicts the classification 

accuracy of BT models trained on datasets constructed from 

different FSST features, as the number of constitutive decision 

trees is incremented.  

Across all feature representations, classification accuracy 

increases rapidly with additional trees, suggesting the BT 

ensembles converge near 200 trees. The tuning process 

thereby provides further empirical evidence confirming BT as 

an appropriate modeling approach for these nonlinear 

challenges involving large, complex biomedical datasets. 

Table 6 displays the results of the tuned model using the 

48,072 size dataset, with the training set comprising 15,524 

subjects for each class and the test set comprising 500 subjects 

for each class. Training required approximately 4 minutes per 

model, a reasonable duration given the large data volume. 

Performance was evaluated based on accuracy, confusion 

matrices, and F1 score using specific classification tasks as 

detailed below. 

Table 6. The BT models’ performances 

 

Results Model 1 Model 2 Model 3 

Training accuracy (%) 100 100 100 

Prediction speed (obs/s) 6600 4700 4600 

Training time (s) 248 237 226 

Test accuracy (%) 96.9 95.7 96.1 

 

As depicted in Table 6, the proposed methodology exhibited 

good performance, achieving 100% training accuracy for each 

experiment. Testing accuracies were 96.9%, 95.7% and 96.1% 

for Experiments 1, 2 and 3, respectively. It is evident that 

model 1 performed best among the three, although all three 

models proved to be effective predictors of BP levels. 

The training and testing confusion matrices (Figures 11 and 

12) provide insight into model performance. The matrices 

outline relationships between true versus predicted classes, 

with diagonal cells (blue) representing TPs/TNs and off-

diagonal cells (red) representing FPs/FNs. Columns indicate 

predicted classes (output axis) while rows indicate actual 

classes (target axis). Grey cells denote positive predictive 

values (column-wise) and true positive rates (row-wise).  

The training matrices confirmed 100% accuracy 

distinguishing actual cases within each class. It indicates also 

that of all predicted cases 100% were correctly classified. 

However, evaluating the reliability of the experimental models 

relies on analyzing their test performance. Specifically, 

experiment 1 correctly classified 97.4%, 94.8%, and 98.6% of 

actual HT, PHT, and NT cases, respectively. Further, 

experiment 1 indicates also that of all HT, PHT and NT 

predictions, 98.4%, 97.7% and 94.8% were correctly 

classified, respectively.  

Similarly, experiment 2 correctly classified 95.2%, 94%, 

and 97.8% of actual HT, PHT, and NT cases, respectively, 

while indicating also that of all HT, PHT and NT predictions, 

97.7%, 96.1% and 93.3% were correctly classified, 

respectively. Furthermore, experiment 3 correctly classified 

97%, 93%, and 98.2% of actual HT, PHT, and NT cases, 

respectively, while indicating also that of all HT, PHT and NT 

predictions, 98.2%, 97.1% and 93.2% were correctly 

classified, respectively. 

The models underwent three classification trials: non-HT 

(NT + PHT) vs HT, NT vs HT, and NT vs PHT, in line with 

previous literature [31-34]. Tables 7-9 overview performance 

metrics - F1 score, precision, specificity, sensitivity, and 

accuracy - for model 1-3 across the trials. Model 3 attained the 

best F1 score (99%) for NT vs HT, while Models 1-2 scored 

97.5-98%. Model 1 outperformed for NT+PHT vs HT (99%) 

and NT vs PHT (99.1%) tasks, while models 2-3 scored 98.9-

96.6% and 98.8-98.8%, respectively. Overall, the models 

demonstrated comparable and consistently high performance 

across trials, indicating capabilities for BP level detection. 

 

4.2 Comparative analysis 

 

This section evaluates the system’s classification 

performance relative to prior studies. Table 10 compares F1 

scores from our work and others [31-34] for the (NT + PHT) 

vs HT, NT vs PHT, and NT vs HT classification tasks. 

According to the comparison results, our proposed models 

demonstrate superior robustness and efficiency. A major 

reason is that our models were trained on a much larger and 

more diverse dataset comprising a wider BP value range, an 

aspect not considered in earlier work. 
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Figure 11. Confusion matrices describing the training performance of the three experimental models 

 

 
 

Figure 12. Confusion matrices describing the testing performance of the three experimental models 

 

Table 7. The models’ performances using the first experimental dataset (real variable) 

 
Trial TP TN FP FN Specificity (%) Precision (%) Sensitivity (%) Accuracy (%) F1 Score (%) 

PHT 474 980 11 26 98.9 97.7 94.8 97.5 96.2 

HT 487 967 8 13 99.2 98.4 97.4 98.6 97.9 

NT 493 961 27 7 97.3 94.8 98.6 97.7 96.7 

NT vs PHT 493 474 1 8 99.8 99.8 98.4 99.1 99.1 

NT vs HT 493 487 19 6 96.3 96.3 98.8 97.5 97.5 

(NT + PHT) vs HT 992 487 13 8 97.4 98.7 99.2 98.6 99 

 

Table 8. The models’ performances using the second experimental dataset (imaginary variable) 

 
Trial TP TN FP FN Specificity (%) Precision (%) Sensitivity (%) Accuracy (%) F1 Score (%) 

PHT 470 965 19 30 98.1 96.1 94 96.7 95 

HT 476 959 11 24 98.9 97.7 95.2 97.6 96.4 

NT 489 946 35 11 96.4 93.3 97.8 96.9 95.5 

NT vs PHT 489 470 20 10 96 99.8 98 97 98.9 

NT vs HT 489 476 15 1 97 96.3 99.8 98.4 98 

(NT + PHT) vs HT 989 476 24 11 97.1 98.6 98.9 97.7 98.8 

 

Table 9. The models’ performances using the third experimental dataset (absolute variable) 

 
Trial TP TN FP FN Specificity (%) Precision (%) Sensitivity (%) Accuracy (%) F1 Score (%) 

PHT 465 976 14 35 98.6 97.1 93 96.7 95 

HT 485 956 9 15 99.1 98.2 97 98.4 97.6 

NT 491 950 36 9 96.4 93.2 98.2 97 95.6 

NT vs PHT 491 465 28 7 94.3 94.6 98.6 96.5 96.6 

NT vs HT 491 485 8 2 98.4 98.4 99.6 99 99 

(NT + PHT) vs HT 991 485 15 9 97 98.5 99.1 98.4 98.8 
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Table 10. Results comparison relative to prior studies 

 
Approach Classification Task Features Research Subjects Classifier F1 Score 

PAT features [33] (PPG 

and ECG signals) 

NT (46 TS) vs HT (34 TS) 

NT (46 TS) vs PHT (41 TS) 

(NT + PHT) (87 TS) vs HT (34 TS) 

PAT and 10 

PPG features 
121 subjects KNN 

84.34% 

94.84% 

88.49% 

PAT features [33] (PPG 

and ECG signals) 

NT (46 TS) vs HT (34 TS) 

NT (46 TS) vs PHT (41 TS) 

(NT + PHT) (87 TS) vs HT (34 TS) 

PAT and 10 

PPG features 
121 subjects BT 

94.13% 

83.88% 

88.22% 

PAT features [33] (ECG 

signals) 

NT (46 TS) vs HT (34 TS) 

NT (46 TS) vs PHT (41 TS) 

(NT + PHT) (87 TS) vs HT (34 TS) 

PAT features 121 subjects BT 

68.10% 

66.95% 

53.19% 

PAT features [33] (only 

PPG signals) 

NT (46 TS) vs HT (34 TS) 

NT (46 TS) vs PHT (41 TS) 

(NT + PHT) (87 TS) vs HT (34 TS) 

10 PPG 

features 
121 subjects BT 

84.98% 

78.48% 

75.32% 

PPG features [33] (only 

PPG signals) 

NT (46 TS) vs HT (34 TS) 

NT (46 TS) vs PHT (41 TS) 

(NT + PHT) (87 TS) vs HT (34 TS) 

10 PPG 

features 
121 subjects KNN 

78.62% 

86.94% 

78.44% 

Raw PPG Signal [34]  

NT (46 TS) vs HT (34 TS) 

NT (46 TS) vs PHT (41 TS) 

(NT + PHT) (87 TS) vs HT (34 TS) 

RGB images 

using CWT 

(scalogram) 

2904 subjects 

(images) 
CNN 

80.52% 

92.55% 

82.95% 

Raw PPG Signal [32] 

NT (46 TS) vs HT (34 TS) 

NT (46 TS) vs PHT (41 TS) 

(NT + PHT) (87 TS) vs HT (34 TS) 

2100 PPG 

features points 
900 subjects KNN 

100% 

100% 

90. 80% 

Raw PPG Signal [31]  

NT (38 TS) vs HT (38 TS) 

NT (38 TS) vs PHT (38 TS) 

(NT + PHT) (76 TS) vs HT (38 TS) 

TF-features 

using STFT 
900 subjects BLSTM 

97.29% 

97.39% 

93.93% 

This study  

(experiment 1) 

NT (500 TS) vs HT (500 TS) 

NT (500 TS) vs PHT (500 TS) 

(NT + PHT) (1000 TS) vs HT (500 TS) 

44 TF-features 

using FSST 
48,072 subjects BT 

97.5% 

99.1% 

99% 

This study 

(experiment 2) 

NT (500 TS) vs HT (500 TS) 

NT (500 TS) vs PHT (500 TS) 

(NT + PHT) (1000 TS) vs HT (500 TS) 

44 TF-features 

using FSST 

 

48,072 subjects BT 

98% 

98.9% 

98.8% 

This study 

(experiment 3) 

NT (500 TS) vs HT (500 TS) 

NT (500 TS) vs PHT (500 TS) 

(NT + PHT) (1000 TS) vs HT (500 TS) 

44 TF-features 

using FSST 
48,072 subjects BT 

99% 

96.6% 

98.8% 
Note: TS: Test Subjects. 

 

The proposed BT models achieved F1 scores of 99%, 

99.1%, and 99% for the NT vs. HT, NT vs. PHT, and non-HT 

vs. HT classification tasks, respectively. This exceeded prior 

published method performance, aside from study [32] which 

reported F1 scores of 100% for NT vs. HT and NT vs. PHT 

using a KNN model. However, their approach attained a lower 

F1 of 90.8% for the non-HT vs. HT task compared to our BT 

models' consistent F1 scores exceeding 98.8%. Meanwhile, 

Tjahjadi et al. [31] achieved competitive yet slightly lower F1 

scores of 97.29%, 97.39%, and 93.93% across the same tasks 

using a smaller 786 sample dataset. However, both studies [31, 

32] relied on more limited data lacking the diversity in BP 

ranges observed in our sample collection (Figures 2, 3, 6). 

Additionally, our BT models were evaluated on a larger test 

set of 500 subject-segments per class, providing a more robust 

evaluation. Moreover, training each BT model in our study 

required only approximately 4 minutes to calibrate, 

significantly faster training times than previous works - for 

example over 30 minutes for the BLSTM model in reference 

[31] using a smaller 786 sample set, and over 350 minutes for 

the CNN approach in reference [34] using 2323 samples.   

For a fair comparison with previous studies that employed 

similar modeling techniques, Table 10 presents results from 

Liang et al. [33] who used various feature extraction methods 

as inputs for a BT classifier. In their study, a combination of 

PAT and 10 PPG morphological features delivered the highest 

F1 scores of 94.13%, 83.88%, and 88.22% for NT vs. HT, NT 

vs. PHT, and non-HT vs. HT classifications, respectively. In 

contrast, when only FSST features of the PPG signal were used 

as input, our proposed BT model demonstrated significantly 

enhanced performance across all tasks, with F1 scores 

exceeding 96%. Although Liang et al. [33] achieved 

competitive results using a KNN model with PPG+PAT 

features, their method required an additional sensor beyond 

just PPG. Moreover, morphological feature extraction is 

sensitive to signal quality [34] and susceptible to motion 

artifacts, which may limit its practical applicability [27]. 

When solely using PPG signals without additional sensors, 

Liang et al. [33] reported markedly lower performance from 

their BT model, achieving F1 scores of 84.98%, 78.48%, and 

75.32% for NT vs. HT, NT vs. PHT, and non-HT vs. HT 

classifications, respectively. Their KNN classifier yielded 

nearly identical results. In contrast, our BT models attained 

significantly higher F1 scores exceeding 96% across all tasks 

using only 44 features directly extracted from the raw PPG 

waveform via FSST, without requiring special pre-processing 

steps to isolate morphological characteristics. Notably, our 

proposed framework maintained this consistent, superior 

classification ability while overcoming limitations of prior 

work such as smaller, less diverse datasets [31, 32], 

computationally expensive training procedures [31, 34], and 

reliance on additional sensors or susceptibility to noise 

inherent in complex feature extraction [33, 34]. Overall, these 

comparisons demonstrate the proposed models establish new 

state-of-the-art performance for non-invasive BP monitoring 

using exclusively PPG data, represented by efficiently 

extracted Fourier features, without pre-processing 

vulnerabilities or constraints of earlier efforts.
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4.3 System design and clinical perspectives  

 

PPG provides a convenient and noninvasive means of 

measuring pulsatile blood volume changes, with the periodic 

waveform conveying insights into cardiovascular health [17]. 

However, deriving meaningful features from PPG signals is 

confounded by the nonstationary nature of the signals, 

whereby the statistical properties evolve dynamically over 

time. To address this, time-frequency decomposition was 

performed using FSST to generate high-resolution 

spectrograms revealing transient cardiovascular variabilities 

related to BP regulation. Spectrographic analysis enabled 

engineering statistical features including mean, variance, 

skewness and kurtosis, all together represent pressure-

dependent physiological changes missed by basic 

morphological features. This set of TF signal features formed 

the input vectors for the BP classifier, providing a robust 

representation of the non-stationary dynamics within the PPG 

data. 

For the classification architecture, an ensemble approach 

was pursued using 200 bagged decision trees, improving 

accuracy and robustness over individual models by reducing 

variance and overfitting [50]. Bagging provides an efficient 

means to leverage large training datasets as the models can be 

fit in parallel on data subsets. Specifically, the model was 

trained on a sizeable dataset spanning normotensive, 

prehypertensive, and hypertensive BP ranges collected from 

the MIMIC-III database [41]. This diversity is expected to 

improve real-world generalizability and reduce biases 

compared to models trained on a narrow BP distribution. Low 

computation complexity enabled training in just minutes per 

experiment on a dataset of this scale. Additionally, testing on 

a balanced dataset better assesses performance across the 

spectrum of the population. 

The approach demonstrated potential as inexpensive 

assistant tool in clinical setting, as the experimental models 

achieved F1 scores ranging from 96.6% to 99.1% for non-HT 

vs. HT, NT vs. HT, and NT vs. PHT classifications. Trials that 

play a significant role for routine prehypertension and 

hypertension detection, which in turn contribute for the early 

hypertension diagnosis and management [34]. Additionally, 

these results justify employing the proposed system in real-

world scenarios where various sources of disturbance could 

interfere, owing to synchrosqueezing stability in handling 

perturbated signals [59]. Which is reasonable as the PPG 

signals were captured from patients in ICU wards [40]. 

Furthermore, by requiring only raw PPG input, the 

technique provides a convenient means for wearable-based 

hypertension monitoring without reliance on cuff devices. The 

lightweight tree models allow implementation without cloud 

computing, enabled by low memory footprint compared to 

deep neural networks. The key advantages in using bagged 

trees over DL models in wearable monitoring devices are 

summarized as follows: 

-Bagged decision tree models are highly suitable for 

implementation on wearable devices due to their lower 

complexity and minimal computational requirements. Storing 

the parameters for decision tree models requires very little 

memory on the wearable hardware. This allows the entire 

bagged ensemble to be housed on the device, rather than 

relying on cloud connectivity for model storage and 

predictions. This reduces latency, costs, and privacy concerns 

by keeping data localized. In contrast, deep neural networks 

have substantial storage needs due to the large number of 

weight parameters distributed across many layers, making 

cloud storage more practical. 

-For prediction, bagged trees run efficiently on cheaper, 

lower-power CPUs by avoiding expensive high-RAM GPUs 

required by deep nets to process their computationally 

intensive activation layers in parallel. By avoiding such 

specialized hardware, tree ensembles enable cost savings on 

the device processors. 

-Bagged trees support continuous incremental learning by 

continuously adding new models to the ensemble on-device as 

more training data becomes available [48]. Retraining deep 

nets to update their weights is much more computationally 

expensive. This makes regular model updating prohibitive on 

wearable processors. 

-For clinical applications, model explanations matter for 

regulatory approval, accountability, and transparency around 

AI assisted medical decision making. Accordingly, decision 

trees have clear logical structures that are easy to understand 

and visualize making them more interpretable. In contrast, 

deep neural networks operate like a black box, thus, obscuring 

the basis for their predictions. 

By enabling affordable BP monitoring directly through 

consumer wearables, this approach promotes accessible 

screening without expensive medical devices. The lightweight 

system allows self-tracking globally, even in resource-

constrained settings, supporting prevention through timely 

personalized notifications. This addresses many patients’ lack 

of knowledge regarding acceptable BP levels [25, 26], which 

currently relies on infrequent clinic measurements. 

Widespread deployment can enhance early diagnosis, 

convenient management, and improved outcomes by averting 

target organ damage and associated healthcare costs from 

untreated hypertension. 

 

 

5. CONCLUSIONS 

 

This research presented a novel technique for classifying BP 

levels by employing only PPG signals. TF analysis was 

employed to reveal subtle cardiovascular dynamics in PPG 

waveforms associated with BP changes. FSST generated high-

resolution TF representations from which 44 statistical 

features were extracted, capturing transient physiological 

variations related to BP regulation missed by basic PPG 

morphology.   

An ensemble classifier comprising 200 bagged decision 

trees was trained on a large dataset encompassing 46,572 

subjects across varied BP ranges. This boosted accuracy and 

generalizability across three different experimental datasets, 

as evidenced by the achieved training accuracies of 100% and 

testing accuracies ranging from 95.7% to 96.9% across the 

experimental models. Furthermore, the developed system 

demonstrated exceptional performance across three different 

classification trials, including NT vs. HT, NT vs. PHT and 

non-HT vs. HT, with F1 scores up to 99.1%.   

Unlike prior works limited by smaller datasets, this research 

leveraged substantial variability in BP levels, demonstrating 

the technique's efficiency and versatility. The approach 

requires only single-lead PPG data, avoiding reliance on 

multiple monitoring devices. Additionally, the low-

complexity tree models enable direct on-device 

implementation without cloud connectivity, overcoming 

barriers of DL models. 

Overall, the methodology shows considerable promise as an 
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accessible, affordable self-screening tool to promote early 

hypertension detection through consumer wearables. By 

enabling convenient BP tracking anytime, anywhere, the 

approach can help improve outcomes globally through timely 

notifications and personalized hypertension management. 

Further research should focus on evaluating real-world 

accuracy across diverse populations and age groups, including 

detailed reporting on the demographic and health 

characteristics of the study participants. With refinement, the 

technique could empower patients and providers with 

convenient tools for early diagnosis and prevention of silent 

cardiovascular risks. 
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