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Most of the time biopsy has been the gold standard for skin lesion evaluation. However, 

specialists evaluate signs and symptoms for the final decision. Shortage of specialist 

definitely adds the adverse effect on effective and early detection. Recently, CNN has 

extended the helping hand for the specialist during the final decision. Also, many pre-trained 

CNN models have been designed to be used as transfer learning. But, a common approach 

of random resizing of input images are required before training to get fit to the input layers. 

This is because the approximate size of most of the available skin lesion images and pre-

trained models are of 1000×1000 and 224×224 respectively. Hence the required resizing 

though solves one problem of size mismatch, it may eliminate principal feature for 

classification leading to poor accuracy. Hence, in this work, we propose a novel patch-based 

ensembling approach for the early diagnosis of melanoma and nevus skin lesions. Here the 

effect of applying patches over classification has been studied on an incremental basis. In 

the ensembling approach, the resultant features from different patches have been combined 

for further processing with perceptual attention to maintain the spatial relationship. The 

proposed model was evaluated on a set of 748 dermoscopy images collected from the ISIC 

2017 data set (374 melanoma and 374 nevus images). Our result demonstrates that using 

image patches as input improves accuracy instead of image scaling. The proposed model 

performed well enough to serve as a baseline for further studies of sin lesion classification. 
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1. INTRODUCTION

Nowadays various lifestyle factors, including smoking, 

drinking alcohol, odd eating habits, physical activity levels, 

changes in the environment, sun exposure, radiation exposure, 

viral infections etc. are putting everyone at a potential risk of 

cancer. Among those, the escalation in skin cancer cases with 

swelling of cells is a deep concern [1]. Here in this paper, the 

two cases of skin cancer such as melanoma and nevus are 

taken for the experimentation. Because of the similarities in 

structure and symptoms these two types are still challenging 

task for classification. The early diagnosis is curable and can 

save the life. The faulty and late detection leads the cancer 

spreads to adjacent organs and making it more fatal. 

Melanoma is the most prevalent type of skin condition which 

affects the cells on skin surface called melanocytes. The 

proportion of melanoma makes the skin color ranges from fair 

to black [2]. Melanoma usually found in dark or darker colors, 

though uncommonly it is developed in skin colors like red, 

purple, pink, white, or blue [3]. This type of cancer is 

especially worrisome due to its proclivity for metastasis, or the 

potential to spread. Melanoma can occur in any part of the 

human body, while it most commonly develops on the back of 

legs [4]. In accordance with the research, if skin cancer is 

discovered at an early stage, the fatality rate can be decreased 

by up to 90%. As a result, early detection and classifications 

are crucial [3, 4]. Many papers have been written about 

identifying, segmenting, and categorizing skin cancers using 

various computer vision, image processing, machine learning, 

and convolutional neural network (CNN). Esteva et al. [5] 

used a CNN to classify skin cancer, where it has the potential 

to perform overall and varying tasks across a wide range of 

fine-grained categories. Iyatomi et al. [6] introduced a semi-

automatic system for classifying melanomas, where they used 

dermoscopic structures like parallel ridges, parallel furrows, 

and fibrillar patterns as pattern detectors. While Anas et al. [7] 

created the melanoma classification using four types of 

categorizations, Almansour et al. [8] illustrated a melanoma 

classification method using k-means clustering and Support 

Vector Machine (SVM). Capdehourat et al. [9] used AdaBoost 

MC to create separate image classification methods for 

melanomas, cancers, and dermoscopy. Giotis et al. [10] and 

Ruiz et al. [11] created decision support systems for melanoma 

using pre-processing technique and neural network algorithm 

based on lesion texture, color, visual diagnostic features, 

surrounding tissue, and extent of the damage. CNN as a sub-

field of deep neural networks has lately achieved significant 

progress in computer vision. Since AlexNet’s victory in the 

ImageNet Challenge: ILSVRC 2012 [12], CNN has become a 

widely used technique in computer vision. In order to attain 
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greater accuracy, the current sentiment has been to build 

profound and more complicated networks [13, 14]. As the 

feature extraction backbone, MobileNetV2 [15] introduces an 

improved module with a reversed residual structure and non-

linearities in narrow layers to achieve state-of-the-art 

performance for feature extraction and semantic segmentation. 

Its low parameters in comparison to other pre-trained models 

like VGG, AlexNet, ResNet, and EfficientNet make it a 

preferred choice to use it as a feature extractor. 

Ensembling is preferred when assembling models with 

similar architectures because of its reliability and stability. 

Among different techniques of ensembling, bootstraping or 

bagging has been the right choice with different input data or 

patches of the image. Recent work [16] demonstrates that 

ensembles can be effectively constructed without a sequential 

rise in the computational work. While examining different pre-

trained models like AlexNet, VGG16, ResNet50, and 

MobileNet, we found that most of them accepts input image 

size approximately 224×224, whereas medical images are 

available in a variety of sizes, including 1024×1024. It leads 

to resizing as a common technique in various pre-processing 

approach. This eventually ends up eliminating some of the 

pixels which might have a significant contribution. CNN finds 

it more difficult to learn the features required for classification 

or detection as the number of pixels with prominent factors 

gets significantly reduced when the large image is down-

scaled. In a multi-patch-based ensembled model, the spatial 

relationship among patches must be preserved. Here comes the 

attention mechanism. Attention modeling has been adopted in 

computer vision because of the successful implementation in 

Natural Language Processing (NLP), where different versions 

of transformer attention are adapted to recognition tasks 

including object detection and semantic segmentation [17, 18]. 

Deep learning with attention has changed our approach to 

designing deep models. It has been a feature retention 

mechanism that impacts a lot in the field of image 

classification [19]. 

In this paper, we illustrate how to build multi-patch 

ensembled CNN architectures using MobileNetV2 as the base 

classifier and spatial attention to reconstructing the 

intermediate feature matrix for the classification of Melanoma 

and Nevus skin disorder. Here we have taken the skin images 

as a whole, two patches and four patches, and evaluated the 

model accuracy. MobileNetV2 is used as a feature extractor 

from different patches and the spatial attention module 

maintains the spatial relationship among the patches. The 

specific contribution of this paper is as follows: 

• In order to generate the intermediate feature matrix, 

we proposed a modified ensembling algorithm. 

• To reinstate the spatial relationship, Image Spatial 

Attention has also been introduced. 

• We designed a deep CNN model taking into 

account the bag of image patches, ensembled 

MobileNetV2 with spatial attention for 

classification of melanoma and nevus. 

• Our model demonstrates that incremental patches 

with intact spatial relationships result in higher 

classification accuracy. 

 

 

2. RELATED WORK 

 

Extensive research, exploration and development of fresh 

methods in the relevant field results the precise diagnosis of 

skin cancer. Here the associated tasks may be divided based 

on the method used to classify melanoma and nevus skin 

cancer. These are multiple patches of an image, modified 

bagging or bootstrapping, attention mechanism, and 

classification. 

In earlier studies [20] to train deep networks with fine-

grained details, images are randomly cropped or resized with 

small patches, while all the patches are labelled same as of 

original image. Such an approach results in ambiguity in 

training examples because of aesthetic, tone, and feature 

attributes might not accurately depict the details in the entire 

image. Recent studies have focused on this issue, leading to 

improved classification precision. One of the most well-

known techniques for building ensembles that take into 

account data variations is bagging [21], while another is 

AdaBoost [22]. A large number of models are generated by 

splitting the training data into small subsets, where each subset 

is used to train a model. Using ensembles, Khatami et al. [23] 

demonstrated how to significantly improve and achieve 

cutting-edge outcomes in the field of medical image retrieval, 

which is plagued by severely unbalanced datasets. A 

customized bagging algorithm on MobileNetV2 [15] was used 

in the proposed architecture to produce an intermediate feature 

matrix. Huang et al. [24] demonstrated that by converging at 

multiple local minima and preserving the model parameters 

along its optimization path results in decreased computational 

cost for ensembling. Hara et al. [25] proposed that 

regularization techniques such as dropout can be categorized 

as ensembling methods. They demonstrated that the accuracy 

of a model can be enhanced by averaging across a network. 

Huang et al. [26] suggested employing stochastic depth as an 

ensembling strategy by using average findings over networks. 

Singh et al. [27] proposed ensembling technique swap out by 

combining dropout and stochastic depth methods. All these 

approaches require extensive domain knowledge to construct 

the initial base models to be ensembled. Recent research has 

addressed this need by modifying the ensembling to improve 

feature selection. 

The attention of CNN model has been used as a working 

solution for a diverse range of computer vision problems [28]. 

The focus of CNNs for the task of classifying images reflects 

the relevant features which rely on as proof [29]. Due to the 

multi-patch ensembling of the feature matrix, the spatial 

relation between patches might be compromised. One simple 

solution to this issue is to learn precise spatial attention that is 

comparable to saliency detection [30] and semantic 

segmentation [31], but it is a bit noisy and different because 

the label-relevant regions are not well defined. The attention 

map might also be improved [32] by making it focus on a 

single compact area instead of several fragmented regions. 

However, this doesn't work for multiple patches with labels. 

Hence, by enacting feature matrix-based entire image attention, 

we suggest an indirect method in this paper to concentrate on 

spatial attention of patches. 

 

 

3. PROPOSED METHODOLOGY 

 

In this section, we have covered the elements of our 

suggested methodology in Figure 1. The methodology shown 

is a combination of all three models i.e. model for the whole 

patch, double patches, and four patches. The methodology 

includes preparing the data which is multi-patch RGB skin 

images, discussed in subsection 3.1, a modified ensembling for 
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the intermediate feature matrix, discussed in subsection 3.2, 

perceptual attention to the images to keep the spatial 

relationship intact, discussed in subsection 3.3 and the training 

strategy in subsection 3.4. 

 

3.1 Multi-patch RGB skin images 

 

Medical skin images like melanoma and nevus are high-

resolution images of size approx. 1000×1000 or above. This 

size is much more than the average size used by the pre-trained 

models. With random resizing, we may lose valuable 

information, so instead of random resizing, these images are 

divided vertically and horizontally as in Figure 2 to create 

smaller image patches. The first model uses the whole image 

for training. The second model uses two patches for the 

intermediate feature extraction and an attention module for 

keeping the spatial information intact. The third model uses 

four patches for the intermediate feature extraction and the 

attention module. Each patch of images is input to the 

MobileNetV2 to generate the feature matrix, those get 

combined to generate the final intermediate feature matrix. 

 

 

 
 

Figure 1. Proposed methodology 
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Figure 2. Multi-patches of each image from the data set; each patch moves to each bag of the ensemble model 

 

Algorithm 1: Modified Ensemble Technique 

1. Input: No. of patches (N), MobileNetV2 

2. Output: Intermediate Feature Matrix 

3. Data: Melanoma and Nevus skin Images (img) 

4. 𝒏 = ⌊√𝑵⌋𝟐
                 where N takes values 2, 4 

5. Function EnhancedEnsembling (img, N, n, MobileNetV2): 

6.  labels, data ← PrepareData(img,N) 

7.  train, test ← PrepareInput(N,datai,labels) 

8.  while i≤N do 

9.   baseModeli ← MobileNetV2() 

10.   For layer in baseModeli . layers do 

11.    layer. name←layer .name+str(layer) 

12.    baseModeli←baseModeli .layers[-3]. layers 

13.   end 

14.  end 

15.  IntermediateFeatureMatrix=[ ] 

16.  j=1 

17.  for I =1 to n do 

18.   featureMatrix, j←Combine (baseModelj,trainj,n,j) 

19.   j=j+1 

20.   IntermediateFeatureMatrix←VerticalCombine(IntermediateFeatureMatrix,featureMatrix) 

21.  end 

22.  return IntermediateFeatureMatrix 

23. Function Combine (baseModelj, trainj,n,k): 

24.  featureH=[ ] 

25.  j=k 

25.  for i 1 to n do 

26.   featurei←baseModelj(trainj) 

27.   j=j+1 

27.   featureH = HorizontalCombine (featureH, featurei) 

28.  end 

29.  return feature,j 

30. Function PrepareData (img,N): 

31.  data = [ ] 

32.  while i≤N do 

33.   datai = [ ] 

34.  end 

34.  while i ≤ N do 

35.   imagei ← verticalSplit(img,n) 

36.  end 

37.  while j≤N do 

38.   datai←datai+horizontalSplit(imagei , N) 

39.  end 

40.  labels=labels 

41.  return labels, datai 

42. Function PrepareInput (N, datai ,labels): 

43.  trainX, testX, trainY, testY ←trainTestSplit(datai ,labels, testSize) 

44.  while i ≤ N do 

45.   trainXi , testXi, trainYi ,testYi ← trainTestSplit(datai, labels, testSize, shuffle = false) 

46.  end 

47.  return trainXi , testXi, trainYi , testYi  
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3.2 Enhanced ensembling 
 

The main goal of the ensemble method is to integrate the 

output from various model's predictions to improve 

classification accuracy [33, 34]. The network model 

predictions, variance and bias may be decreased by the 

ensembling technique. Unlike traditional ensembling 

techniques which are based on statistical aggregation of 

prediction results from different models, our approach focuses 

on aggregation of intermediate features from different patched 

input resulting single prediction. This technique helps to get 

rid of possibilities of biased voting during traditional 

ensembling. In order to accurately classify skin images, the 

feature matrix resulting from MobileNetV2 after freezing the 

top three layers has been assembled according to the suggested 

approach. The proposed "Modified Ensemble" approach is 

shown in Algorithm 1. Here instead of dividing the entire data 

set into no. of bags, the bags contain patches of different 

images. The pre-trained model MobileNetV2 is chosen as it 

has the lowest ever parameters than other pre-trained models 

as per the Table 1. As we are reconstructing the intermediate 

feature matrix, we have kept all the models the same as 

MobileNetV2 to get a similar size matrix. During the model 

execution, the total N+1 number of MobileNetV2(freeze top 

three layers) has been saved, where N is the total number of 

patches. Here N models take N sets of image patches to 

generate the feature matrix. All the feature matrices are added 

together as per the algorithm to generate the intermediate 

feature matrix as shown in Figure 1. 

 

3.3 Perceptual attention 

 

Attention is a technique that attempts to emphasize 

significant information while diminishing the irrelevant details. 

As per our proposed approach, we have made multiple patches 

of a single image to extract more relevant features, and then 

we ensemble all the intermediate features to generate the 

intermediate feature matrix. Here there might be a chance that 

the edge pixels may lose the spatial relationship with the edge 

pixel of other feature matrices during the ensembling. So, to 

preserve it we have introduced perceptual attention as in 

Figure 3, by mapping the feature matrix generated from the 

complete image with the intermediate feature matrix. The 

perceptual attention is an area specific attention mechanism 

inspired from Natural Language Processing (NLP) where it 

focuses on different words or phrases in the input text by 

enabling more accurate and relevant output. 

 
 

Table 1. Network specifications for various pre-trained deep neural networks 
 

Networks Size (in MB) Depth of Layers Image Size Parameters (in Millions) 

Xception [35] 88 81 299×299×3 22.9 

VGG16 [13] 528 16 224×224×3 138.4 

ResNet101 [36] 171 101 224×224×3 44.7 

InceptionV3 [14] 92 189 299×299×3 23.9 

DenseNet121 [37] 33 242 224×224×3 8.1 

EfficientNetB0 [38] 29 132 224×224×3 5.3 

AlexNet [39] 53 8 227×227×3 61 

GoogleNet [40] 96 22 224×224×3 7 

MobileNetV2 [15] 16 53 224×224×3 3.5 
 

 
 

Figure 3. Perceptual attention to ensure the spatial relationship among the pixels 
 

Table 2. Intermediate feature matrix (four patch model) generated by combining the feature matrix generated by base models 

with different patches where P1, P2, P3, P4 are patches from ensembled model 

 
P1

1,1 P1
1,2 . . . . P1

1,N/2 P2
1,N/2+1 P2

1,N/2+2 . . . P2
1,N 

P1
2,1 P1

2,2 . . . . P1
2,N/2 P2

2,N/2+1 P2
2,N/2+2 . . . P2

2,N 

. . . . . . . . . . . . . 

. . . . . . . . . . . . . 

P1
M/2,1 P1

M/2,2 . . . . P1
M/2,N/2 P2

M/2,N/2+1 P2
M/2,N/2+2 . . . P2

M/2,N 

P3
M/2+1,1 P3

M/2+1,2 . . . . P3
M/2+1,N/2 P4

M/2+1,N/2+1 P4
M/2+1,N/2+2 . . . P4

M/2+1,N 

P3
M/2+2,1 P3

M/2+2,2 . . . . P3
M/2+2,N/2 P4

M/2+2,N/2+1 P4
M/2+2,N/2+2 . . . P4

M/2+2,N 

. . . . . . . . . . . . . 

. . . . . . . . . . . . . 

P3
M,1 P3

M,2 . . . . P3
M,N/2 P4

M,N/2+1 P4
M,N/2+2 . . . P4

M,N 
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In image processing perceptual attention can be used to 

enhance spatial relationship among patches. The attention 

module results feature matrix 𝐹𝑖,𝑐(𝑥) is: 

 

𝐹𝑖,𝑐(𝑥) =  𝐴𝑖,𝑐(𝑥) + 𝐼𝑖,𝑐(𝑥) (1) 
 

where, 𝑖 ranges over all spatial positions and 𝑐 ϵ 1, . . . , C is the 

index of the channel. 𝐴𝑖,𝑐(𝑥) : feature matrix of attention 

module and 𝐼𝑖,𝑐(𝑥) : intermediate feature matrix generated 

from ensembled model. 𝐼𝑖,𝑐(𝑥) given in Table 2 is resulted 

from the enhanced ensembled model. 

 

3.4 Training strategy 

 

The data set contains the skin lesion images for melanoma 

and nevus, where each of 374 and 374 respectively. Here the 

model has experimented with a single-image, double-patch, 

and quad-patch image. The proposed methodology in Figure 1 

represents three different models, combined together showing 

the classification of melanoma and nevus individually. Before 

designing the ensembled model the base model is chosen out 

of different pre-trained models like DenseNet121, 

EfficientNetB0, MobileNetV2, ResNet101, VGG16, VGG19, 

and Xception. Among all these models as per Table 3 

MobileNetV2 shows better accuracy with lesser parameters. 

After deciding on the base model, the ensembled model has 

been designed for two patches and four patches with a spatial 

attention module. The train and validation ratio of image data 

used is 90:10. 

 

Table 3. Classification accuracy of different pre-trained 

model with the data set 

 

Networks 
Size (in 

MB) 

Parameters (in 

Million) 
Accuracy 

DenseNet121 33 8.1 84.85 

EfficientNetB0 29 5.3 49.71 

Resnet101 171 44.7 54.57 

VGG16 528 138.4 77.99 

VGG19 549 143.7 74.28 

Xception 88 22.9 86.41 

MobileNet 16 4.3 82.57 

MobileNetV2 14 3.5 88.28 

 

 

4. DATA DESCRIPTION AND EXPERIMENTAL 

SETUP 

 

In this section, we present the experimental data description 

and experimental set up that has been followed to verify the 

effectiveness of the proposed model. All the experimentations 

were performed using skin image datasets collected from 

ISIC2017 data set [41]. The publicly available ISCIC 2017 

data set has offered three parts of challenges, these are Part.1) 

Lesion Segmentation Task, Part.2) Dermoscopic Feature 

classification Task and Part.3) Disease Classification Task. 

Out of these three tasks in disease classification task 

participants are offered to classify images belongs to three 

classes named as “melanoma”, “seborrheic keratosis” and 

“benign nevi” with 374, 254 and 1372 numbers of training 

images. In this paper we have considered the data set belongs 

to the disease classification task. Out of these three classes we 

have considered only two classes i.e. “melanoma (374 images)” 

and “nevus (1372 images)”. To make the data set balanced we 

have considered 374 images from each of the classes for our 

experimental purpose. All CNN models were developed using 

the PyTorch toolbox and all experiments were conducted on 

the Amazon Web Service platform with NVIDIA Tesla k80 

GPU architecture, x86664 CPU architecture, Intel Xenon E5-

2686 v4 physical processor, 2.3 GHz clock speed, 4 vCPUs, 

15.25(GiB) memory per vCPU and 61 (GiB) memory. Here 

we have performed the experiment in three different ways. 

Firstly, we have performed the experiment using the pre-

trained models like VGG-16, VGG19, DenseNet121, 

EfficientNetB0, ResNet101 and MobileNetV2 with the data 

set. From the experiment we have chosen MobileNetV2 as our 

base classifier for the next two experiments because of its light 

weight, fewer parameter and better accuracy.  In second and 

third experiment we have used two patches and four patches 

of images with an ensembled model with perceptual attention. 

Performance metrics such as accuracy, loss, sensitivity, 

specificity, precision and ROC-AUC were considered to 

evaluate each model. 

 

4.1 Experimental parameters 

 

This subsection provides the parameter set up in Table 4 that 

has been used for the experiment. 

 

Table 4. Parameter setting for the experiment 

 
Parameters Settings 

pretrained models 
DenseNet121, EffcientNetB0, MobilenetV2, 

ResNet121, VGG16, VGG19, Xception 

chosen pretrained 

model 
MobileNetV2 

average pool 7×7 and 14×14 

stride 1 

activation relu and softmax 

learning rate 0.0001 

drop out 0.5 

loss binary-cross-entropy 

epochs 50 

images 748 

patches 2(dual), 4(quad) 

split 90:10 

 

4.2 Performance metrics 

 

The performance of the proposed model has been evaluated 

using the following metrics. 

Accuracy: It measures the proportion of correctly classified 

instances. 

 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (2) 

 

where, TP for true positive, TN for true negative, FP for false 

positive and FN for false negative instances. 

 

Specificity: It the proportion of true negative instances out 

of actual negative instances. 

 

Specificity=
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (3) 

 

Sensitivity: It is the ratio between predicted true positive 

instances out of actual positive instances. 

 

Sensitivity=
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4) 
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Precision: It is the ratio between true positive predictions 

out of total positive predictions. 

 

Precision=
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (5) 

 

ROC (Receiver Operating Characteristic curve): It is a 

graphical plot of true positive rate (sensitivity) against false 

positive rate (1-specificity). Area Under the ROC curve 

(AUC-ROC) is shown to evaluate the performance. 

 

 

5. RESULTS 

 

In this section, the results are shown in Figures 4-9 and 

Table 5. Out of these Figure 4, Figure 5 shows the accuracy 

and loss plot of different pre-trained models. Figures 6-8 

shows the accuracy and loss plot of the proposed model with 

three different image type i.e. whole image as input, two equal 

halves of image as input (dual patch) and four equal patches of 

image as input (quad patch). Figure 9 shows the accuracy and 

loss plot of proposed models. Figure 10 shows the AUC-ROC 

plot of dual patch model and quad patch model for class: 

melanoma and class: nevus. Then we set the model to run for 

two patches showing improved accuracy in Figure 7, which 

further increases when choosing four patches in Figure 8. The 

same data set has been used in proposed models shows that 

instead of random resizing, a large image can be divided to 

match the input image size at par with the pre-trained model's 

input size, resulting in better classification accuracy. 

 

5.1 Results of different pretrained models 

 

Accuracy and loss with different pre-trained models have 

been provided here. Figure 4 (a), Figure 5 (a), Figure 4 (b), 

Figure 5 (b), Figure 4 (c), Figure 5 (c), Figure 4 (d), Figure 5 

(d), Figure 4 (e), Figure 5 (e), Figure 4 (f), Figure 5 (f) and 

Figure 4 (g), Figure 5 (g) describes the accuracy and loss 

function for different pre-trained models like DenseNet121, 

EfficientNetB0, MobileNetv2, ResNet101, VGG16, VGG19, 

and Xception respectively. Considering all these results and 

the information in Table 1, MobileNetV2 shows promising 

result as it is light weight with less parameters. Hence it has 

been chosen as the base pre-trained model for the proposed 

model. 

 

  
  

(a) Accuracy with DenseNet121 (b) Accuracy with EfficientnetB0 

 

 

 

 
  

(c) Accuracy with MobileNetV2 (d) Accuracy with ResNet101 
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(e) Accuracy with VGG16 (f) Accuracy with VGG19 

 

 
 

(g) Accuracy with Xception 

 

Figure 4. Classification accuracy of different pre-trained models with the data set 

 

  
  

(a) Loss with DenseNet 121 (b) Loss with EfficientNetB0 
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(c) Loss with MobileNetV2 (d) Loss with ResNet101 

 

 

 

 
  

(e) Loss with VGG16 (f) Loss with VGG19 

 

 
 

(g) Loss with Xception 

 

Figure 5. Loss with different pre-trained models with the data set 

2241



 
 

(a) Accuracy with the whole image as input 

 

 
 

(b) Loss with the whole image as input 

 

Figure 6. Accuracy and loss of the proposed model with the whole image 

 

 
 

(a) Accuracy with the dual patch of images 

 
 

(b) Loss with the dual patch of images 

 

Figure 7. Accuracy and loss of proposed dual patch model 

 

5.2 Results of proposed model taking whole image as input 

 

Here the whole image is used as input with good amount of 

resizing. The result of accuracy and loss is shown in Figure 6 

(a) and Figure 6 (b). The accuracy and loss plot with diverging 

nature of the graph shows poor performance than the 

subsequent proposed model. 

 

5.3 Results of dual patch model 

 

Here the performance result has been shown in Figure 7 for 

the proposed ensembled model with dual patch of image as 

input. Here in this model the amount of input image resizing 

done is less. The Figure 7 (a) and Figure 7 (b) shows improved 

result in comparison to the previous experimentation with 

whole image as input shown in Figure 6 (a) and Figure 6 (b). 

The AUC-ROC curve for class: melanoma (0.925) and class: 

nevus (0.889) shown in Figure 10 (a) and Figure 10 (b) is also 

promising. The results of different performance metrics like 

sensitivity, specificity, precision and accuracy are 96.7%, 

96.1%, 95.6% and 92.0% respectively. 
 

5.4 Results of quad patch model 
 

Here the performance result has been shown in Figure 8 for 

the proposed ensembled model with quad patch of image as 

input. Here in this model very less resizing of input image is 

done in compared to the previous model. The Figure 8 (a) and 

Figure 8 (b) shows improved result in comparison to the 

previous experimentation with dual image patch as input 

shown in Figure 7 (a) and Figure 7 (b). The AUC-ROC curve 

for class: melanoma (0.967) and class: nevus (0.927) shown in 

Figure 10 (a) and Figure 10 (b) is further improved than the 

previous dual patch model. The results of different 

performance metrics like sensitivity, specificity, precision and 

accuracy are 0.981, 0.973, 0.982 and 0.953 respectively. 

Hence this experiment herewith encourages the division of 

input images with ensembling of features rather than random 

resizing. 
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(a) Accuracy with quad patch of image 
 

 
 

(b) Accuracy with quad patch of image 
 

Figure 8. Accuracy and loss of the proposed model with the quad patch of image 

 

 
 

(a) Accuracy plot for single, dual and quad patch  

 
 

(b) Loss plot for single, dual and quad patch 
 

Figure 9. Combined accuracy and loss plot for single, dual and quad patch of image 

 

 
 

(a) AUC-ROC plot for class: Melanoma 

 
 

(b) AUC-ROC plot for class nevus 

 

Figure 10. ROC-AUC plot for class: Melanoma and class: nevus 
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5.5 State of art comparison 

 

The comparison of suggested proposed model was done 

with the existing deep learning-based schemes. Table 5 shows 

a summary of the results. It can be seen that the presented 

method performed better than other approaches when the input 

image is divided for dual or quad patches to fit the input pre-

trained layer rather than random resizing. Although the data 

set looks small, in the quad patch model it becomes five times 

(four patches of each image to four different bags for 

ensembling and one for perceptual attention), which is used to 

evaluate the proposed model than in several recent studies [5, 

8, 10, 42-50]. In the work proposed by Bisla et al. [51] though 

the accuracy is 91.5%, the unbalanced data set between nevus 

and melanoma is a concern. Also, the model proposed by 

Pomponiu et al. [52] shows an accuracy of 93.64% but it seems 

region interest has been taken manually. The proposed model 

also compared with the ensembled methodologies [53-55] 

showing a better evaluated values for the metrics considered 

for the classification. 

 

Table 5. Experimental results of the proposed methodology compared with the state-of-the-art methods 

 
Authors Methods Sensitivity Specificity Precision Accuracy 

Giotis et al. [10] Texture descriptor 0.62 0.85 0.74 0.76 

Giotis et al. [10] Color descriptor 0.74 0.72 0.64 0.73 

Esteva et al. [5] Inception V3 0.96 N.A. N.A. 0.72 

Almansour et al. [8] Hybrid texture feature 0.94 0.86 N.A. 0.90 

Blum et al. [42] Diagnostic algorithm 0.93 0.87 N.A. 0.87 

Ramlakhan and Shang [43] kNN classifier 0.61 0.80 N.A. 0.67 

Dorj et al. [44] ECOC SVM classifier 0.97 0.90 N.A. 0.94 

Nasr-Esfahani et al. [45] Illumination correction 0.81 0.80 0.75 0.81 

Mukherjee et al. [46] Optimized NN using PSO 0.86 0.86 N.A. 0.86 

Jianu et al. [47] Neural Network 0.72 0.89 0.87 0.805 

Fraiwan and Faouri [48] ResNet 101 N.A. N.A. N.A. 0.829 

Bisla et al. [51] Deep Convolutional GAN N.A. N.A. N.A. 0.915 

Pomponiu et al. [52] Alex-Net + kNN 0.921 0.951 N.A. 0.936 

Codella et al. [49] Alex-Net + UNet with SVM 0.949 0.928 N.A. 0.931 

Jojoa et al. [50] ResNet 152 0.82 0.925 0.75 0.904 

Xie et al. [53] Ensemble of neural networks 0.833 0.95 N.A. 91.1 

Taşar [54] Ensembled pretrained models 0.867 0.970 N.A. 0.831 

Moghimi et al. [55] Boosted CNN (with skin image) 0.782 0.859 0.884 0.862 

Proposed Model Dual Patch 0.967 0.961 0.956 0.920 

Proposed Model Quad Patch 0.981 0.973 0.982 0.953 

 

 

6. CONCLUSION 

 

We discuss two crucial aspects of classifying skin lesions 

using dermoscopic image data. First, we make use of the 

image patches in an incremental manner (image as a whole, 

dual patch, and quad patch) as the input without random 

resizing and used a perceptual attention module to maintain 

the spatial attention. We demonstrate how a novel patch-based 

technique can enhance feature selection thereby increasing 

classification precision. The second problem is the 

intermediate feature assembling with a modified ensembling 

algorithm followed by classification. We compare different 

pre-trained models like Xception, VGG16, ResNet101, 

InceptionV3, DenseNet121, EfficientNetB0, AlexNet, 

GoogleNet, and MobileNetV2 used as transfer learning for 

classification and choose MobileNetV2 as the base model 

because of its smaller size and fewer parameters. Also, we 

examined our model for three distinct input types using full 

images, dual patches, and quad patches in incremental 

techniques, resulting in a considerable improvement in 

accuracy. Also, AUC-ROC plot is significant for the proposed 

model. 

 

6.1 Limitations and future scope 

 

Our patch-based ensembling does not encourage the 

limitless division of images, further research can be carried out 

in this regard. In this paper we have carried out only binary 

class classification, in future experiments can be carried out 

for multiclass classification. The model can be trained with a 

large amount of data from different sources with a better 

resource framework. Training of similar ensembling model 

can be carried out beyond the quad patch to observe the 

behaviour of the model. 
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NOMENCLATURE 

 

CNN Convolutional Neural Network 

ROC Receiver Operating Characteristic 

AUC Area Under the Curve 

TP True Positive 

FP False Positive 

TN True Negative 

FN False Negative 

N Number of image patches 

 

Subscripts 

 

i Number of base model/data 

set pixels in the image patch 

j Intermediate feature matrix 
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