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Compressors, as essential industrial equipment, are widely utilized in air conditioning, 

refrigeration, energy, and chemical sectors. The operational stability of compressors 

directly impacts system efficiency and safety. Due to the complex thermodynamic 

processes and variable operating conditions involved in compressor operations, accurately 

monitoring their status and predicting potential faults are crucial for improving equipment 

reliability and optimizing maintenance strategies. Traditional compressor fault prediction 

methods usually rely on thermodynamic models and statistical analysis. While some 

progress has been made, existing methods often face limitations when addressing complex 

nonlinear, multivariable, and time-varying characteristics. Recently, machine learning and 

deep learning-based fault prediction methods have gained significant attention, but 

challenges remain in real-world applications, including data quality, model accuracy, and 

computational efficiency. To address these issues, this paper proposes an intelligent 

monitoring and fault prediction approach for compressors based on deep learning. First, a 

thermodynamic model of the compressor operation process is constructed, enabling real-

time acquisition of key operational parameters. Subsequently, a fault prediction model is 

developed by integrating the sparrow search algorithm (SSA) with the long short-term 

memory (LSTM) model. By performing time series analysis on compressor operational 

data, the model achieves accurate fault prediction and early warning. This approach 

effectively enhances prediction accuracy and robustness, offering strong practical 

application value.  
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1. INTRODUCTION

With the continuous advancement of industrialization, 

compressors play a crucial role in various mechanical 

equipment and are widely used in fields such as air 

conditioning, refrigeration, petrochemicals, and energy [1-4]. 

As a high-efficiency power device, the stable operation of 

compressors directly impacts system efficiency and safety. 

Therefore, accurately monitoring the operational status of 

compressors and predicting their faults in a timely manner has 

become an important research topic in related fields [5-7]. 

During compressor operation, changes in internal 

environments and external loads can impact performance, 

further affecting thermodynamic parameters of the system, 

such as pressure, temperature, and flow rate [8, 9]. 

Consequently, accurately obtaining and analyzing 

thermodynamic parameters during compressor operation has 

become a critical approach to improving compressor 

operational efficiency and reliability, reducing energy 

consumption, and minimizing fault occurrences. 

Currently, research on compressor fault prediction and 

health monitoring has made certain progress, with many 

researchers attempting to predict and diagnose compressor 

faults based on traditional thermodynamic models, statistical 

methods, and machine learning techniques [10-13]. By real-

time monitoring and analyzing compressor operational data in 

combination with various fault modes, researchers have 

proposed multiple predictive algorithms aimed at improving 

the accuracy of fault detection and early warning capabilities 

[14, 15]. These studies not only contribute to extending 

equipment lifespan and reducing maintenance costs but also 

enhance production safety and system reliability to a certain 

extent. Thus, constructing an efficient and accurate 

compressor fault prediction and monitoring model holds 

significant application value and practical significance. 

However, most existing research is based on traditional 

thermodynamic models and statistical analysis methods, often 

relying on manually set rules and feature selection, making it 

challenging to address the complex, nonlinear, and time-

varying nature of compressor operations [16-19]. Even studies 
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using machine learning and deep learning methods often face 

issues in balancing data quality, model complexity, and 

prediction accuracy [20, 21]. Current fault prediction models 

still exhibit deficiencies in handling multivariable and 

multifactor influences, such as overfitting, low computational 

efficiency, and poor model robustness, which to some extent 

restricts their promotion and application in actual engineering. 

To address the above issues, this paper proposes a new deep 

learning-based method for intelligent monitoring and fault 

prediction of compressor operational status. First, a 

thermodynamic model of compressor operation based on 

thermodynamic principles is constructed, and an intelligent 

detection method is designed to monitor key operational 

parameters of the compressor in real-time, providing accurate 

status assessment. Secondly, this paper proposes a new 

compressor fault prediction method based on the combination 

of the SSA and the LSTM model, achieving early fault 

prediction by processing complex time series data. Through 

this integrated technical framework combining deep learning 

and thermodynamic models, compressor fault prediction 

accuracy, timeliness, and robustness are effectively improved. 

The research in this paper not only provides an innovative 

solution for compressor fault prediction but also establishes a 

new technological foundation for the intelligent operation and 

maintenance and health management of industrial equipment. 

 

 

2. THERMODYNAMIC MODEL CONSTRUCTION 

AND INTELLIGENT PARAMETER DETECTION FOR 

COMPRESSOR OPERATION 

 

Figure 1 presents the schematic of the intelligent detection 

for compressor thermodynamic parameters. In constructing 

the thermodynamic model of compressor operation for 

intelligent parameter detection, a series of reasonable 

assumptions about the working medium’s thermodynamic 

characteristics and operating conditions are necessary. These 

assumptions aim to simplify system complexity while 

ensuring the model's operability and computational efficiency 

in practical applications. 

(1) It is assumed that the working medium within the 

compressor system remains in a uniform state, meaning that 

thermodynamic parameters such as temperature and pressure 

are consistent at all points within the system. 

(2) The flow of the working medium within the cylinder is 

assumed to be single-phase, implying that the flow is uniform 

and continuous, disregarding multiphase flow or irregularities 

in flow. 

(3) When constructing the thermodynamic model, it is 

assumed that gas state parameters at all points within the 

compressor cylinder are identical, meaning the gas inside the 

cylinder remains in a homogeneous isothermal and isobaric 

state. 

(4) To simplify the analysis of gas state changes, pressure 

variations in the intake and exhaust pipes of the compressor 

are assumed negligible, with pressure considered as a constant 

value. 

(5) Focusing on the gas state changes inside the cylinder, 

only the internal energy of the gas in the cylinder is considered, 

while the influence of gas kinetic and potential energy is 

ignored. 

Based on the law of mass conservation, assuming no 

leakage of the working medium, the change in mass entering 

and leaving the control volume of the compressor equals the 

mass increment of the working medium within the control 

volume. Specifically, by monitoring the flow rates at the intake 

and exhaust ports and combining with the state parameters of 

the working medium, the mass increment of the working 

medium within the compressor at each stage can be calculated, 

thus providing foundational data for subsequent energy 

analysis. Let L represent the mass of the working medium in 

the cylinder, Lt the mass of discharged medium, and Lf the 

mass of intake medium, then: 

 

T fdL dL dL= −  (1) 

 

According to the first law of thermodynamics, the energy 

changes in an open system can be described by the energy 

conservation equation. For a compressor, the energy changes 

during the compression, expansion, intake, and exhaust 

processes all need to be modeled individually. By establishing 

differential equations for each stage, the changes in gas state 

parameters over time can be described, accurately reflecting 

the combined effects of internal energy, external power input, 

heat exchange, and other factors on the working medium in 

each process. Let W represent the heat added from the external 

environment to the system, s represent time, Q represent the 

work done by the working medium on the external 

environment, gf the specific enthalpy of the working medium 

in the exhaust valve chamber, gt the specific enthalpy in the 

intake valve chamber, and i the specific internal energy of the 

working medium in the cylinder. Then, the thermodynamic 

process in the open system is expressed as: 

 

( )f t
f t

dL dLdW dQ d
g g L i

ds ds ds ds ds
− = − +   (2) 

 

Since 

 

og Z S=   (3) 

 

ni Z S=   (4) 

 

/o nj Z Z=  (5) 

 

Assuming that the temperature of the working medium in 

the cylinder is represented by S, the temperature of the 

working medium in the exhaust valve chamber by Sf, and the 

temperature of the working medium in the intake valve 

chamber by St, with constant-volume specific heat represented 

by Zn, constant-pressure specific heat by Zo, and adiabatic 

coefficient by j, Eq. (2) can be rewritten as: 

 

f t
n fn n tn n n

dL dLdW dQ dS dL
jZ S jZ S LZ Z S

ds ds ds ds ds ds
− = − + +  (6) 

 

Assuming the cylinder pressure is represented by PO, 

cylinder volume by VN, compression factor by ZC, the amount 

of gas substance by L, the gas constant by E, and the gas 

temperature by S. Then: 

 

dQ OdN=  (7) 

 
ON CLES=  (8) 

 

Then Formula (6) can be written as: 
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0

f

n n fn

t
n tn n

dLdS CLES dN
LZ jZ S

ds N ds ds

dL dW dL
jZ S Z S

ds ds ds

+ +

− − + =

 (9) 

 

During the intake process, the gas enters the compressor 

from the environment, and changes in temperature and 

pressure need to consider the state change of the gas flow. 

During compression, the gas volume decreases, and pressure 

and temperature increase. In the exhaust process, the 

compressed gas is discharged, with gas expansion and heat 

exchange considered. Expansion may occur when the 

compressor is shut down or in special operating conditions, 

where the gas energy gradually releases. By modeling each of 

these processes and integrating them into an overall 

thermodynamic model, a thermodynamic process model that 

can reflect the real-time operational state of the compressor is 

ultimately constructed. For the intake process (dL/ds=dLt/ds, 

dLf/ds=0), we have: 

 

0t
n n n t

dLdS CLES dN dL dW
LZ Z S jZ S

ds N ds ds ds ds
+  + − − =  (10) 

 

For the exhaust process (dL/ds=-dLf/ds, dLt/ds=0), we have: 

 

0n n f n

dLdS CLES dN dL dW
LZ jZ S Z S

ds N ds ds ds ds
+  + + − =  (11) 

For the compression and expansion processes (dL/ds=dLt/ds 

=dLf/ds=0), we have: 

 

0n

dS CLES dN dW
LZ

ds N ds ds
+  − =  (12) 

 

To enable intelligent detection of thermodynamic 

parameters during compressor operation, this study designs a 

system capable of real-time monitoring and analysis of the 

state within and around the compressor cylinder. For 

fundamental thermodynamic parameters such as the working 

medium’s mass in the cylinder, cylinder volume, cylinder 

pressure, and temperature, high-precision sensors and flow 

meters are installed to acquire real-time data. Pressure sensors 

monitor changes in cylinder pressure, temperature sensors 

measure cylinder temperature, and flow meters measure the 

mass flow rate during intake and exhaust. Utilizing these real-

time data, combined with thermodynamic equations, enables 

calculation of the working medium’s mass and specific 

internal energy within the cylinder. Additionally, based on 

these fundamental parameters, the specific enthalpy and 

specific internal energy of the medium in the cylinder can be 

derived, achieving real-time assessment of the gas state within 

the cylinder. The coordinated operation of temperature, 

pressure, and flow sensors forms a comprehensive real-time 

monitoring system that supplies data support for the 

thermodynamic process model of the compressor. 

 

 
 

Figure 1. Schematic of intelligent detection for compressor 
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Figure 2. Schematic of the compressor refrigeration system 

 

 
 

Figure 3. Framework of the compressor thermodynamic parameter monitoring and control system 

 

In practical application scenarios like the refrigeration 

system illustrated in Figure 2, precise intelligent detection of 

thermodynamic parameters during intake and exhaust is 

essential. To monitor parameters such as the specific enthalpy 

and temperature of the working medium in the intake and 

exhaust valve chambers, high-precision sensors must be 

installed at the intake and exhaust ports. Specific enthalpy and 

temperature of the working medium in the intake and exhaust 

valve chambers can be directly measured by sensors, and 

calculations using flow data further determine the 

thermodynamic properties of the working medium during the 

intake and exhaust processes. Using the first law of 

thermodynamics and accounting for external power input and 

the work done by the medium on the surroundings, the real-

time data enables calculation of energy changes at each stage, 

thus allowing assessment of the compressor’s overall 

operational efficiency and fault status. 

Figure 3 presents the framework of the thermodynamic 
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parameter monitoring and control system for compressors. 

Using intelligent algorithms, this study compares these 

thermodynamic parameters with historical operating data and 

fault patterns to predict and identify potential anomalies or 

fault risks. This intelligent monitoring system not only 

achieves precise monitoring of the compressor’s operational 

process but also dynamically adjusts operational strategies 

based on real-time thermodynamic parameters, enhancing the 

compressor’s operational efficiency and reliability. 

 

 

3. CONSTRUCTION OF THE COMPRESSOR FAULT 

PREDICTION MODEL BASED ON SSA-LSTM MODEL 

 

In the operation of compressors, multiple parameters such 

as pressure, temperature, and flow are involved, and these 

parameters exhibit complex dynamic patterns over time due to 

influences from the mechanical structure and process 

conditions. Traditional fault prediction methods often struggle 

to fully uncover deeper patterns within high-dimensional, 

nonlinear data. Therefore, this paper adopts the SSA-LSTM 

model for compressor fault prediction. The SSA has a global 

search capability that allows it to find optimal solutions within 

a large hyperparameter space. Meanwhile, the LSTM network 

effectively retains long-term dependencies when handling 

time-series data. Combining these two methods enables the 

SSA-LSTM model to adaptively extract essential features 

from multi-dimensional time-series data for compressors, 

while the LSTM's memory mechanism captures long-term 

temporal trends within the data, providing higher accuracy in 

fault prediction. Additionally, compressor fault prediction 

requires a model that can maintain high predictive accuracy in 

variable operating environments and with incomplete sensor 

data. SSA not only efficiently adjusts LSTM's 

hyperparameters but also adapts to various changes and 

interference factors that may occur during compressor 

operation. LSTM handles data irregularities and missing data, 

ensuring the model's stability in practical applications. The 

integration of SSA and LSTM enables the SSA-LSTM model 

to adapt to various dynamic changes in the compressor's 

operating process and to perform real-time fault diagnosis and 

prediction, providing a scientific basis for preventive 

maintenance and fault management of equipment. 

Specifically, the SSA is employed to optimize the 

parameters of the LSTM model, enhancing the accuracy and 

reliability of compressor fault prediction. SSA is a swarm 

intelligence optimization algorithm that simulates the foraging 

behavior of sparrows. By modeling the collaborative and 

competitive behavior mechanisms among sparrows during 

foraging, the algorithm seeks the optimal solution within the 

search space. In this model, the "leader sparrow" guides the 

group toward optimal food sources in an unknown 

environment, while the "follower sparrows" adjust their 

positions according to the leader's position. This strategy 

balances global and local search, enabling SSA to effectively 

avoid local optima and enhancing the global search capability 

of the optimization process. 

Let s denote the current iteration count, ITMAX represents the 

maximum number of iterations, and Au,k be the position of the 

u-th sparrow in the k-th dimension. Β ∈ (0, 1] is a random 

number, with alert and safety values represented by E2 and TS, 

respectively. Let W be a random number following a normal 

distribution, M be a matrix with one row and f columns of all 

ones, and f denotes the dimensionality of the compressor fault 

prediction problem. The position update formula for the 

discoverers is as follows: 

 

( )

( )

, 21

,

, 2

exps

u ks
MAXu k

s

u k

u
A E TS

ITA

A W M E TS

+

  −
   

=   


+  

 (13) 

 

Assume that the current optimal position occupied by the 

discoverers is AO and the current global worst position is AWO. 

Let X+ be a constant controlling the magnitude of individual 

position updates. Then the position update formula for the 

joiners is as follows: 

 

( )

,

21

,

1 1

,

exp
2

s s

WO u k

s

u k

s s s

O u k O

A A v
W u

uA

A A A X M otherwise

+

+ + +

  −  
       =   


+ −

 (14) 

 

When aware of danger, the sparrow population exhibits 

anti-predation behavior. Suppose the step control parameter is 

α, the current global optimal position is ABE, and J ∈ [-1, 1] is 

a random number. Let du be the fitness value of the current 

sparrow individual, with dh and dq representing the current 

global best and worst fitness values, respectively. A very small 

constant is denoted by γ, and the corresponding mathematical 

expression is as follows: 

 

( )

( )
( )

1

,

1

, ,

,

s s s

BE u k BE u h

s s s
u k u k WOs

u k u h

u q

A A A d d

A A A
A J d d

d d





+

+

 +  − 



 = −
 +  =
 − +  

 
(15) 

 

In the compressor fault prediction model, the LSTM neural 

network is the core component, used for processing complex 

time-series data from the compressor operation process, 

extracting the long-term dependency features from the data to 

achieve accurate fault prediction. The basic structure of LSTM 

includes the forget gate, input gate, and output gate. These 

three gating mechanisms are responsible for determining the 

“memory” and “forgetting” processes within the neural 

network. Through these gating mechanisms, the LSTM 

network can selectively “remember” important historical 

information related to faults while “forgetting” redundant 

information unrelated to fault prediction, thereby significantly 

improving prediction accuracy. In the specific task of 

compressor fault prediction, the time-memory capability of 

LSTM is particularly important. The operating state of the 

compressor often includes parameters with complex 

dependencies, such as temperature, pressure, and vibration, 

and the dynamic changes of these parameters over a long 

period are crucial for fault prediction. 

Assume the previous cell state is zs-1, and the connection 

between the previous hidden state gs-1 and the current input as 

is represented by |gs-1, as|. The weight matrix and bias term of 

the forget gate are represented by qd and yd, respectively. 

Sigmoid is the activation function, and the forget gate 

expression is as follows: 

 

( )1,s d s s dd sigmoid q g a y−=  +  (16) 

 

Assuming the current cell state is zs, the input gate 

expression is: 
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( )1,s u s s uu sigmoid q g a y−=  +  (17) 

 

The candidate cell state z's is calculated using the tanh 

function, with the calculation formula as: 

 

( )'

1tanhs zg s za s zz Q g Q a y−= + +  (18) 

 

The forget gate ds and the input gate us control the size of 

the updated cell state zs, with the calculation formula: 

 
'

1s s s s sz d z u z−=  +   (19) 

 

Assuming the current hidden state is gs, the output gate 

expression is: 

 

( )1s pg s pa u pp sigmoid Q g Q a y−= + +  (20) 

 

The calculation of the hidden state gs is determined by ps 

and zs: 

 

( )tanhs s sg p z=   (21) 

 

Through its detailed internal structure, the LSTM neural 

network can capture the deep-level associations of these 

parameters over time, thus learning the latent patterns in the 

data. In the compressor operation data, the occurrence of 

certain faults may require prediction based on historical data 

spanning hours or even days, and the LSTM, with its “long 

short-term memory” capability, can maintain stable learning 

performance over such extended time spans. 

In the compressor fault prediction model, the basic principle 

of the SSA-LSTM model is to optimize the hyperparameters 

of the LSTM model using the SSA to improve the accuracy 

and stability of compressor fault prediction. The LSTM itself, 

as a powerful time-series data processing model, can 

effectively capture the long-term dependency relationships in 

the compressor operation process. However, the performance 

of LSTM largely depends on the selection of its 

hyperparameters, such as learning rate, hidden layer size, and 

the number of iterations, and the reasonable setting of these 

hyperparameters directly affects the model’s training results 

and prediction accuracy. SSA, as a swarm intelligence-based 

optimization algorithm, simulates the foraging behavior of 

sparrows to perform a global search in the hyperparameter 

space and automatically finds the optimal combination of 

hyperparameters. By using SSA to optimize the LSTM model, 

it can be ensured that the model maintains high training 

efficiency and prediction accuracy when processing 

compressor operation data. Especially when dealing with 

complex time-series data and multiple variables, the optimized 

LSTM can better capture potential fault patterns and trends. 

Figure 4 shows the compressor fault prediction process based 

on the SSA-LSTM model. 

Specifically, in this paper, the Sparrow Search Algorithm 

sets the maximum number of iterations to 100 and the 

population size to 50, with 20% of the individuals designated 

as “discoverers,” responsible for exploring a broader 

hyperparameter space. This setup allows SSA to effectively 

search for the optimal solution across multiple hyperparameter 

dimensions, including learning rate, number of iterations, and 

the number of neurons in the two hidden layers. After 80 

iterations, SSA quickly converges, finding the optimal 

combination of hyperparameters, with a learning rate of 

0.0016 and the best number of iterations as 83. This 

hyperparameter combination provides the LSTM network 

with an efficient training framework, enabling the model to 

accurately identify and predict compressor faults. 

 

 
 

Figure 4. Compressor fault prediction process based on SSA-LSTM model 
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4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Table 1 presents the relationship between compression ratio 

and volumetric efficiency, cooling capacity, power, and COP. 

Under varying compression ratios, the operational efficiency 

of the compressor shows significant changes. As the 

compression ratio decreases (from 7.32 down to 2.31), both 

volumetric efficiency and cooling capacity increase 

significantly, while power consumption decreases, leading to 

a gradual increase in the COP. For instance, when the 

compression ratio drops from 7.32 to 2.31, cooling capacity 

increases from 1125 W to 2123 W, power consumption 

decreases from 913 W to 645 W, and the COP rises from 1.25 

to 3.32. This indicates that at lower compression ratios, the 

compressor achieves more efficient energy conversion, 

enhancing cooling performance while reducing power 

consumption. This data provides a foundation for subsequent 

fault prediction, especially as fluctuations in volumetric 

efficiency, power, cooling capacity, and COP under different 

operating conditions can help identify potential anomalies or 

faults. 

Table 2 provides the relationship between condensing 

temperature and the compressor performance parameters: 

volumetric efficiency, cooling capacity, power, and COP. 

From the data, it is evident that as the condensing temperature 

increases, the volumetric efficiency, cooling capacity, and 

COP generally decrease, while power demand shows an 

upward trend. Specifically, when the condensing temperature 

rises from 18.56℃ to 23.89℃, volumetric efficiency 

decreases from 0.87 to 0.68, cooling capacity reduces from 

912 W to 765 W, and power consumption increases from 421 

W to 468 W. This trend indicates that at higher condensing 

temperatures, the operational efficiency of the compressor 

decreases significantly, energy consumption rises, and the 

COP declines from 2.23 to 1.75. This change reflects the 

significant impact of condensing temperature on compressor 

performance, as higher condensing temperatures lead to 

reduced system efficiency and increased energy waste, 

providing potential indicators for fault prediction. 

Table 3 shows the relationship between evaporating 

temperature and key performance parameters of the 

compressor, including volumetric efficiency, cooling capacity, 

power, and COP. Observations reveal that as the evaporating 

temperature rises, the compressor’s volumetric efficiency, 

cooling capacity, and COP generally increase, while power 

consumption demonstrates a more complex variation. 

Specifically, as the evaporating temperature increases from -

9.78℃ to -4.23℃, volumetric efficiency rises from 0.63 to 

0.83, and cooling capacity increases from 489 W to 556 W. 

Power consumption fluctuates but shows an overall upward 

trend. Simultaneously, COP rises from 1.23 to 2.36, indicating 

that as the evaporating temperature increases, the 

compressor’s energy efficiency improves, enabling it to 

deliver higher cooling capacity with less energy consumption. 

This suggests that a moderate increase in evaporating 

temperature can significantly enhance the overall operational 

efficiency of the compressor, reflecting the thermodynamic 

optimization of the system as the evaporating temperature 

changes. 

In conjunction with the fault prediction method based on the 

LSTM and SSA proposed in this paper, the data in Tables 1-3 

provide essential time-series features for the precise analysis 

of compressor operational status. The LSTM model can 

identify potential fault risks from the relationships between 

evaporating temperature and other key parameters. For 

instance, if the evaporating temperature increases significantly 

but the compressor’s volumetric efficiency and COP do not 

improve as expected and instead show a decline, this may 

signal internal thermodynamic issues within the device, such 

as insufficient refrigerant, overheating, or internal leakage. 

 

Table 1. Relationship data between compression ratio, 

volumetric efficiency, cooling capacity, power, and COP 

 
Compression 

Ratio 

Volumetric 

Efficiency 

Cooling 

Capacity (W) 

Power 

(W) 
cop 

7.32 0.72 1125 913 1.25 

6.58 0.73 1326 889 1.35 

5.42 0.74 1452 856 1.56 

4.12 0.77 1521 823 1.78 

3.45 0.81 1623 789 2.12 

3.36 0.83 1745 754 2.23 

2.89 0.81 1856 732 2.56 

2.64 0.85 1952 689 2.78 

2.38 0.88 2125 662 3.14 

2.31 0.87 2123 645 3.32 

 

Table 2. Relationship data between volumetric efficiency, 

cooling capacity, power, and COP with condensing 

temperature 

 
Condensing 

Temperature 

(℃) 

Volumetric 

Efficiency 

Cooling 

Capacity 

(W) 

Power 

(W) 
cop 

18.56 0.87 912 421 2.23 

21.23 0.86 923 424 2.24 

21.54 0.84 889 428 2.15 

22.36 0.82 867 421 1.89 

22.15 0.81 865 436 1.85 

21.25 0.77 832 438 1.78 

22.36 0.76 826 439 1.76 

22.36 0.73 824 448 1.74 

23.54 0.71 789 462 1.71 

23.89 0.68 765 468 1.75 

 

Table 3. Relationship data between volumetric efficiency, 

cooling capacity, power, and COP with evaporating 

temperature 

 
Evaporating 

Temperature 

(℃) 

Volumetric 

Efficiency 

Cooling 

Capacity 

(W) 

Power 

(W) 
cop 

-9.78 0.63 489 478 1.23 

-9.36 0.65 482 489 1.35 

-8.87 0.68 512 512 1.56 

-8.25 0.71 523 523 1.58 

-7.54 0.72 524 532 1.68 

-7.12 0.74 534 524 1.87 

-6.28 0.77 538 541 1.78 

-5.78 0.81 521 526 1.89 

-5.23 0.82 548 535 2.21 

-4.23 0.83 556 524 2.36 

 

Based on the time-series data provided in Figures 5-7, the 

data illustrate the variation in compressor outlet temperature 

as state collection counts vary across different compressor 

operating conditions. In Time Series 1, Time Series 2, and 

Time Series 3, the fluctuations and trends between the actual 

and predicted values are consistent, demonstrating regularity 

in compressor operation across different conditions. By 

analyzing long-term dependencies in time-series data, the 

LSTM model can recognize normal and abnormal modes of 
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compressor operation under varying conditions. For example, 

in some periods, if the condensing or evaporating temperature 

shows large fluctuations but the volumetric efficiency and 

cooling capacity fail to increase as expected and instead 

decrease, this could indicate internal compressor issues, such 

as poor cooling or refrigerant insufficiency. The SSA further 

optimizes the LSTM model’s parameters, adaptively adjusting 

weights and learning rates to improve fault prediction 

accuracy. 

 

 
 

Figure 5. Comparison of actual and predicted compressor 

outlet temperatures in normal operation (Time Series 1) 

 

 
 

Figure 6. Comparison of actual and predicted compressor 

outlet temperatures in normal operation (Time Series 2) 

 

 
 

Figure 7. Comparison of actual and predicted compressor 

outlet temperatures in normal operation (Time Series 3) 

 

Through this data, we observe that, within specific time 

intervals, the compressor's performance exhibits varied trends 

as the state collection count changes. For instance, in Time 

Series 1, volumetric efficiency and cooling capacity fluctuate 

over time, with power and COP values showing correlations 

to condensing and evaporating temperatures. In Time Series 2, 

an increase in evaporating temperature results in cooling 

capacity and power fluctuations, while volumetric efficiency 

and COP improve during certain periods, reflecting the 

compressor's adaptability to different thermal environments. 

In Time Series 3, the compressor demonstrates more complex 

dynamic changes over time, particularly a sudden increase in 

power under high load, which could indicate a precursor to 

potential faults. Analysis of such complex time-series data 

provides valuable insights for fault prediction. Possible fault 

outcomes include compressor overload, internal component 

failures (e.g., compressor damage, leakage, or overheating), 

and performance degradation due to instability in the control 

system. This intelligent prediction method enables early fault 

detection and location, offering decision support for 

maintenance personnel, thereby reducing downtime and repair 

costs. 

 

 

5. CONCLUSION 

 

This paper proposed an innovative approach for intelligent 

monitoring and fault prediction of compressor operational 

status based on deep learning, integrating thermodynamic 

principles with advanced machine learning models to provide 

a smart solution for compressor fault prediction and health 

management. First, a thermodynamics-based model of the 

compressor operation process was established, which can 

accurately describe the compressor's thermodynamic 

characteristics under various conditions, offering a scientific 

basis for monitoring and evaluating key operational 

parameters. Based on this model, an intelligent detection 

method was designed to monitor key parameters such as 

volumetric efficiency, cooling capacity, power, and COP in 

real time, providing data support for compressor status 

evaluation and fault prediction. Additionally, this study 

innovatively combined SSA with LSTM model, proposing a 

new fault prediction method for compressors. This method 

processed complex time-series data to identify potential fault 

risks in advance. Experimental results show that compressor 

parameters such as volumetric efficiency, cooling capacity, 

power, and COP exhibit distinct fluctuating patterns under 

varying condensing temperatures, evaporating temperatures, 

and compression ratios. By training the deep learning model, 

it effectively captured the temporal variations and internal 

correlations of these parameters, achieving high accuracy in 

fault prediction. Through comparative analysis of actual and 

predicted values, the proposed method can accurately predict 

potential faults during the compressor's normal operation 

phase, thereby supporting subsequent maintenance decisions. 

This research presented a novel technical framework for 

compressor fault prediction and health management, with 

significant research value. By combining thermodynamic 

modeling with deep learning, this approach surpasses the 

limitations of traditional mechanical fault diagnosis methods, 

offering a new intelligent monitoring and early warning tool 

for compressors and similar industrial equipment. The 

integration of SSA with the LSTM model leverages time-

series data generated during compressor operation, improving 

fault prediction accuracy and timeliness, and significantly 

enhancing equipment reliability and safety. 

However, this study also has certain limitations. First, 

although the proposed model can handle various types of time-

series data, its generalization capability and adaptability 

require further verification in practical applications, 

particularly when applied to different brands and models of 

compressors, which may require additional adjustments and 

training. Second, while the thermodynamic model describes 

the basic operational patterns of compressors, it may have 

limitations in handling complex dynamic load changes, 

environmental variations, and system fault modes. 
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Additionally, the deep learning methods employed rely on 

extensive historical data, which could pose challenges for data 

collection and processing in practical deployment. Future 

research directions could focus on: (1) exploring fault 

prediction methods adaptable to various industrial equipment; 

(2) further optimizing deep learning models to improve 

robustness in complex environments; and (3) developing more 

efficient online learning algorithms to achieve real-time 

monitoring and prediction, addressing the needs of industrial 

equipment for dynamic change and fault prediction in sudden 

failure scenarios. 

 

 

ACKNOWLEDGMENT 

 

This paper was supported by Hebei Province Higher School 

Science and Technology Research Youth Fund Project, “Deep 

Learning-based Compressor Condition Monitoring and Fault 

Diagnosis Artificial Intelligence Expert System Research and 

Development” (Grant No.: QN2022098). 

 

 

REFERENCES  

 

[1] Jaatinen-Värri, A., Honkatukia, J., Uusitalo, A., 

Turunen-Saaresti, T. (2024). Centrifugal compressor 

design for high-temperature heat pumps. Applied 

Thermal Engineering, 239: 122087. 

https://doi.org/10.1016/j.applthermaleng.2023.122087 

[2] Uusitalo, A., Jaatinen-Värri, A., Turunen-Saaresti, T. 

(2024). Centrifugal compressor design analysis for large-

scale transcritical carbon dioxide heat pumps. Applied 

Thermal Engineering, 257: 124355. 

https://doi.org/10.1016/j.applthermaleng.2024.124355 

[3] Olympios, A.V., Song, J., Ziolkowski, A., Shanmugam, 

V.S., Markides, C.N. (2024). Data-driven compressor 

performance maps and cost correlations for small-scale 

heat-pumping applications. Energy, 291: 130171. 

https://doi.org/10.1016/j.energy.2023.130171 

[4] Uusitalo, A., Jaatinen-Värri, A., Turunen-Saaresti, T., 

Honkatukia, J., Tiainen, J. (2024). Centrifugal 

compressor design and cycle analysis of large-scale high 

temperature heat pumps using hydrocarbons. Applied 

Thermal Engineering, 247: 123035. 

https://doi.org/10.1016/j.applthermaleng.2024.123035 

[5] Scherba, V.E. (2022). Procedure for estimating the 

heating time of working chamber walls in a piston 

compressor when implementing regenerative heat 

exchange. Chemical and Petroleum Engineering, 58(3): 

293-300. https://doi.org/10.1007/s10556-022-01090-4 

[6] Fan, Z.F., Li, H.K., Cao, H.W., Dong, J.N. (2022). 

Research on running status monitoring and rotating blade 

crack detection of large-scale centrifugal compressor 

based on blade tip timing technique. IEEE Transactions 

on Instrumentation and Measurement, 72: 3501011. 

https://doi.org/10.1109/TIM.2022.3231270  

[7] Ceviz, M.A., Afshari, F., Ceylan, M., Muratçobanoğlu, 

B., Mandev, E., Gelen, G. (2023). Experimental study to 

evaluate effect of source temperature on COP and 

compressor status in water-to-air heat pumps. Heat 

Transfer Research, 54(16): 51-66. 

https://doi.org/10.1615/HeatTransRes.2023048436 

[8] Zheng, Y.P., Ahn, H.J. (2024). Surge monitoring system 

for a small maglev centrifugal compressor. Transactions 

of the Korean Society of Mechanical Engineers A, 48(7): 

485-490. http://doi.org/10.3795/KSME-

A.2024.48.7.485 

[9] Lv, Q., Yu, X.L., Ma, H.H., Ye, J.C., Wu, W.F., Wang, 

X.L. (2021). Applications of machine learning to 

reciprocating compressor fault diagnosis: A review. 

Processes, 9(6): 909. https://doi.org/10.3390/pr9060909  

[10] Wang, H.Y., Chen, J.W., Zhu, X.J., Song, L.M., Dong, F. 

(2023). Early warning of reciprocating compressor valve 

fault based on deep learning network and multi-source 

information fusion. Transactions of the Institute of 

Measurement and Control, 45(4): 777-789. 

https://doi.org/10.1177/01423312221110896  

[11] Guo, F.Y., Zhang, Y.C., Wang, Y., Ren, P.J., Wang, P. 

(2021). Fault diagnosis of reciprocating compressor 

valve based on transfer learning convolutional neural 

network. Mathematical Problems in Engineering, 

2021(1): 8891424. 

https://doi.org/10.1155/2021/8891424  

[12] Gao, Y., Zhang, L., Zhou, J.W., Wei, B.J., Yan, Z.C. 

(2023). Research on reliability of centrifugal compressor 

unit based on dynamic Bayesian network of fault tree 

mapping. Journal of Mechanical Science and 

Technology, 37(5): 2667-2677. 

https://doi.org/10.1007/s12206-023-0440-7  

[13] Nambiar, A., Aravinth, S., Sugumaran, V., Ramteke, S. 

M., Marian, M. (2024). Prediction of air compressor 

faults with feature fusion and machine learning. 

Knowledge-Based Systems, 304: 112519. 

https://doi.org/10.1016/j.knosys.2024.112519  

[14] Aravinth, S., Sugumaran, V. (2023). Prediction of air 

compressor condition using vibration signals and 

machine learning algorithms. Journal of Vibration and 

Control, 29(5-6): 1342-1351. 

https://doi.org/10.1177/10775463211062330  

[15] Jiang, X.M., Tang, W.J., Zhao, H.X., Cheng, X.Y. (2022). 

Toward smart condition monitoring of rotatory machines: 

An optimized probabilistic signal reconstruction 

methodology for fault prediction with multisource 

uncertainties. IEEE Access, 10: 60862-60875. 

https://doi.org/10.1109/ACCESS.2022.3180888  

[16] Xu, Q.H., Gao, P.J., Wang, J.L., Zhang, J., Ip, A., Zhang, 

C. (2024). AKGNN-PC: An assembly knowledge graph 

neural network model with predictive value calibration 

module for refrigeration compressor performance 

prediction with assembly error propagation and data 

imbalance scenarios. Advanced Engineering Informatics, 

60: 102403. https://doi.org/10.1016/j.aei.2024.102403  

[17] Wang, Y.F., Ren, P., Xiong, W., Peng, X.Y. (2024). 

Strain analysis and non-destructive monitoring of the 

two-stage hydraulic-driven piston compressor for 

hydrogen storage. Journal of Energy Storage, 94: 112494. 

https://doi.org/10.1016/j.est.2024.112494  

[18] Song, D., Xu, F.Y., Ma, T.C. (2022). Crack damage 

monitoring for compressor blades based on acoustic 

emission with novel feature and hybridized feature 

selection. Structural Health Monitoring, 21(6): 2641-

2656. https://doi.org/10.1177/14759217211068107  

[19] Song, D., Ma, T.C., Shen, J.X., Xu, F.Y. (2023). 

Multiobjective-based acoustic sensor configuration for 

structural health monitoring of compressor blade. IEEE 

Sensors Journal, 23(13): 14737-14745. 

https://doi.org/10.1109/JSEN.2023.3277339  

[20] Peng, Z.Q., Wang, Q.B., Liu, Z.R., He, R.J. (2024). 

1515



 

Remaining useful life prediction for aircraft engines 

under high-pressure compressor degradation faults based 

on FC-AMSLSTM. Aerospace, 11(4): 293. 

https://doi.org/10.3390/aerospace11040293  

[21] Jeon, S.H., Yoo, S., Yoo, Y.S., Lee, I.W. (2024). ML-

and LSTM-Based radiator predictive maintenance for 

energy saving in compressed air systems. Energies, 

17(6): 1428. https://doi.org/10.3390/en17061428  

1516




