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With the advancement of globalization, the importance of English as a global lingua franca 

has grown, making standard English pronunciation a reflection of personal communication 

skills and international competitiveness. However, non-native English speakers often 

struggle with pronunciation due to the influence of their mother tongue, which negatively 

impacts communication effectiveness. To address this, an English pronunciation correction 

system based on signal processing technology has emerged, aimed at helping learners 

improve pronunciation accuracy and enhance language learning efficiency. Nonetheless, 

existing systems still face challenges in areas such as processing complex English speech 

signals, recognition accuracy, real-time performance, and adaptability. This research 

proposes two main contributions: the construction of an English speech recognition network 

based on signal processing to improve recognition accuracy and real-time performance, and 

the development of a pronunciation correction method that offers precise and personalized 

feedback. This study not only addresses the shortcomings of current systems but also 

provides new ideas and methods for the future development of pronunciation correction 

systems, holding significant theoretical and practical value. 
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1. INTRODUCTION

With the acceleration of globalization, the importance of 

English as a global lingua franca has become increasingly 

prominent [1-5]. Mastering standard English pronunciation is 

not only an important reflection of personal communication 

skills but also an expression of national and corporate 

competitiveness on the international stage. However, many 

non-native English speakers often experience interference 

from their mother tongue's phonetic system when learning 

English, leading to inaccurate pronunciation that affects 

communication effectiveness [6, 7]. Addressing this issue, 

how to utilize modern technological means, especially signal 

processing technology, to assist in the correction of English 

pronunciation has become an important topic in language 

learning research. 

In the past few decades, researchers have conducted 

extensive studies and explorations on English pronunciation 

correction systems. By analyzing and correcting English 

pronunciation using signal processing technology, it is 

possible not only to improve learners' pronunciation accuracy 

but also to enhance their language learning efficiency to some 

extent [8-10]. Therefore, English pronunciation correction 

systems based on signal processing hold significant research 

significance in the field of educational technology, providing 

language learners with more scientific and effective 

pronunciation correction tools. 

Although some signal processing-based pronunciation 

correction systems have already been developed, these 

systems still exhibit certain deficiencies in practical 

applications [11-16]. For example, most existing systems have 

low recognition accuracy and real-time performance when 

processing complex English speech signals, making it difficult 

to provide effective personalized pronunciation correction 

feedback. Additionally, these systems also need to improve 

their adaptability and robustness when handling English 

speech signals with different accents and speech rates [17-23]. 

Thus, addressing these deficiencies and further enhancing 

system performance and learner experience remains an 

important issue that requires urgent resolution. 

This paper focuses on two main research components: first, 

constructing an English speech recognition network based on 

signal processing, aimed at improving the recognition 

accuracy and real-time performance of English speech signals; 

second, researching signal processing-based English 

pronunciation correction methods to provide learners with 

more precise and personalized pronunciation correction 

suggestions. This study not only fills the gaps in recognition 

accuracy and real-time performance of existing systems but 

also provides new ideas and methods for the future 

development of English pronunciation correction systems, 

possessing significant theoretical and practical value. 

2. CONSTRUCTION OF THE ENGLISH SPEECH

RECOGNITION NETWORK BASED ON SIGNAL

PROCESSING

An efficient English speech recognition network is crucial 

for accurately capturing and decoding learners' English speech 
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signals, which is essential for pronunciation analysis and 

correction. Without precise English speech recognition, the 

system cannot correctly understand learners' pronunciation 

features, thereby failing to provide effective correction 

suggestions. English speech contains rich acoustic features 

and complex pronunciation variations, posing significant 

challenges for English speech recognition. 

To address the problem of long-distance dependencies, 

traditional English speech sequence-to-sequence models often 

encounter information forgetting when processing long 

sequences, which creates significant obstacles in accurately 

capturing learners' English speech features. Models based on 

multi-head attention mechanisms better handle global 

information by assigning different weights to various elements, 

allowing the model to focus on parts of the input sequence that 

contribute more to the output, thereby alleviating the long-

distance dependency issue to some extent. 

To better tackle long-distance dependencies and improve 

the accuracy and robustness of English speech recognition, 

this paper employs a network model based on dilated 

convolution and multi-head attention mechanisms for 

recognizing English speech, providing a solid technical 

foundation for the English pronunciation correction system. 

The structure diagram is shown in Figure 1. 

 

 
 

Figure 1. Structure of the English speech recognition model 

 

To effectively extract shallow local features from English 

speech signals and ensure the generation of denser and more 

representative English speech feature vectors, we add a 

convolutional layer module before the network model. This 

module mainly consists of a convolutional downsampling 

module, a positional encoding module, and a one-dimensional 

convolution module. The convolutional downsampling 

module extracts local features through two two-dimensional 

convolution networks. The input English speech signal is a 

four-dimensional vector with an added channel, denoted as (Y, 

S, D, Z), where Y represents batch size, S represents the 

number of frames in a sample, D represents the feature 

dimension of each frame signal, and Z represents the number 

of added channels. The convolutional downsampling module 

reduces the dimensionality of the input English speech signal 

and merges its last two dimensions, resulting in a dimensional 

change to (Y, S, DZ). This processing transforms the original 

four-dimensional vector into a two-dimensional feature 

sequence (Y, S, DZ), thereby enabling more efficient 

subsequent feature extraction. 

After the convolutional downsampling, adding positional 

encoding helps the network better capture the positional 

relationships within the sequence information. This is 

especially critical for the time series features in English speech 

signals, as they contain not only frequency information but 

also dynamic changes over time. By incorporating positional 

encoding, the network can more accurately understand the 

temporal distribution of the English speech signal, thus 

enhancing the feature extraction effect. In practical 

implementation, the positional encoding module generates a 
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positional encoding vector with the same dimensions as the 

input English speech feature sequence. Assuming the input 

sequence is a=[a1,...,aV] with length V, where v denotes the 

position of elements in the sequence, a common method for 

generating positional encoding is based on sine and cosine 

functions, which can capture the relative positional 

relationships of elements in the sequence. The formula for 

generating the encoding vector at position v is as follows: 
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Assuming that the positional encoding vector at even 

positions is represented by u=2j and at odd positions by 

u=2j+1, the frequency μj is expressed as follows: 
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The vector form of the positional encoding is given by: 
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By adding the above vector to the English speech feature 

vector through addition, we have: 

 

n n na a o= +  (4) 

 

The one-dimensional convolution module further processes 

the two-dimensional feature sequence. Through one-

dimensional convolution operations, the network can extract 

features along the temporal dimension, capturing finer-grained 

English speech features. Its structure includes layer 

normalization, pointwise convolution, channel convolution, 

gated linear units (GLU), batch normalization, Swish 

activation function, Dropout, and residual structures. Layer 

normalization and batch normalization enhance training 

stability and accelerate convergence within the one-

dimensional convolution module. The combination of 

pointwise convolution and channel convolution allows the 

one-dimensional convolution module to efficiently extract and 

process English speech features. GLU introduces a sequential 

processing capability similar to Recurrent Neural Networks in 

the one-dimensional convolution module. The Swish 

activation function and Dropout further improve the model's 

nonlinear expressiveness and prevent overfitting. The 

application of residual structures in the one-dimensional 

convolution module ensures the training stability and 

performance enhancement of deep networks. 

The basic principle of the convolutional layer module is to 

efficiently process and represent the input English speech 

signals by learning and extracting different local features from 

English speech signals through local connections and weight 

sharing using multiple convolution kernels. When the input 

signal a(v) enters the convolutional layer module, it first 

undergoes layer normalization to stabilize the distribution of 

data, reducing internal covariate shift during training. The 

normalized signal is convolved with a convolution kernel q(v) 

of size j and quantity re*R, where R is the embedding 

dimension of the attention mechanism. The convolution 

features A obtained through the convolution operation 

effectively extract local features from the input signal. The 

calculation formula is as follows: 
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Afterwards, the convolution features A are fed into the GLU. 

The GLU compresses and processes all information prior to 

the current moment within the time window, maintaining the 

consistency between the temporal position and the actual 

content. In this way, the GLU can retain the temporal 

information in the English speech signal while processing 

information from different time points in parallel, which is 

crucial for handling the temporal features in English speech 

signals. Assuming the convolution kernel parameters are 

represented by Q and N, and the bias parameters are 

represented by y and z, the calculation formula is as follows: 

 

( ) ( ) ( )g A A Q y A N z=  +   +  (6) 

 

The feature map undergoes batch normalization, ensuring 

that the features conform to a standard normal distribution, 

which further improves the model's training stability and 

convergence speed. Batch normalization reduces internal 

covariate shift, ensuring consistency in the distribution of 

input data across layers, thus enhancing the network's 

generalization capability. When the normalized features are 

input into the Swish activation layer, let G denote the features 

after activation by the Swish function, with batch 

normalization denoted as BN(.) and the Swish activation 

function denoted as δ(.). The calculation formula is: 

 

( )( )( )( )G BN fq CONV g A=  (7) 

 

The expression for δ(.) is: 
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The English speech features G then pass through a 

pointwise convolution and a Dropout layer. The pointwise 

convolution is used for cross-channel feature fusion, 

combining features from each channel using a 1×1 

convolution kernel, further extracting and merging feature 

information across different channels. Dropout randomly 

drops some neurons to prevent overfitting and improve the 

model's generalization capability. Let the output of the 

pointwise convolution be denoted by oq CONV(.). The 

formula is as follows: 

 

( )( )C Dropout oq CONV G=  (9) 
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The processed feature map passes through a residual 

structure, where the input is directly added to the output via a 

skip connection. This not only preserves the original feature 

information but also enhances the training stability of the deep 

network, avoiding the gradient vanishing problem, thereby 

improving model performance. Let the output of the stacked 

module be denoted by B and the weighting factor of the 

residual structure by β. The calculation formula is: 

 

( )B C a v= +   (10) 

 

As English speech signals are temporal data, their features 

depend not only on the current input but are also closely 

related to past historical features. Therefore, the network must 

capture both local and global features during feature extraction. 

Dilated convolution expands the receptive field while 

maintaining computational efficiency, allowing it to capture 

long-range dependencies, making it suitable for extracting 

global features. Meanwhile, the convolutional layer 

effectively extracts local features from English speech signals 

through local connections and weight sharing. Therefore, 

using a combination of dilated convolution and standard 

convolution can effectively balance local and global 

information during feature extraction. 

To further enhance feature extraction effectiveness, a multi-

head attention mechanism is introduced into the network. This 

mechanism allocates multiple attention subspaces to achieve 

multi-scale feature learning. Specifically, the attention space 

is divided into V attention subspaces, with each subspace's 

model dimension reduced to R/V, where R represents the 

embedding dimension of the attention mechanism. This 

partitioning method maintains the total parameter count of the 

model, but it can somewhat diminish the feature representation 

capacity within each attention subspace. Therefore, it is crucial 

to set the number of attention heads V appropriately. An 

excessive number of attention heads can lead to excessively 

small dimensions in each subspace, resulting in insufficient 

representation capacity, thus affecting overall performance. 

When designing the English speech recognition network, 

using a combined model of dilated convolution and multi-head 

attention effectively addresses these issues. 

Specifically, the dilated convolutional neural network 

undertakes the initial feature extraction task in each parallel 

branch. Since dilated convolution can significantly expand the 

receptive field without increasing computational cost, it can 

capture a larger contextual information range with fewer 

layers. Each branch has a different dilation rate, meaning that 

each branch can extract information from different scales of 

the feature space. This multi-scale feature extraction approach 

ensures that the network can focus on local details while also 

capturing long-range dependencies, providing good coverage 

of both global and detailed features in English speech signals. 

After the dilated convolution processing, the feature vectors 

from each branch are input into the multi-head attention 

mechanism. The multi-head attention mechanism divides the 

attention space into multiple subspaces, where each subspace 

independently computes attention weights, thus allowing 

focus on different features. Due to the different dilation rates 

in each branch, the receptive fields that the multi-head 

attention mechanism focuses on also vary, allowing each 

attention head to concentrate on information within its 

receptive field without overly focusing on global information. 

This design not only reduces the amount of information that 

needs to be processed in each branch but also enhances the 

overall feature extraction efficiency and accuracy of the 

network. 

To address the issue of increased model parameters 

resulting from the multi-branch structure, this paper proposes 

a dual-branch fusion network, with a structure diagram shown 

in Figure 2. In this module, the outputs of the two parallel 

branches are concatenated along the channel dimension to 

form a new feature map. The concatenated feature map's 

channel dimension increases to twice the original, but a linear 

layer compresses it back to the original channel count, 

ensuring that the model parameters do not significantly 

increase. Layer normalization is performed after each 

concatenation to ensure stability in gradients during 

backpropagation, further improving training effectiveness and 

model convergence speed. Specifically, let the output of the u-

th layer and the k-th branch's module be denoted as Pk
s, where 

u=1,2,…,v and k=1,2,…,l/2. Each layer's branches gradually 

merge after passing through the dual-branch fusion network 

until a single branch is ultimately formed. Let v denote the 

maximum number of layers in the network, l denotes the 

maximum number of branches, and the concatenation output 

of the u+1-th layer and the k-th branch be denoted as CONu+1
k, 

and the network output of the u+1-th layer and the k-th branch 

be denoted as FDVk
u+1. The output of the dual-branch fusion 

network is given by the following equation: 

 

( )2 1 2

1 ,k k k

u u uCON CONCAT P P − 

+ =  (11) 

 

( )( )( )( )1 1

k k

u uFDV Dropout BN LINEAR LN CON+ +=  (12) 

 

 
 

Figure 2. Structure of dual-branch fusion network 

 

The channel attention mechanism enhances the model's 

ability to identify different channel features by weighting the 

channel dimension of the output feature map. Specifically, this 
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paper employs SENet to achieve this purpose. SENet 

computes the importance weights of each channel by 

performing "squeeze" and "excitation" operations on each 

channel feature, and applies weighted processing to the output 

features. This mechanism allows the model to focus more on 

the features that significantly contribute to the pronunciation 

correction task while suppressing noise or irrelevant features. 

The specific structure is shown in Figure 3. 

 

 
 

Figure 3. Structure of feedforward neural network based on channel attention 

 

In the network model, the output dimension of the linear 

layer in the last attention mechanism module is set to F=2*Z. 

This design enhances the representation capability of SENet 

by increasing the number of channel dimensions. Through this 

method, the network can more flexibly capture complex 

English speech features, especially excelling in handling long-

distance dependencies and multi-scale features. After the 

channel features are weighted, the feature map is input into the 

feedforward neural network module. The design of this 

module aims to further enhance the model's nonlinear 

representation ability and classification performance. The 

structure of the feedforward neural network module includes 

layer normalization, two linear layers, Dropout, and residual 

connections. Specifically, layer normalization is used to 

standardize the input of each layer, avoiding gradient 

vanishing or explosion issues, ensuring training stability. The 

linear layers map the input space to the output space through 

the stacking of two linear layers. This design not only 

increases the model's nonlinear representation ability but also 

better captures complex English speech features. Dropout is 

used to prevent overfitting by randomly dropping some 

neurons, enhancing the model's generalization ability. 

Residual connections ensure smoother information transfer 

within the network, avoiding information loss and improving 

the model's training efficiency. 

 

 

3. RESEARCH ON SIGNAL PROCESSING-BASED 

ENGLISH PRONUNCIATION CORRECTION 

METHOD 

 

Based on the generated signal processing English speech 

recognition results, preprocessing and feature extraction are 

performed, and these features are input into the feedforward 

neural network based on channel attention. A confusion matrix 

for pronunciation errors is constructed, followed by the 

application of factor clustering algorithms to analyze the 

confusion matrix. Based on the results of the clustering 

analysis, we build an automated pronunciation error detection 

and correction system. This system can provide targeted 

correction suggestions and guidance based on different types 

of pronunciation errors. 

In the proposed signal processing-based English 

pronunciation correction method, we combine the Hidden 

Markov Model (HMM) to establish and train the learners' 

spoken pronunciation model. HMM is widely used in English 

speech recognition, effectively handling time series data and 

modeling the temporal features in English speech signals. 

Specifically, we first establish an initial model ε and initialize 

the parameters (g, m, τ). Here, g represents the state transition 

matrix, describing the transition probabilities between 

different states; m represents the observation matrix, 

describing the probability distribution of observing specific 

features in each state; and τ represents the initial state 

distribution, describing the probability distribution of each 

state at the initial time in the HMM. During initialization, we 

can use a large amount of correctly pronounced English speech 

data to estimate the initial values of these parameters through 

statistical methods. 

After establishing the initial model, we obtain new 

parameter combinations (g*,m*,τ*) through observed 

sequence data. In this step, we use the learners' actual 

pronunciation data to iteratively update the model parameters 

through the HMM training algorithm. Specifically, the Baum-

Welch algorithm is used within the expectation-maximization 

framework to iteratively optimize the model parameters, 

2755



 

maximizing the likelihood of the model for the observed data. 

In each iteration, the expectation step calculates the expected 

value of the observed data under the current parameters, while 

the maximization step updates the model parameters based on 

this expected value. 

The above steps are repeated to improve the model 

parameters until the iteration ends. This process typically 

requires multiple iterations until the changes in model 

parameters stabilize, i.e., the parameters converge. During this 

process, the model is continuously optimized, gradually 

improving its fit to the learners' pronunciation data. To avoid 

overfitting, cross-validation methods are commonly employed 

to evaluate the model. After each iteration, performance 

metrics on the validation set are used to monitor the training 

effectiveness of the model and prevent it from overfitting to 

the training data. 

For each frame of the English speech signal, we use Fast 

Fourier Transform (FFT) to convert the time-domain signal 

into the frequency domain. In the frequency domain, the 

spectral range of the signal usually contains rich English 

speech information. To further analyze these spectral features, 

we set up several band-pass filters. These filters decompose 

the spectral signal to extract features within different 

frequency ranges. Specifically, we need to set several band-

pass filters within the spectral range, evenly distributing their 

center frequencies. After setting up the band-pass filters, the 

output signal from each filter is processed. First, the spectral 

signal of each frame is passed through all the established band-

pass filters. Each filter retains only the signal components near 

its center frequency, while other frequency components are 

attenuated. Thus, we obtain a series of signals, each 

representing the energy distribution within different frequency 

ranges. For each band-pass filter's output signal, we calculate 

its energy. This can be achieved by summing the squares of 

the filtered signal. The energy value reflects the signal strength 

within that frequency range, which is an important spectral 

feature. To simulate the nonlinear characteristics of human ear 

perception, the energy values of each band-pass filter are 

logarithmically transformed. The logarithmic transformation 

compresses the dynamic range, making the features more 

stable. Let the extracted English speech pronunciation feature 

be represented by σu, the center frequency of the filtered signal 

be represented by ME(d), and the Fourier transform factor be 

represented by d(a). The specific process is as follows: 

 

( ) ( ) /u uME d d a A =  (13) 

 

In the proposed method, the automatic correction of English 

pronunciation errors can be achieved through the confusion 

matrix factor clustering algorithm and Gaussian weighting 

method. The steps are detailed as follows: 

 

Step 1: Obtain target English pronunciation factors 

First, select several training data points from the learners' 

spoken pronunciation data. This training data should include 

various pronunciation scenarios, including correct 

pronunciations and common pronunciation errors. Next, use 

the confusion matrix to quantify the differences between the 

learners' pronunciations and standard English pronunciations. 

Each element in the confusion matrix represents the 

probability of a certain phoneme pronounced by the learner 

being recognized as another phoneme. To obtain the confusion 

probability values, an acoustic model can be used to perform 

forced alignment on the learners' pronunciations and the 

standard English pronunciations. Through forced alignment, 

we can acquire the target Hidden Markov sequence and 

preserve its temporal information. 

 

Step 2: Identify correct English phonemes 

After obtaining the confusion probabilities of the learners' 

pronunciation data, the next step is to identify the correct 

phonemes in English pronunciation. This step relies on a 

trained acoustic model that can effectively decode the learners' 

pronunciation data. The acoustic model analyzes the training 

data to recognize standard English phonemes and preserves 

the temporal information of these phonemes. Specifically, the 

acoustic model extracts feature from the input learners' 

pronunciation and decodes them into a phoneme sequence. 

The preserved temporal information includes the start and end 

times of each phoneme, which is crucial for subsequent co-

occurrence matrix construction and error correction. By 

accurately preserving temporal information, we can align the 

correct phonemes with the learners' pronunciation data in time, 

providing data support for building the confusion matrix. 

 

Step 3: Establish the co-occurrence matrix 

After identifying the correct English phonemes and 

preserving their temporal information, we need to construct a 

related matrix, i.e., a co-occurrence matrix. Specifically, first, 

align the target Hidden Markov sequence obtained in Step 1 

with the correctly identified phoneme sequence from Step 2 in 

time. Through alignment, we can determine the 

correspondence of each phoneme in the learners' 

pronunciation with the correct phonemes along the timeline. 

Based on the results of this time alignment, we construct the 

co-occurrence matrix. Each element in the co-occurrence 

matrix represents the co-occurrence frequency or probability 

between a certain phoneme in the learners' pronunciation and 

the correct phoneme. This matrix provides detailed 

distribution information about pronunciation errors, reflecting 

which phonemes are easily confused and the temporal 

distribution characteristics of this confusion. By analyzing the 

co-occurrence matrix, we can identify high-frequency 

pronunciation errors and provide specific temporal locations 

for each type of error. Let the co-occurrence matrix be 

represented by S, the number of correct consonant phonemes 

be represented by a, and the number of learner's English 

pronunciation phonemes be represented by b. 

 

 S a b=   (14) 

 

Step 4: Similarity calculation 

After constructing the co-occurrence matrix, we need to 

further quantify the similarity between the learners' 

pronunciations and standard English pronunciations. The key 

to this step is to determine the specific method for similarity 

calculation in order to form a similarity matrix. Let the number 

of correct English pronunciation phonemes be y and the 

number of learner pronunciation phonemes be o. We label the 

co-occurrence matrix as St.s(y,o), which records the similarity 

between each correct phoneme and the learner pronunciation 

phonemes. Specifically, first represent the pronunciation 

features of each phoneme as vectors, where the features may 

include frequency, duration, energy, etc. Next, use the cosine 

similarity formula to calculate the similarity between each pair 

of phoneme vectors. Finally, fill in the similarity values for 

each pair of phonemes into the similarity matrix. Let the 

correct consonant pronunciation phoneme be represented by lk, 
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the learner's consonant pronunciation phoneme by vu, the 

similarity coefficient by COUNT, the number of learner 

consonant pronunciation phonemes by o, the number of tested 

pronunciation factors by O, and the similarity status matrix by 

S(u,k). 

 

( ) ( ) ( )
1

, | / ,
o

k u g u

o

S u k COUNT l v COUNT l v
=

=   (15) 

 

Step 5: Information state mapping 

After obtaining the similarity matrix, we need to perform 

state mapping for this similarity information. The goal of 

information state mapping is to extract the optimal and 

alternative correction states from the similarity matrix to guide 

the correction of pronunciation errors. Specifically, traverse 

the similarity matrix St.s(y, o), and select the column with the 

highest similarity corresponding to each correct phoneme as 

the best correction state. Repeat this process to select several 

elements with high similarity, forming a series of correction 

states acv. Map these correction states into a high-dimensional 

space for better analysis and processing. 

 

Step 6: Determine correction data 

The final step is to calculate the correction coefficients for 

the learners' pronunciation based on the determined correction 

states and mapped data, and to complete the automatic 

correction. Specifically, based on the correction states mapped 

to high-dimensional space, calculate the correction 

coefficients for each correction state. The correction 

coefficients can be determined through linear regression or 

other optimization methods to ensure that the corrected 

pronunciation is as close as possible to the standard 

pronunciation. By combining the best correction states and 

alternative correction states, we comprehensively consider the 

weights of different correction states to form the final 

correction strategy. The weight allocation can be based on a 

weighted average of similarity values or optimized through 

methods such as Bayesian inference. Apply the correction 

coefficients to the learners' pronunciation data to adjust the 

feature parameters of each pronunciation phoneme, thus 

achieving automatic pronunciation correction. Specifically, 

parameters such as frequency, duration, and energy of the 

phonemes can be adjusted to make them closer to the standard 

pronunciation. Let the state correction weight be represented 

by α, the erroneous pronunciation data by eu,ksg(zh)zq, the 

correction coefficient by emsg, and the observation state by zh. 

 

( ) ( ) ( )
, ,

1

1sg sg sg

ac

h h uk hu k u k m
u

e z e z e z  
=

= + −   (16) 

 

Through the above steps, we can systematically achieve 

automatic correction of learners' English pronunciation errors. 

The similarity calculation, information state mapping, and 

determination of correction data constitute a complete 

correction process, ensuring that learners can improve their 

pronunciation accuracy through scientific methods. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 
 

From the experimental results in Table 1, it can be observed 

that different branch expansion rates have a significant impact 

on the WER in English speech recognition. When the 

expansion rate is set to “1-1-1-1-1-1-1-1,” the WER is the 

highest at 9.11%, indicating that using the same expansion rate 

configuration fails to effectively capture the complex features 

of speech signals. As the expansion rate gradually increases 

and uses incremental configurations, the WER significantly 

decreases. For instance, with the expansion rate set to “1-3-6-

9-11-13-17-21,” the WER drops to 7.14%; when the 

expansion rate is set to “1-2-4-6-8-12-14-16,” the WER 

reaches the lowest at 6.89%. This indicates that increasing 

differentiation in the expansion rate combinations helps to 

more accurately capture different hierarchical features in 

speech signals, thereby enhancing recognition accuracy. 

Based on the experimental results, it can be concluded that by 

designing a reasonable combination of expansion rates, the 

proposed speech recognition network significantly reduces the 

WER and demonstrates high recognition performance. 

Particularly, the expansion rate combination “1-2-4-6-8-12-

14-16” effectively improves the network's ability to capture 

speech features, validating the advantages of this branch 

expansion rate configuration in speech recognition tasks. 
 

Table 1. Impact of different branch expansion rates on word 

error rate (WER) in English speech recognition 
 

Expansion Rate WER (%) 

1-1-1-1-1-1-1-1 9.11 

1-1-1-1-2-3-7-9 7.62 

1-3-6-9-11-13-17-21 7.14 

1-2-3-4-5-6-7-8 7.32 

1-2-4-6-8-12-14-16 6.89 

 

Table 2. Impact of number of branches on WER in English 

speech recognition 

 

Number of 

Branches 

Parameter 

Count (M) 

WER 

(%) 

Training 

Duration 

(hours) 

4 12.9 7.13 ≈37 

8 17.8 6.88 ≈55 

15 27.6 6.49 ≈82 

 

Table 3. Impact of different numbers of attention heads on 

WER in English speech recognition 

 

Use of Deep 

Convolutional 

Neural Network 

Number of 

Attention 

Heads 

Attention 

Subspace 

Dimension 

WER 

(%) 

No 
4 63 9.11 

8 31 9.24 

Yes 

2 125 8.7 

4 62 6.89 

8 31 6.55 

 

From Table 2, it is clear that increasing the number of 

branches has a noticeable optimizing effect on the WER in 

English speech recognition. When the number of branches is 

4, the model's WER is 7.13%, with a parameter count of 12.9M 

and a training duration of approximately 37 hours. As the 

number of branches increases to 8, the WER decreases to 

6.88%, with the parameter count rising to 17.8M and the 

training duration increasing to about 55 hours. When the 

number of branches is further increased to 15, the WER 

significantly drops to 6.49%, with a parameter count reaching 

27.6M and a training duration of about 82 hours. The data 

indicates that while increasing the number of branches raises 

the model's complexity and training duration, it also 
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significantly enhances the model's speech recognition 

accuracy. It can be concluded that the proposed multi-branch 

structured English speech recognition network is clearly 

effective in optimizing the WER. Increasing the number of 

branches allows the model to better capture and process subtle 

features in speech signals, improving recognition accuracy; 

although the parameter count and training duration increase, 

this performance cost is justified by the significant reduction 

in WER. 

From the experimental results in Table 3, it can be seen that 

the number of attention heads and the use of Deep 

Convolutional Neural Networks (DCNN) significantly affect 

the WER in English speech recognition. In the absence of 

DCNN, the WER for 4 and 8 attention heads are 9.11% and 

9.24%, respectively, with a corresponding decrease in 

subspace dimension (from 63 to 31), indicating that the 

attention mechanism has limited improvement on the WER 

without the use of deep convolution. However, when using 

DCNN, the WER drops significantly, especially with 4 and 8 

attention heads, where the rates fall to 6.89% and 6.55%, 

respectively. Under the combined influence of DCNN and 

multi-head attention, the model significantly improves speech 

recognition accuracy. Based on the above experimental data, 

it can be concluded that combining DCNN with a multi-head 

attention mechanism is an effective strategy for enhancing 

speech recognition accuracy. In the absence of DCNN, 

increasing the number of attention heads does not significantly 

improve the WER; however, with the support of DCNN, the 

WER decreases significantly, and the enhancing effect of the 

multi-head attention mechanism becomes more pronounced. 

The results validate that the network structure proposed in this 

study can effectively enhance speech recognition performance, 

particularly in improving recognition accuracy, demonstrating 

superior performance and a rational technical pathway for 

practical applications. 

 

Table 4. Impact of different numbers of convolution blocks 

and internal convolution kernel sizes on WER in English 

speech recognition 

 

Number of 

Convolution 

Blocks 

Expansion 

Factor 

Parameter 

Count (M) 
WER (%) 

4 2-2-2-2 16.8 7.23 

8 3-3-...-3 17.9 6.58 

8 1-2-2-2-4-4-4-1 21.3 6.97 

8 1-3-3-6-6-3-3-1 18.8 6.65 

15 2-2-...-2 21.2 6.79 

 

Table 5. Ablation experiment of SENet and feedforward 

neural network 

 

 
Last Layer 

Dimension 

SENet & 

Feedforward 

Neural Network 

Dimension 

WER 

(%) 

-(SENet+ 

Feedforward) 
524 (0,0) 8.88 

-SENet 524 (0,524) 7.23 

-Feedforward 524 (524,0) 7.62 

SENet+ 

Feedforward 
524 (524,524) 6.89 

-(SENet+ 

Feedforward) 
524 (0,0) 11.24 

SENet+ 

Feedforward 
524 (262,262) 9.84 

From the experimental results in Table 4, it is evident that 

the number of convolution blocks and the internal convolution 

kernel sizes significantly affect the WER in English speech 

recognition. When the number of convolution blocks is 4 and 

the expansion factor is “2-2-2-2,” the WER is 7.23% with a 

parameter count of 16.8M. As the number of convolution 

blocks increases to 8 with an expansion factor of “3-3-...-3,” 

the WER decreases to 6.58%, while the parameter count 

slightly increases to 17.9M. With 8 convolution blocks and an 

expansion factor configuration of “1-2-2-2-4-4-4-1,” the 

parameter count rises to 21.3M, but the WER is 6.97%, 

indicating a delicate balance between parameter count and 

WER. When the number of convolution blocks is 15 with an 

expansion factor of “2-2-...-2,” the WER is 6.79%, and the 

parameter count increases to 21.2M, suggesting that more 

convolution blocks can enhance recognition accuracy, though 

the effectiveness depends on the specific configuration. Based 

on the experimental results, it can be concluded that the 

reasonable configuration of the number of convolution blocks 

and the expansion factors is a crucial factor for improving 

speech recognition accuracy. Increasing the number of 

convolution blocks and selecting appropriate expansion factor 

combinations can better capture and represent the details of 

speech signals, as demonstrated by the significant reduction in 

WER to 6.58% with the “3-3-...-3” configuration of 8 

convolution blocks. These experimental results validate the 

effectiveness of the proposed English speech recognition 

network based on convolution blocks and expansion factor 

optimization, highlighting the significant impact of optimizing 

convolution configurations within a certain parameter range 

on enhancing speech recognition performance. 

From the ablation experiment results in Table 5, it can be 

observed that the SENet module and the Feedforward Neural 

Network (FFN) each contribute to improving speech 

recognition accuracy. When only the SENet module is used 

(dimension configuration (0,0)), the WER is 8.88%. In 

contrast, when only the FFN module is used (dimension 

configuration (0,524)), the WER decreases to 7.23%, 

indicating that the FFN module has a significant role in 

enhancing recognition accuracy. When only the SENet 

dimension is set to 524, the WER is 7.62%. Furthermore, when 

combining SENet and FFN (dimension configuration 

(524,524)), the WER significantly drops to 6.89%, 

demonstrating the collaborative effect of both modules in 

improving speech recognition performance. In comparison, a 

lower dimension combination of SENet and FFN (262,262) 

yields a WER of 9.84%, indicating that reducing the 

dimensions diminishes the optimization effect of both 

modules. Based on the above experimental results, it can be 

concluded that the combination of SENet and FFN modules 

can effectively reduce the WER and improve speech 

recognition accuracy. While using SENet or FFN alone does 

yield some improvement, their synergistic effect significantly 

enhances model performance, especially at higher 

configuration dimensions, achieving the lowest WER of 

6.89%. This optimization effect validates the effectiveness of 

the network structure proposed in this study, indicating that 

enhancing the network's adaptability and representational 

capability for features can significantly improve recognition 

accuracy, providing important technical support for achieving 

high-precision English speech recognition. 

Figure 4 shows that the proposed method outperforms 

DTW-CNN and Wav2Vec in total number of corrections 

across different testing instances. At 50 tests, the total number 
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of corrections for the proposed method is 275, exceeding 

DTW-CNN's 265 and Wav2Vec's 240. As the number of tests 

increases, the total corrections for the proposed method 

gradually decline but remain superior throughout the testing 

process. By 300 tests, the proposed method's corrections total 

210, significantly higher than DTW-CNN's 160 and 

Wav2Vec's 185. This indicates that the proposed method 

demonstrates strong stability and durability under various 

testing conditions, particularly at higher test counts where its 

advantages are most pronounced. Based on the experimental 

results, it can be concluded that the proposed signal 

processing-based English speech pronunciation correction 

method exhibits clear superiority in the number of corrections. 

Compared to DTW-CNN and Wav2Vec, the proposed method 

maintains a high number of corrections across multiple test 

instances, highlighting its advantages in accuracy and 

durability. 

 

 
 

Figure 4. Total number of corrections for different methods 

 

 
 

Figure 5. Correction success rate test results for different 

methods 

 

The results in Figure 5 show that the proposed method 

consistently outperforms DTW-CNN and Wav2Vec in terms 

of correction success rate across varying numbers of 

pronunciation errors. When the number of pronunciation 

errors is 0, all three methods achieve a 100% correction 

success rate. However, as the error count increases, the 

differences become more pronounced. Specifically, when the 

number of pronunciation errors reaches 300, the success rate 

of the proposed method remains at 97%, while DTW-CNN 

and Wav2Vec drop to 94% and 88%, respectively. When the 

error count increases to 700, the proposed method maintains a 

correction success rate of 92%, significantly higher than 

DTW-CNN's 84% and Wav2Vec's 70%. This demonstrates 

that the proposed method retains a high correction success rate 

even in the presence of numerous errors. Based on the 

experimental data, it can be concluded that the proposed signal 

processing-based English pronunciation correction method 

exhibits significant advantages in correction success rate, 

especially when the number of pronunciation errors is high. 

Compared to DTW-CNN and Wav2Vec, the proposed method 

demonstrates strong resistance to interference and stability, 

ensuring high-quality correction outcomes in complex 

pronunciation error environments. 

 

 
 

Figure 6. Missed correction count test results for different 

methods 

 

The test results for missed correction counts in Figure 6 

indicate that the proposed method consistently achieves a 

lower count of missed corrections compared to DTW-CNN 

and Wav2Vec across varying total numbers of pronunciation 

errors, demonstrating clear advantages. When the total number 

of pronunciation errors is 100, the missed correction counts for 

the proposed method, DTW-CNN, and Wav2Vec are 0, 0, and 

1.5, respectively, indicating effective pronunciation correction 

by all methods under low error conditions. However, when the 

total number of errors increases to 300, the proposed method's 

missed correction count is only 1.5, while DTW-CNN and 

Wav2Vec's counts rise to 5 and 12, respectively. At a total 

error count of 600, the proposed method's missed correction 

count is 8, while DTW-CNN and Wav2Vec report 26 and 35, 

respectively, showing that the proposed method maintains a 

low missed correction count even with many pronunciation 

errors. Based on the experimental data, it can be concluded 

that the proposed signal processing-based English 

pronunciation correction method demonstrates significant 

advantages in terms of missed correction counts, especially 

when faced with a high number of pronunciation errors. 

Compared to DTW-CNN and Wav2Vec, the proposed method 

not only maintains good correction performance under low 

error conditions but also exhibits strong robustness and 

resistance to interference under high error conditions. These 

results validate the effectiveness of the proposed method, 

indicating that it can provide high-quality correction support 

in complex pronunciation correction environments, ensuring 

learners receive more accurate pronunciation correction 

experiences. 
 

 

5. CONCLUSION 
 

This study developed an English speech recognition 

network and pronunciation correction method based on signal 

processing technology, aiming to enhance recognition 

accuracy and correction precision, thereby providing 

personalized pronunciation guidance for learners. The 
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research covers the impact of various factors, including 

different expansion rates, branch numbers, attention head 

counts, convolution block counts, and kernel sizes on the WER 

in speech recognition. Experimental results show that 

reasonably designed combinations of expansion rates and 

branch structures can effectively reduce the WER, particularly 

through the use of varying attention head counts and optimized 

convolution structures, which enhance the network's feature 

extraction capability and further improve recognition accuracy. 

Moreover, ablation experiments reveal that the combination of 

SENet and feedforward neural networks significantly 

enhances model performance, outperforming traditional 

methods like DTW-CNN and Wav2Vec in terms of correction 

success rate and missed correction count, validating the 

robustness of the proposed methods in multiple scenarios. 

In summary, the methodologies employed in this research 

significantly can improve the effectiveness of English speech 

recognition and pronunciation correction, showcasing the 

strong capabilities of signal processing-based models in 

addressing complex speech features. However, the study also 

identifies limitations, such as the model's computational 

intensity, which may affect real-time performance, and the 

need for further optimization regarding adaptability to specific 

noisy environments. Future research directions could focus on 

enhancing the model's computational efficiency, optimizing 

robustness against various background noises, and exploring 

adaptive speech feature enhancement techniques to further 

improve the practicality of recognition and correction. This 

research provides new methods and insights for the fields of 

speech recognition and pronunciation correction, laying the 

groundwork for more intelligent and efficient language 

learning support systems. 
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