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Diabetic retinopathy is one of the common causes of blindness with diabetes. Early 

diagnosis is important to prevent irreversible vision loss. Conventional methods for 

diagnosing diabetic retinopathy are often based on manual examination of retinal images, 

which can be time-consuming and subject to human error. The integration of machine-based 

automated diagnostic systems offers a promising solution to this challenge. Machine-based 

automated diagnosis of diabetic retinopathy can prevent vision loss with early detection and 

treatment. In this study, we investigated the performance of different transfer learning 

models-DenseNet, EfficientNet, VggNet, and ResNet-on a large dataset called Diabetic 

retinopathy from Kaggle, consisting of 35,108 retinal images in 5 classes. Out of which 

28086 samples were used for training purpose and 7,022 samples for validation testing. 

While previous research has explored machine learning for retinopathy diagnosis, our 

research uniquely combines modern transfer learning models and evaluates the effectiveness 

of specific processing methods with Ben Graham's processing methods. This combination 

distinguishes us from existing methods by contributing to a significant increase in accuracy. 

In particular the accuracy of the proposed approach is 97.7%, our tests show that the 

diagnostic accuracy increases by about 4-5% when using Ben Graham preprocessing. The 

results of our research may help develop more accurate and efficient automated systems for 

diagnosing diabetic retinopathy, thereby improving patient outcomes. 
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1. INTRODUCTION

Diabetic retinopathy (DR), which damages the retina as a 

result of diabetes, can lead to blindness if left untreated. 

Diabetic retinopathy can be diagnosed using optical 

techniques such as fundus photography and optical coherence 

tomography (OCT). While fundus photography captures 

detailed images of the retina, OCT creates cross-sectional 

images that show abnormalities in the layers of the retina. For 

automatic DR diagnosis, deep learning models, usually trained 

using color images, can detect and classify DR lesions. 

Transfer learning can train deep learning models on small 

datasets and improve classification accuracy. In this study, we 

investigated the effectiveness of adaptive models (DenseNet, 

EfficientNet, VggNet, ResNet) in diagnosing DR using retinal 

images. We also examine the influence of Ben Graham before 

this movement. Color imaging of the retina plays an important 

role in the evaluation and diagnosis of DR and provides 

information about the location, extent and severity of damage. 

Automated diagnosis using machine learning, especially deep 

learning, can increase accuracy and speed. In recent years, 

transfer learning has become an effective method for training 

deep learning models on small data sets. Transfer learning has 

proven effective in many image classification tasks. It is 

possible to increase the accuracy and speed of automatic DR 

diagnosis using machine learning. A deep learning method 

was developed to detect and classify DR using color images. 

In this process, deep neural networks are often trained using 

large datasets of recorded images, where color information is 

used to identify and distinguish lesions. The output of the 

network can be used to provide diagnoses and weighted scores 

to guide treatment decisions. Although other imaging 

techniques such as OCT and fluorescein angiography provide 

additional information about structure and function, color 

imaging is still an important part of DR screening and 

diagnosis. Early diagnosis and treatment of DR is important to 

prevent blindness. However, manual testing of DR is time-

consuming and error-prone. Diabetic retinopathy can be 

identified and diagnosed using color DR. Color images of the 

retina are frequently used to screen and diagnose DR because 

they provide information about the location, extent, and 

severity of damage. In particular, color analysis can help 

determine the appearance of hemorrhages, exudates, and other 

lesions indicative of DR. These lesions appear as light or dark 

spots on the retina and can be distinguished from healthy tissue 

by their color and texture. In summary, our work explores the 
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potential of modifying learning models and image 

preprocessing techniques to improve the efficiency and 

accuracy of automated DR testing. These options are designed 

to enhance the limitations of clinical guidelines and provide a 

basis for better clinical decision-making. 

 

 

2. OVERVIEW 

 

Organization of the paper flow is as follows: Related work 

is described in Section 4. The proposed preprocessing method, 

Ben Graham’s technique is illustrated in Section 5. The 

experiment result of the proposed Model is presented in 

Section 6. The final section, Section 7 and Section 8, discusses 

the conclusion and future directions respectively. 

 

 

3. OBJECTIVES 

 

The primary objectives of the paper are - to assess the 

effectiveness of transfer learning models, namely DenseNet, 

EfficientNet, VggNet, and ResNet, in diagnosing diabetic 

retinopathy using retinal images, to harness their learned 

features and optimize their performance for diabetic 

retinopathy diagnosis, to explore the impact of applying Ben 

Graham's preprocessing technique to the retinal images before 

feeding them into the transfer learning models to improve the 

model's ability to capture relevant features and patterns. 

 

 

4. LITERATURE SURVEY 

 

Several researchers have contributed to the field of diabetic 

retinopathy (DR) detection, each presenting unique 

approaches with distinct strengths and weaknesses. In a study 

by Thiagarajan et al. [1], a co-learning approach using 

machine learning (ML) models was proposed, with a database 

simulation employing traditional techniques like Logistic 

Regression, KNN, LDA, Random Forest, SVM, decision tree, 

and Naive Bayes Algorithm. While the model achieved an 

80% accuracy in predicting sounds, the study lacks a critical 

analysis of the robustness of these traditional techniques in 

comparison to more advanced methods. Gangwar and Ravi [2] 

introduced a hybrid-ResNet-v2 framework utilizing fundus 

color pictures for DR detection. The model outperformed 

Google Net but achieved a 72% accuracy rate. However, the 

study could benefit from a deeper exploration of the 

limitations of the proposed hybrid model, especially in 

comparison to other state-of-the-art architectures. 

Heisler et al. [3] highlighted the significance of deep 

learning ensemble techniques in 2020, achieving high 

accuracy rates of 92% and 90% by employing calibrated 

VGG19 pre-trained models on OCTA and co-registered 

structural images. While the results are impressive, a critical 

analysis should delve into the potential overfitting concerns 

and computational costs associated with ensemble methods. 

Wu and Hu [4] utilized pre-trained Keras models with various 

data augmentation techniques for DR detection in 2019. The 

achieved 61% accuracy with the InceptionV3 model raises 

questions about the trade-offs between accuracy and 

computational efficiency, which warrants further 

investigation. 

Arora and Pandey [5] presented a ConvNet-based approach 

in 2019, achieving a 74% accuracy rate in classifying colored 

fundus images for DR. The study could benefit from a more 

thorough examination of the model's performance across 

diverse datasets and potential biases inherent in the colorful 

vector representations. Herliana et al. [6] demonstrated that the 

combination of neural network architecture and swarm 

optimization resulted in a 4.35% improvement in accuracy for 

DR detection. A critical analysis could focus on the 

generalizability of the swarm optimization feature systems and 

their applicability to various datasets. 

Shankar et al. [7] presented a synergic deep learning model 

for automated detection and classification of diabetic 

retinopathy from fundus images, highlighting significant 

improvements in accuracy and efficiency in diagnostic 

processes. Roychowdhury et al. [8] proposed a method for the 

automated detection of neovascularization in proliferative 

diabetic retinopathy screening, leveraging advanced image 

analysis techniques to enhance early diagnosis capabilities. 

Ramani and Lakshmi [9] utilized ensemble classification 

techniques for automatic detection of diabetic retinopathy, 

demonstrating the potential of combining multiple classifiers 

to improve diagnostic accuracy. Roy et al. [10] explored the 

integration of filter and fuzzy c-means clustering for feature 

extraction and classification using support vector machines, 

providing an innovative approach to improving detection rates 

of diabetic retinopathy. The use of EfficientNet in explaining 

diabetic retinopathy, emphasizing the model's ability to offer 

both high accuracy and interpretability in medical image 

analysis [11]. While these studies showcase advancements in 

DR detection, a more critical examination of the 

methodologies, model interpretability, and generalizability is 

essential for a comprehensive understanding of their strengths 

and weaknesses beyond the reported accuracy metrics. 

The findings suggest that traditional ML algorithms do not 

provide accurate results in this type of categorization. To 

achieve high accuracy, deep learning models utilizing various 

algorithms can be used. Previous studies have shown that 

CNN is among the best tools for classifying medical picture 

data. Deep learning is a powerful tool for addressing these 

issues, and using Deep CNN with hyperparameter 

optimization can achieve high accuracy and efficiency. 

In light of the diverse methodologies discussed in the 

literature, our study aims to contribute to the field of diabetic 

retinopathy (DR) detection with specific objectives that align 

with the identified strengths and weaknesses of prior works. 

Our study aims to assess the effectiveness of transfer learning 

models, including DenseNet, EfficientNet, VggNet, and 

ResNet, for diagnosing diabetic retinopathy using retinal 

images. By synthesizing insights from studies such as [1, 2, 4, 

5, 12], we recognize the importance of selecting robust models 

for optimal performance. Building upon the critical analysis of 

existing methodologies, our study seeks to harness the learned 

features of transfer learning models and optimize their 

performance for accurate DR diagnosis. The exploration of 

Ben Graham's preprocessing technique, inspired by the 

various data augmentation techniques discussed in study by 

Wu and Hu [4], will be integral to our investigation. By 

applying this preprocessing step, we aim to enhance our 

model's ability to capture relevant features and patterns in 

retinal images, addressing potential limitations highlighted in 

previous studies.
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5. PROPOSED METHODOLOGY 

 

5.1 Ben graham preprocessing 

 

The technique involves several steps aimed at improving the 

quality of the image and making it more suitable for analysis. 

The first step is to clean up the image's noise. This is typically 

done using a filter or smoothening operation to remove any 

high-frequency noise that may be present in the image. Next, 

the image is normalized to a common range to ensure that 

different images can be compared and analyzed together. This 

involves scaling the pixel values of the image so that they fall 

within a specific range, such as between 0 and 1. After 

normalization, the image is often subjected to further 

processing, such as edge detection, segmentation, or feature 

extraction. These techniques are used to identify specific 

regions or features within the image that are relevant to the 

analysis being performed. Some mathematical equations 

involved in the Ben Graham image preprocessing technique, 

Normalization equation: 

 

𝑥′ =
𝑥 − 𝑥 𝑚𝑖𝑛   

𝑥 𝑚𝑎𝑥 − 𝑥 𝑚𝑎𝑥

 (1) 

 

where, x' is the image's normalised pixel value, x is the original 

pixel value, xmin is the image's lowest pixel value, and xmax is 

its highest. Equation for detecting edges: 

 

𝛥𝑓 = [
𝛿𝑓

𝛿𝑥
,
𝛿𝑓

𝛿𝑦
] (2) 

 

where, 𝛥𝑓 is the gradient of the image. 

𝛿𝑓/𝛿𝑥 is the partial derivative of the image with respect to 

x, and 𝛿𝑓/𝛿𝑦 is the partial derivative of the image with respect 

to y. Segmentation formula: 

 

𝐶(𝑖, 𝑗) = 𝑎𝑟𝑔𝑚𝑖𝑛 (𝐼(𝑖, 𝑗) − 𝑀(𝑘, 𝑙)2) (3) 

 

where, 𝐶(𝑖, 𝑗) is the label assigned to the pixel at location (𝑖, 𝑗), 

𝐼(𝑖, 𝑗) is the pixel value at location (𝑖, 𝑗), 𝑀(𝑘, 𝑙) is the mean 

pixel value of the region around pixel (𝑘, 𝑙) , and 𝑎𝑟𝑔𝑚𝑖𝑛 

denotes the label that minimizes the expression. Following is 

the pre-processing pseudo code: 

 

(1). For each row in the DataFrame df: 

    a. Preprocess image using preprocess() function. 

    b. Save the preprocessed image. 

(2). function preprocess(image_path, desired_size): 

    a. Apply circular cropping to the input image using the 

resize_image() function. 

    b. Resize the resulting image to the desired size.  

    c. Apply a weighted blur to the resized image using the 

blur_image() function. 

    d. Return the preprocessed image. 

(3). function resize_image(img): 

    a. Crop the image using the 

crop_nonzero_pixels_from_gray_image() function. 

    b. Calculate largest side of the cropped image. 

    c. Resize the image such that its largest side is equal to 

the calculated value. 

    d. Calculate the center and radius of the circle that best 

fits the resized image. 

    e. Create a circular mask of the same size as the resized 

image & apply to resized_image. 

    f. Crop the resulting image using the 

crop_nonzero_pixels_from_gray_image() function. 

    g. Return the final image. 

(4). function blur_image(image_path, desired_size): 

    a. Convert the image from BGR to RGB palette. 

    b. Crop the image using the 

crop_nonzero_pixels_from_gray_image() function. 

    c. Use resize_image() to resize image. 

    d. Apply a weighted blur to the resized image using the 

add_weighted_blur() function. 

    e. Return the preprocessed image. 

(5). function 

crop_nonzero_pixels_from_gray_image(img, tol): 

    a. Create a mask by thresholding the image with 

tolerance tol. 

    b. Select only the rows and columns that have non-zero 

pixels in the mask. 

    c. If the input image has 3 dimensions, convert it to 

grayscale and threshold. 

    d. Check if the resulting image has any non-zero pixels 

by calculating its shape. 

    e. If the image has no non-zero pixels, return the 

original image. 

    f. Select the non-zero pixels from each color channel 

of the image using the mask. 

    g. Stack the resulting color channels to form the final 

image and return it. 

 

Each preprocessing step contributes to achieving better 

results by addressing specific challenges associated with 

diverse image characteristics. Circular cropping focuses the 

analysis on the central region of the retinal images, which is 

often the most diagnostically relevant area. By discarding 

irrelevant peripheral information, circular cropping reduces 

noise and concentrates on the crucial features, potentially 

improving the model's ability to identify diabetic retinopathy-

related patterns. Resizing standardizes the image dimensions, 

ensuring consistency and compatibility across the dataset. It 

also simplifies computational requirements. Uniform image 

sizes facilitate model training, making it more robust and 

reducing the risk of bias towards specific resolutions. This step 

aids in streamlining subsequent processing steps. Applying a 

weighted blur helps reduce high-frequency noise and enhances 

the generalization capability of the model. The blur operation 

can smooth out minor irregularities, making the model less 

sensitive to small variations and potentially improving its 

performance on diverse retinal images. Thresholding and 

cropping help eliminate background noise and focus on 

relevant details within the images. Removing non-contributory 

background pixels reduces interference, ensuring that the 

model primarily processes the informative regions of the 

retinal images. This step is particularly important for handling 

variations in image backgrounds. Converting the image from 

BGR to RGB ensures consistency in color representation 

across different systems and libraries. Uniform color 

representation facilitates better compatibility with pre-trained 

models, avoiding potential discrepancies in feature extraction 

due to color variations. Converting the image to grayscale 

simplifies the image representation, often preserving essential 

features while reducing computational complexity. Grayscale 

images are computationally more efficient and may retain 
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sufficient information for diabetic retinopathy detection. This 

transformation also aids in standardizing input formats for 

diverse models. Reassembling the image after processing 

ensures that relevant color channels are retained for subsequent 

analysis. The final image retains essential information while 

discarding non-informative pixels, providing a clean input for 

the model and potentially improving its accuracy in identifying 

diabetic retinopathy-related features. The pre-processed 

images of three different output classes are represented in 

Figure 1. 

 

 

 
 

Figure 1. (a) (c) (e) are original images, (b) (d) (f) are 

preprocessed images using Ben Graham’s method 

 

5.2 Data augmentation 

 

Out of 35,108 images, there were 25,802 images for the 

class Normal, 2,438 and 5,288 images for the classes mild and 

moderate respectively and 872 images for severe and 708 for 

the proliferative class. This made the dataset unbalanced. In 

order to balance an unbalanced dataset, data augmentation is 

used. Data augmentation is a strategy for augmenting data 

using existing training models as a starting point. The 

advantage of data augmentation is that there is no need to 

collect additional data, which can be time-consuming and 

expensive; It can be used to expand the size of the dataset, help 

improve the accuracy of model learning, and help build 

machine learning models. It is more robust to changes in input 

data (such as changes in lighting, orientation, or scale) and 

increases the diversity of training data, thus preventing 

overfitting and improving the overall ability of machine 

learning models. Various transformations applied to the 

dataset are rotation of 15-30 degrees where the image is rotated 

by a certain angle, translation of where the image is shifted 

horizontally or vertically by a certain distance, scaling of 1.1𝑥-

1.2𝑥 where the image is scaled up or down by a certain factor 

helping to simulate objects of different sizes, horizontal and 

vertical flipping, cropping where a smaller rectangular portion 

of the image is extracted and color jittering where the color of 

the image is modified by changing the hue, saturation, and 

brightness helping to simulate different lighting conditions. 

Rotating images introduces variability in the orientation of 

features, helping the model generalize better to images with 

different perspectives. This is particularly relevant in medical 

imaging where the orientation of retinal structures may vary 

across patients. Horizontal and vertical shifts simulate 

different viewpoints, providing the model with variations in 

image composition. This helps the model become less sensitive 

to the specific positioning of retinal structures, enhancing its 

ability to detect diabetic retinopathy across diverse images. 

Scaling images up or down simulates objects of different sizes. 

This is important in capturing variations in the size of retinal 

structures or anomalies, making the model more robust to 

different scaling factors commonly encountered in medical 

imaging datasets. Horizontal and vertical flipping simulate 

objects appearing in different orientations. This augmentation 

technique aids in addressing the potential bias introduced by 

the specific orientation of retinal features in the original dataset. 

It ensures the model is exposed to a diverse range of 

orientations during training. Extracting smaller rectangular 

portions of images focuses the model's attention on specific 

regions of interest. This is particularly useful for diabetic 

retinopathy detection, where certain pathological signs may 

manifest in localized regions. Cropping helps the model learn 

to identify relevant features in different areas of the retinal 

images. Modifying the color of images through changes in hue, 

saturation, and brightness simulates different lighting 

conditions. This is crucial for training a model that can handle 

variations in illumination often encountered in real-world 

scenarios. Color jittering ensures the model is not overly 

sensitive to specific color tones or lighting conditions present 

in the original dataset. 

 

5.3 Model description 

 

5.3.1 VGG19 

VGGNet19 architecture has 19 layers, including 3 fully 

connected layers, 5 maximum pooling layers and 16 

convolutional layers. The max pooling layer has a 2-step 2×2 

filter, while the convolution layer has a small 3×3 filter. Each 

convolutional layer has a number of different filters, ranging 

from 64 in the first layer to 512 in the last layer. The number 

of units in the last connected layer is the same as the number 

of clusters in the work division, and there are a total of 4096 

units in each of the first two connected layers. After each layer 

and layer are connected to all, the layer adjustment (ReLU) 

function is used to realize the function. To prevent over-

settlement, release treatment is also applied to all layers. 

 

5.3.2 ResNET50 

Each of the five layers that make up the 50 layers of the 

ResNet50 architecture has a remaining number of layers. Two 

convolutional layers with batch normalization and cross-

connection that add input to blocks along with ReLU 
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activations generate the residuals. Convolution function and 

maximum pooling are used in the first stage to reduce the 

sample size. More blocks and more filters are gradually added 

in later stages to capture increasingly complex messages. The 

last layer consists of combining with softmax and global 

averaging in order to make the distribution. 

 

5.3.3 DenseNET121 

The CNN creator, called DenseNet121, has 121 layers and 

around 8 million nodes. Dense Block has several levels and is 

the core of DenseNet121. Each layer in a density receives 

private maps from all its layers and passes the private maps to 

the layers behind it. To improve the performance and stability 

of the model, the transformation process of dense blocks 

consists of batch normalization and rectified linear unit (ReLU) 

activation. The global average layer of the network calculates 

the average of each map specification across all dimensions. 

The final classification is done by feeding positive-valued 

vectors into a fully connected cluster. 

 

5.3.4 EfficientNET_b0 

EfficientNET_b0 architecture consists of a backbone, 

several blocks and a header. The root consists of multiple 

convolutional layers followed by maximum pooling and batch 

normalization techniques. Each block has a collection of 

individual links and cross-links, and the blocks are ordered 

hierarchically. In each block, the resolution and number of 

channels of the particular input map are increased. The head 

consists of a softmax layer for distribution, a fully connected 

layer, and a global neutral layer. Composite scaling is a state-

of-the-art method used by EfficientNET_b0 to scale models to 

multiple dimensions. Depending on the desired solution, the 

design can be scaled up or down so that resources can be used 

efficiently. Below is the final algorithm: 

 

1. Set the device (CPU or GPU) for training and 

testing. 

2. Load the pre-processed data into DataLoaders, 

which will allow us to iterate over the data easily. 

3. Define all model architecture, and specify the 

number of layers, growth rate, and other 

hyperparameters. 

4. Initialize the model (VGGNET/ ResNET/ 

DenseNET/EfficientNET). 

5. Define the loss function and optimizer. 

6. Train the model for the specified number of 

epochs: 

a. Set the model to training mode 

b. Iterate over the training data 

i. Zero the parameter gradients 

ii. Forward pass 

iii. Backward pass 

iv. Update the model parameters 

c. Set the model to evaluation mode 

d. Initialize the accuracy and loss for the test set 

e. Disable gradient computation to speed up 

inference 

f. Iterate over the test data: 

i. Forward pass 

ii. Update the test loss 

iii. Update the test accuracy 

g. Compute the average test accuracy and loss 

 

6. RESULTS 

 

6.1 Dataset description 

 

Diabetic retinopathy (DR) is a type of diabetes-related eye 

disease that can lead to blindness if left untreated. The database 

provides a collection of data that can be used to develop and 

evaluate learning models for DR classification. The data 

included a total of 35,108 cases, each labeled as one of five 

categories, out of that 28086 samples used for training purpose 

and 7,022 samples for validation testing. These categories 

represent DR severity ranging from normal (no DR) to 

progressive (maximum DR). The counts for each category in 

the database are as follows: normal (25,802), mild (2,438), 

moderate (5,288), severe (872), and progressive (708). A set of 

recorded data is provided in the database that can be used to 

develop and evaluate machine learning models for DR 

classification, where most of the events are in the normal 

category. Therefore, specific strategies, such as support, 

should be used to ensure that the model is not unfair to the 

majority of the class throughout the lesson. 

Using the Messidor dataset, we evaluate the performance of 

four CNN architectures (VGGNet, ResNet, DenseNet, and 

EfficientNet) on the image classification task. Learning rate, 

optimization, learning rate planning, batch size, etc. Many 

experiments have been conducted by tuning various 

hyperparameters such as We trained each model for 100 times 

the same training using the ReducLrOnPlateau learning rate 

setting with a batch size of 16 and a learning rate starting at 0.1 

and gradually decreasing to approximately 0.0001. Since the 

Exponential Linear Unit (ELU) outperforms all other linear 

variables, CrossEntropyLoss is used as the optimization. 

Below is a comparison of performance models without Ben 

Graham. 

The range of values for training accuracy is 95% to 100% 

while that of validation accuracy is 60% to 80% as shown in 

Table 1. This clearly indicates that the model has overfitted the 

training data. Overfitting is a common problem in machine 

learning where a model learns to fit the training data too 

closely, resulting in poor generalization performance on new, 

unseen data. Figure 2 shows that EfficientNet has a faster 

learning path, followed by DenseNet. Whereas ResNet and 

VGGNet have relatively slow learning paths. But after 85 

epochs, all the models are almost showing the same accuracy. 

 

 
 

Figure 2. Comparisons of training accuracies 
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Table 1. Train & validation accuracy without Ben Graham’s 

preprocessing 

 
Model Train Accuracy Val Accuracy 

VggNET 97.2 60.9 

ResNET 95.3 68.3 

DenseNET 99.8 78.6 

EfficientNET 98.4 74.6 

 

 
 

Figure 3. Comparisons of validation accuracies 

 

 
 

Figure 4. Comparisons of training loss 

 

 
 

Figure 5. Comparisons of validation loss 

 

Figure 2 and Figure 3 log step-wise training and validation 

accuracy which explains the fluctuations. 

Figure 4 and Figure 5 illustrate the training and validation 

loss for four different CNN architectures - VGGnet, ResNet, 

EfficientNet, and DenseNet. The y-axis displays the loss 

numbers, while the x-axis lists the various models. Each 

model's training and validation loss values are represented on 

the graph as a single point. 

The graphs suggest that DenseNet performs the best in terms 

of loss among the four models, while VGGnet has the highest 

training and validation loss. DenseNet has performed better 

than VggNET, ResNet and EfficientNet are superior to each 

other in every way, including training and validation accuracy 

and loss. DenseNet demonstrated superior performance, 

attributed to its dense connectivity pattern. Dense connections 

facilitate improved gradient flow during training, mitigating 

the vanishing gradient issue. This architecture inherently 

encourages feature reuse, enabling better generalization 

performance. EfficientNet showed a faster learning path 

initially, due to its compound scaling approach that optimizes 

network depth, width, and resolution simultaneously. However, 

it converged to similar accuracy levels as other models after 

more epochs. ResNet exhibited slower learning initially, due 

to its deep residual connections. However, it caught up with 

other models after a sufficient number of epochs. VGGNet had 

slower learning paths and higher training/validation loss, due 

to its deep stack of simple convolutional layers. It struggled 

with overfitting. Following is the comparison of model 

performances when Ben Graham’s preprocessing is used as 

shown in Table 2 and Figure 6. 

The range of values for training accuracy is 94% to 100% 

while that of validation accuracy is 91% to 98% indicating that 

the earlier problem of overfitting has been addressed by the 

Ben Graham’s preprocessing method. This method has 

ensured good data quality, data consistency and good model 

performance. 

 

 
 

Figure 6. Comparisons of training accuracy (pre-processed 

images) 

 

Table 2. Train & validation accuracy after Ben Graham’s 

preprocessing 

 
Model Train Accuracy Validation Accuracy 

VggNET 93.8 91.2 

ResNET 98.7 93.4 

DenseNET 94.5 97.7 

EfficientNET 98.9 94.6 
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Table 3. Confusion matrix 

 
 C1 C2 C3 C4 C5 

C1 1380 0 0 13 0 

C2 0 1375 2 0 15 

C3 19 15 1389 0 17 

C4 4 0 6 1383 2 

C5 2 13 8 10 1364 

 

 
 

Figure 7. Comparisons of validation accuracy (pre-processed 

images) 

 

 
 

Figure 8. Comparisons of training loss (pre-processed 

images) 

 

 
 

Figure 9. Comparisons of validation loss (pre-processed 

images) 

 

From Figure 7 and Figure 8 an improvement in the 

difference between the training and validation accuracy can be 

seen as compared to the previous graphs where pre-processing 

was not carried out and Figure 9 shown the comparison of 

Validation Loss. Following Table 3 presents the confusion 

matrix. 

Ben Graham’s method proved to be successful in converting 

a high bias model to a low bias model. There is a significant 

reduction in the training and validation loss as compared to the 

un-processed image dataset. This shows that color 

segmentation and color filters are powerful techniques for data 

preprocessing. These methods can be used to extract relevant 

features or reduce noise in datasets that involve color 

information. Following is the Confusion Matrix on the testing 

data where C1, C2, C3, C4, C5 correspond to normal, mild, 

moderate, severe and proliferative respectively. 

 

Table 4. Comparison with existing results 

 
Year and Reference Method Accuracy 

2020 [1] Convolutional Neural Network 80% 

2021 [2] Hybrid inception ResNet-v2 model 72% 

2020 [3] DenseNet 87% 

2019 [4] ResNet50 61% 

2019 [5] Deep Neural Network 93% 

2018 [6] Particle swarn optimization 76% 

2017 [13] Convolutional Neural Network 91% 

2021 [14] Deep Belief Network 82% 

2017 [15] Grey level co-occurence matrix 90% 

2018 [16] Linear Support Vector Machine 92% 

2019 [17] Random Forest Classifier 80% 

2017 [18] Support Vector Machine 94% 

2022 [19] CNN + SVD_ Inception 94.59% 

2022 [20] VGGNet 96% 

Proposed Model Transfer Learning 97.24% 

 

Table 4 provides a summary of various methods used for a 

specific task along with their corresponding accuracies. In 

2019, the utilization of ResNet50 yielded an accuracy of 61%, 

showcasing the baseline for subsequent improvements. The 

introduction of a hybrid Inception ResNet-v2 model in 2020 

marked a notable advancement, achieving a higher accuracy of 

72%. This improvement indicated the efficacy of combining 

features from different architectures. In 2018, the application 

of particle swarm optimization resulted in a significant leap to 

76% accuracy, demonstrating the effectiveness of optimization 

techniques. The subsequent years witnessed the adoption of 

diverse methods, including a CNN in 2020 and a random forest 

classifier in 2019, both achieving an accuracy of 80%. The 

introduction of a deep belief network in the same year further 

elevated accuracy to 82%, emphasizing the power of deep 

learning approaches. The DenseNet technique, employed in 

2020, surpassed previous methods with an accuracy of 87%, 

highlighting the advantages of dense connectivity patterns. 

Looking back to 2017, the use of a grey level co-occurrence 

matrix yielded a high accuracy of 90%, showcasing the 

effectiveness of texture-based feature extraction. The 

subsequent adoption of a CNN in the same year further 

improved accuracy to 91%. In 2018, the implementation of a 

linear support vector machine (SVM) pushed the accuracy to 

92%, underlining the importance of well-suited classifiers. The 

introduction of a deep neural network (DNN) in 2019 achieved 

an accuracy of 93%, emphasizing the capacity of deep learning 

for feature representation. In 2017, a support vector machine 

yielded a high accuracy of 94%, showcasing the prowess of 

this approach in that timeframe. Finally, the proposed 

customized convolutional neural network in this paper 

achieved the highest accuracy of 97.24%. The consistent 

progression in accuracy over the years indicates advancements 
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in both model architectures and optimization techniques. The 

proposed model's superior performance underscores the 

effectiveness of tailoring a CNN for diabetic retinopathy 

detection, emphasizing the continual evolution of approaches 

in the pursuit of higher accuracy. 

 

 

7. CONCLUSION 

 

Using a dataset of 35,108 eye pictures divided into 5 classes, 

several deep learning models were examined for the diagnosis 

of diabetic retinopathy in this work. We used Ben Graham's 

preprocessing method to boost the models' performance since 

it made the picture simpler and made it easier to tell apart 

different characteristics. Additionally, we balanced the dataset 

using augmentation to mitigate the imbalanced class 

distribution. We applied 4 transfer learning models, including 

VGGNet19, ResNet50, DenseNet121, and EfficientNet_B0, to 

both the processed and unprocessed images. Results showed 

that the best validation accuracy for unprocessed images was 

achieved by the DenseNet model, which was 78.6%. However, 

overfitting was observed for all models on the unprocessed 

images. In contrast, for the processed images, we did not 

observe any overfitting, and the highest validation accuracy 

was achieved by the DenseNet model, which achieved an 

accuracy of 97.7%. 

Overall, the results indicate that Ben Graham's 

preprocessing method can enhance the effectiveness of 

machine learning models for detecting diabetic retinopathy. 

Additionally, transfer learning models can achieve high 

accuracy on processed images, which can be beneficial for 

clinical diagnosis. However, overfitting is a potential issue for 

unprocessed images, which may require further investigation. 

Our work lays the foundation for further investigations into 

refining preprocessing techniques, exploring additional deep 

learning architectures, and addressing potential overfitting 

challenges. Additionally, as we contribute a balanced dataset 

and showcase the efficacy of augmentation, future studies may 

build upon these insights to improve model generalization and 

real-world applicability. In conclusion, our study contributes 

to the development of accurate and reliable machine learning 

models for diabetic retinopathy detection which may help in 

the early detection and care of this illness. 

 

 

8. FUTURE SCOPE 

 

The future of diabetic retinopathy detection is promising, 

with potential advancements in technology, healthcare 

resources, and personalized medicine. Several promising 

directions could be explored to build upon the proposed 

techniques and enhance the applicability and effectiveness of 

automated diagnostic systems such as extending the scope of 

the study to include multimodal data, such as optical coherence 

tomography (OCT) scans or other imaging modalities. 

Integrating diverse data types may provide a more 

comprehensive understanding of retinopathy cases and 

enhance the robustness of diagnostic models. Performing 

longitudinal studies to assess the models' ability to detect 

changes and progression in diabetic retinopathy over time can 

also be aimed. This could involve tracking patients' retinal 

images over multiple visits, providing valuable insights into 

the models' diagnostic capabilities in a dynamic clinical 

context. The integration of telemedicine could allow for 

remote patient care, providing timely diagnoses to underserved 

areas. The development of personalized treatment plans could 

also help identify high-risk patients for early intervention and 

prevention. Integration with electronic health records could 

provide healthcare providers with a complete picture of a 

patient's medical history. Finally, the use of AI-powered 

diagnostics could reduce the cost and time required for 

diagnosis, making it more accessible to patients worldwide. 

Overall, the future scope of diabetic retinopathy detection 

projects is promising, and continued research and development 

in this field could lead to significant improvements in patient 

outcomes. 
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