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Generative large language models (LLM) are trained for performing natural language 
processing (NLP) tasks but are known to have emergent properties that can go beyond 
generating trained text-based language responses. Recently, LLMs have been further 
augmented with multimodal capabilities such as image annotations and analysis. In this 
study, we aimed to investigate LLMs in terms of perceptual visual complexity analysis 
ability through evaluating graphical user interfaces. For this purpose, visual complexity 
evaluation of user interfaces (UI), which is a non-trivial task, was addressed to explore the 
possible roles and capabilities of the LLMs in this task. ChatGPT-4 and Bard, two of the 
most advanced multi modal LLMs, were explored and a comparative evaluation was 
conducted. According to this exploration, the two LLMs were able to evaluate the visual 
complexity of different input user interfaces and rank these regarding to their visual 
complexities. Although LLMs ranking were mostly similar to each other, relatively high 
differences with the user evaluation-based rankings were observed. 
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1. INTRODUCTION

Visual complexity has been a difficult concept to define
clearly due to its subjective, emotional and perceptual 
determinants. For this reason, visual complexity perception 
has for long been investigated and various methods have been 
developed by the researchers from various disciplines such as 
psychology [1-3], cognitive science [4-6] and artificial 
intelligence [7-9]. The concept was first defined by Snodgrass, 
and Vanderwart [10] as "the amount of details or intricacy in 
an image". Although it has been tried to be expressed and 
estimated formally, the proposed approaches are still far from 
modeling real user perception. For this reason, it has become 
a matter of curiosity to us whether LLMs; which have 
produced remarkable human-like responses in many fields, 
can actually perceive the complexity of UIs similar to users. 

ChatGPT and Bard are transformer-based NLP models that 
can understand and generate general-purpose responses based 
on large language models, consisting of billions of parameters 
and trained with a vast amount of dataset. By interacting with 
humans in their own language (natural language), LLMs may 
lead to groundbreaking developments in diverse fields ranging 
from medicine, education, business and finance, law, 
computer science to education and scientific writing [11]. In 
2022, ChatGPT was introduced by OpenAI [12], followed by 
Meta LLaMA [13] and Google Bard (the name of the LLM 
was then changed to Gemini) were released in 2023, and later 
other LLMs such as Claude, Alpaca, etc. have been developed 
[14]. ChatGPT, Bard, and LLaMA are among the most 
advanced artificial intelligence tools that pioneer 

revolutionary developments at the current state of technology. 
Parallel to the emergence of LLMs, the LLMs has become the 
focus of many research studies in almost every field. By 
analyzing the LLM generated responses, ChatGPT and other 
LLMs were compared based on different criteria [15-17], and 
their limitations and challenges were investigated [12, 18]. 

Since conventional LLMs are text-based generative models, 
studies have commonly analyzed the responses of LLMs to 
text-based inputs. Studies on how LLMs produce responses to 
image-based inputs and the accuracy, understandability, 
consistency and adequacy of these responses are quite limited. 
Although text-to-image generation studies using large 
language models [19, 20] are available in the literature, to the 
best of our knowledge, the effectiveness of LLMs for UI 
evaluation has not yet been studied thoroughly. With this 
motivation, our primary research question can be expressed as 
follows: 

RQ1. Can the visual complexity of the UIs be perceived by 
LLMs? 

In addition, the secondary research questions can be listed 
as below: 

RQ2. What factors affect the visual complexity perception 
of LLMs? 

RQ3. Among these factors, are there any other factors that 
differ from those proposed in previous studies? 

RQ4. Does LLM perception of visual complexity level align 
with user perception level for mobile UIs? 

In order to fill the above-mentioned gap and to find answers 
to these research questions, an attempt is made to investigate 
the visual complexity perception ability of LLMs based on the 
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UI images. For this purpose, two advanced LLMs; ChatGPT 
and Bard, were employed to measure how close the visual 
complexity perception of the LLMs is to user perception. In 
addition, LLMs were compared with each other on the issue of 
UI evaluation, the strengths and areas open to improvement of 
each LLM were revealed. 

The rest of the paper is structured as follows: section II 
reviews LLMs and their use cases in various fields and the UI 
visual complexity evaluation methods in sub-sections. In 
section III, the method to evaluation the role of LLMs in visual 
complexity analysis for UIs is described. Details of 
experimental study and test results are given in section IV. In 
section V, the findings are discussed, followed by the 
limitations in section VI. Finally, the conclusions are 
presented in section VII. 

 
 

2. RELATED WORK 
 

2.1 LLM evaluation studies in different domains 
 
After the release of ChatGPT in 2022, the potential for the 

use of LLMs has been examined for tasks in numerous 
research fields. Banerjee et al. [21] tried to measure the 
reasoning ability of ChatGPT by asking questions about six 
sub-branches of physiology such as cardiovascular 
physiology, neurophysiology, endocrine physiology and so 
on. Accordingly, they statistically analyzed the responses 
received from ChatGPT to 82 different reasoning questions 
prepared by the experts. The authors observed that there were 
significant differences among the responses generated by 
ChatGPT to the basic concepts and various sub-branches. 
They also stated that the responses should have a high 
accuracy rate and be consistent with each other. For this 
reason, they emphasized that ChatGPT needs further training 
with more subject-related information such as transfer learning 
on relevant sub-branches. As an example from software 
domain, Surameery and Shakor [22], Sobania et al. [23] 
examined the role of ChatGPT in code debugging and error 
finding and compared it with software debugging tools. They 
concluded that ChatGPT may be preferred in terms of cost, 
speed, and ease of use, but it still needs to be improved in terms 
of accuracy. Moreover, Biswas [24] examined the potential 
benefits that ChatGPT can provide to software developers. It 
was shown that ChatGPT supports the developer in issues such 
as code completion and correction, predicting and suggesting 
code snippets, fixing syntax errors, optimizing and refactoring 
the code and document generation for programming, and can 
provide a more effective and efficient coding process by 
saving time. 

An early review study [18] examined ChatGPT from wide 
range of comprehension and reasoning tasks. ChatGPT was 
found to be successful in producing human-like responses and 
reasoning in natural language processing tasks. They also 
mentioned the good performance of ChatGPT's abilities such 
as anomaly detection, mastery of the subject and 
communication, in a set of fields such as education, health and 
industry. However, they also emphasized their reservations on 
the issues such as ethical, bias and fairness that may cause 
researchers to be cautious about ChatGPT. They state that 
these reservations should be addressed, especially in matters 
such as understanding and interpreting judgments that may 
vary depending on the person's education, knowledge, 
background and characteristics. 

In addition, Pathak [12] emphasized the prominent features 
that distinguish ChatGPT from other artificial intelligence 
products, such as contextual understanding, task compatibility, 
scalability, ability to produce improved results with the 
prompting method, and iterative prompting. Plus, they touched 
on the success of usability, accuracy and reasoning ability in 
areas such as business and finance, law and legal services, 
content production, scientific writing, programming and 
debugging, sales and marketing. They noted that such an 
advanced product must constantly address personalization, 
bias and quality control, as well as ongoing challenges such as 
data privacy and security and adaptation to domain-specific 
issues. They also pointed out that ChatGPT has limitations 
such as visual content production, lack of situational 
awareness, human-level expertise and emotional intelligence. 

Hadi et al. [11] argued that LLMs can be used in the fields 
of health care, financial, engineering and education with the 
ability to understand the content and produce qualified 
responses specific to the relevant field without the need for 
special training. Furthermore, they pointed out that it has some 
drawbacks such as unintentionally containing biased data, 
presenting information that does not exist (aka 
“hallucination”), limited common sense, absence of emotion, 
and limited domain specific knowledge. In addition, in large 
language models containing billions of parameters, not 
knowing exactly what is actually happening at the time of 
processing and not being able to explain it can be considered 
among the drawbacks. 

In other studies, LLMs were compared with humans based 
on the responses given to open-ended questions, and it was 
tried to understand whether LLMs can reason like humans. 
Duong and Solomon [25] stated that ChatGPT answered 
questions in the field of genetics as well as humans. However, 
it could not generate consistent responses to questions 
requiring critical thinking ability rather than questions 
requiring memorized knowledge. Moreover, a comparison 
with benchmark questions from a prestigious competition on 
computer programming concluded that, contrary to popular 
belief, humans are significantly better than ChatGPT [26]. On 
the other hand, Guo et al. [27] tried to understand the 
characteristics of ChatGPT by analyzing the dataset called 
HC3 (Human ChatGPT Comparison Corpus), which consists 
of a large number of questions from various fields such as 
finance, medicine, legal and physiology, and the responses of 
ChatGPT and human experts. Accordingly, the important 
outputs that emerged showed that while ChatGPT provided 
more detailed and descriptive responses compared to human 
experts, it could also generate incorrect or misleading 
information. While there was little sign of emotion in the 
responses generated by ChatGPT compared to human experts, 
it was observed that the responses were written in a formal and 
objective language, without straying from the content. Finally, 
it was easily understood from the responses that the content 
was produced by ChatGPT. This was because human experts 
can convey more result-oriented, short and clear responses 
with a richer vocabulary and grammar and add emotion and 
moderate subjectivity. 

 
2.2 LLM comparison studies 

 
Comparative studies of different LLMs were conducted 

regarding the role, capabilities and limitations of LLMs in 
various tasks. The responses generated by different LLMs for 
various tasks were compared with each other. Hadi et al. [11] 
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compared ChatGPT, Bard and Bing LLMs with each other 
according to their different features. ChatGPT produced more 
creative responses, while Bard gave more accurate results. 
They concluded that Bing is the one that produces the most 
accurate responses and is user-friendly among these LLMs. In 
another study, Ahmed et al. [16] evaluated ChatGPT and Bard 
in terms of accuracy and completeness of the content of the 
generated responses, integrability into other platforms and 
performance of human interaction. In this context, although 
they stated that sufficient standards and measurement metrics 
have not yet been developed to compare LLMs, they 
concluded that Bard is better than ChatGPT at interactive 
dialogues and human-like conversations. However, unlike 
[11], they stated that ChatGPT produced more accurate results 
compared to Bard. 

In another interesting study, Lozić and Štular [17] measured 
the potential of LLMs in scientific writing and compared them 
with each other. According to their results, although ChatGPT, 
Bing and Bard succeeded in writing relevant articles on the 
given topics, all LLMs failed in terms of the adequacy of the 
content of the articles. In particular, this study showed that the 
reasoning ability of LLMs is still quite limited compared to 
human researchers. A similar study was conducted by Plevris 
et al. [28] and LLMs were given various mathematic and logic 
problems to solve. Accordingly, while it was observed that 
LLMs could provide fast and satisfactory solutions to basic 
logic and algebraic questions, they concluded that LLMs were 
not reliable enough for more complex questions. Another 
result obtained from the study is that ChatGPT generated more 
accurate and reasonable results compared to Bard, but the 
solutions generated by both LLMs are not consistent. 

ChatGPT and Bard were also tested and compared with 
medical information [15, 29]. Many questions regarding 
various sub-disciplines of medicine were asked to the LLMs, 
and the consistency, being up-to-date, understandability and 
accuracy of the responses, as well as reasoning ability of the 
LLMs, were assessed. In this respect, it has been stated that the 
responses from LLMs mostly satisfy the human experts on the 
subject, but LLMs might generate incorrect or illogical 
responses. They also statistically confirmed that ChatGPT 
generated more accurate responses than Bard. 

 
2.3 Visual complexity analysis methods 

 
Visual complexity analysis methods for UIs can be 

examined under two main categories: traditional methods and 
innovative methods. Traditional methods are based on either 
direct user evaluation [6, 30-32], combinational metric sets 
coming from various studies [33-37], or the rules inferred from 
previous UI evaluation knowledge and experimental studies 
[38, 39]. In order to evaluate a UI using traditional methods, it 
is necessary to first understand the factors that affect visual 
complexity and make visual complexity measurable by 
transforming these factors into concrete expressions by using 
metrics or rules. A detailed review of the methods applied to 
date in the literature has been made by Akça and Tanriöver 
[40] on the strengths and areas open to improvement of the 
methods in terms of efficiency regarding to time, cost and 
performance. 

The main advantage of traditional methods is that they 
produce more consistent and objective results. There are 
various metrics introduced for this purpose. Some of these 
metrics are applied for visual complexity analysis through the 
visible features of UIs such as number of UI elements, element 

size, alignment, balance, density, grouping, symmetry and so 
on [33-36]. Conversely, some others are applied through 
features that are not visible to users but are thought to affect 
visual complexity such as file size, entropy, compression rate, 
clusters of colors etc. [37, 41, 42]. The biggest handicap of 
traditional methods is that it is not known which features of 
the UI will lead to more accurate and sensitive visual 
complexity analysis results. Similarly, when analysis is 
performed using a metric set, it is not known to what extent 
the metrics contribute to the result. Thus, although traditional 
visual complexity analysis methods have been the most 
studied methods in the literature so far, a generalized solution 
has not yet been revealed. 

On the other hand, innovative methods have begun to be 
implemented over time with the widespread use of machine 
learning [7, 8] and deep learning [9, 43] techniques, aiming to 
predict visual complexity without direct human intervention. 
In these methods, both popular machine learning techniques 
such as SVM (Support Vector Machine) and popular or 
specifically developed deep neural networks are used. Unlike 
traditional methods, in innovative methods, the intermediate 
steps for visual complexity analysis such as feature extraction, 
stimulus detection are left to the machine. After training with 
a sufficiently large dataset, visual complexity analysis is 
automatically performed by the trained model. 

In these approaches, the need to make critical decisions such 
as which and how metrics and/or rules to be employed for 
visual complexity analysis is decreased. The better the model 
learns the more successful, objective and generalizable the 
visual complexity analysis can be conducted. The key 
challenge is the necessity of a sufficiently large and diverse 
dataset and the training cost to create generic deep learning 
models. Since advanced multimodal LLMs are trained with 
large and diverse datasets they naturally have potential for 
visual complexity evaluation task. 

Increasing success of deep learning models suggests that 
use of them to achieve ergonomic, useful, responsive and 
aesthetic UI designs. LLMs can potentially further help the 
designer to better understanding the factors affecting the visual 
complexity of the design under consideration. As reviewed in 
section 2.1, various studies indicate the potential of LLMs in 
visual complexity evaluation maybe close to user perception. 
This is why LLMs are intended to be used in this study. In this 
sense, the prominent features of LLMs, the reason they are 
considered are as follows: 1) The capability of producing 
responses in human language and the potential to clearly state 
the reasoning behind the responses, 2) The potential to 
perform visual complexity analysis by considering the factors 
that might have not been considered in the existing methods. 
Lastly, to the best of our knowledge, that there are no other 
studies on visual complexity analysis of UIs using LLMs. 

 
 

3. METHODOLOGY 
 
In order to answer the research questions that constitute the 

scope of this study, two different LLMs were first identified 
according to a set of criteria such as 1) LLM should be 
multimodal that can understand images, as well as text to 
process, 2) LLM should not be created for a specific purpose, 
it should be the one that can be used for general purposes, 3) 
It should be a baseline LLM that has been studied regarding 
its capabilities, performance and limits. Besides these criteria, 
taking into account factors such as the parameter size, task 
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success rates and reasoning ability [17, 43-46], we evaluated 
that ChatGPT 4.0 and Bard would be suitable for this study 
among LLMs such as ChatGPT 4.0, Bard, LLaMA, Claude, 
Bing-Chat and Alpaca. 

After deciding on the LLMs, the next decision step was to 
select and prepare the dataset. The most important factor in 
determining the dataset was to use one that could represent the 
widest range of UIs possible. Another concern was that we 
wanted to use the UI images that had previously been analyzed 
for visual complexity. Thus, we aimed to use previously 
obtained results as ground truth for this study. In our previous 
work, we carried out a study on predicting the visual 
complexity of mobile UIs using deep learning models [9] 
trained with mobile UI images selected among the RICO [47] 
dataset. RICO dataset contains approximately 72000 mobile 
UI images captured from more than 9000 android applications 
to be used in scientific research studies such as UI design, UI 
code generation, user interaction modeling and user perception 
prediction etc. Inspired by the RICO dataset, another private 
dataset was created by obtaining UI images from different IOS 
applications. These images were employed to make 
comparisons of user evaluations including 98 participants with 
the results obtained from deep learning models. It was shown 
that there was a positive correlation between the results. In this 
study, ten UI images selected from the previously created 
private dataset were used for LLMs to evaluate visual 
complexity (see Figure 1). 

We then conducted experiments to obtain, evaluate and 
compare the outputs from LLMs corresponding to the inputs 
and prompts consecutively. For this purpose, firstly UI images 
were used as input to two multimodal LLMs. As output, LLMs 
are expected to produce values by evaluating the visual 
complexity of the input images and to rank these images 
according to their visual complexity values. The same 
procedure was then applied again but this time in addition to 
the UI images, prompts were also provided as input. 

It is known that with corrective prompts it is possible to 
direct LLMs and obtain more accurate responses. Based on 
this, the input images were supported with prompting 
techniques and the LLMs were guided on how to evaluate 
these images. The responses generated by the LLMs were tried 
to be improved by iteratively applying prompt engineering 
methods [11]. While doing this, the LLMs were reminded at 
regular intervals that the inputs were images of mobile UIs, 
and they were asked to evaluate the input images by 
considering like the end user, but it was not stated from what 
perspective it should evaluate the complexity. The reason for 
this is to ensure that, acting as an end user, LLM determines 
how to evaluate the UI images and that LLM discovers which 
and how the factors affecting visual complexity of the images. 
Otherwise, LLMs would be subjected to human intervention, 
so it would be inevitable for them to generate responses that 
are far from innovative evaluation. 

Then, related to the secondary research questions, the 
success of the LLMs’ responses was tried to be measured by 
using a statistical test. To this end, the rankings formed by 
LLMs were tested with the Kendall correlation coefficient 
(aka Kendall's Tau - τ) to get the similarity rate between these 
rankings. This test was carried out separately for the ranking 
results created by LLMs and for the results after applying 
prompts in order to measure the sensitivity of LLMs to 
prompting. Furthermore, by comparing the factors affecting 
visual complexity evaluation performed by LLMs with the 
existing factors defined in previous studies, we aimed to figure 

out visual complexity factors considered by LLMs. 
 

 
 

Figure 1. Sample mobile UI images used in the study 
 
The overall systematic of the study was as follows: 1) Ten 

images were separated into two image sets. 2) Five mobile UI 
images were given as input to the LLMs. Since Bard cannot be 
provided with all the images as input at once, the randomly 
selected images were provided one by one, but this is not the 
case for ChatGPT-4. 3) After all the input UIs were provided 
to LLMs, LLMs were asked for ranking the images regarding 
to its visual complexity evaluation for each image. If the final 
ranking made by the LLM and the ground truth were not the 
same, prompting was applied to get the LLM to rank correctly. 
Accordingly, whether the LLMs can achieve the ranking result, 
which is considered ground truth, how much prompting is 
needed, and the success performances of the LLMs are the 
outputs of this study. 

 
 

4. EXPERIMENTS 
 
In this section, the details of the study, environmental setup 

and the results are described. UI images, considered in two 
separate groups, were evaluated by ChatGPT and Bard. 
Beforehand, no input was provided to the LLMs that could 
create a potential bias. During interaction with LLMs, it was 
ensured that there were no directives or implications in the 
questions asked. A total of 60 visual complexity evaluation 
experiments were carried out in 30 independent sessions for 
each image set. In each session, the output of the LLM was the 
ranking of the input UI images. Initially, LLMs were explained 
as follows: 

ChatGPT: 
“Evaluate and rank the five mobile UI images I will show 

you based on their visual complexity. Show me the ranking 
result in a tabular form.” 

Bard: 
“I will show you five mobile UI images step by step. 

Evaluate the visual complexity for each image and finally rank 
them.” 

In our previous study, the mobile UIs in image set 1 were 
ranked according to the visual complexity evaluation by the 
human participants as shown in Figure 2. This was used as the 
baseline to which the output ranking of LLMs were compared. 
Similarly, the baseline for the image set 2 is shown in Figure 
3.  

In order to understand the relationship between the rankings 
made by LLMs and ground truth, a statistical test was used. 
Since the rankings were compared with each other in our study, 
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there were alternative statistical tests that stood out for this 
purpose such as Pearson correlation, Spearman rank 
correlation and Kendall correlation coefficient. We decided to 
apply the appropriate test by comparing these according to the 
following reasons. Pearson correlation is mostly suitable for 
continuous data, however the output of the LLMs were the 
ranking of the UI images. Hence, the two discrete variables 
were supposed to be compared. Spearman rank correlation can 
be applied to ordinal data as well as continuous data. In this 
respect, it can be said that it is similar to the Kendall 
correlation coefficient. Nevertheless, the sample size used in 
this study was small, so the possibility of encountering outliers 
may be high. To this end, we thought that it was better to apply 
the test which should be robust enough against outliers. 
Considering all these arguments, we concluded that the 
Kendall correlation coefficient may be suitable for this study. 

 

 
 

Figure 2. Mobile UI images in image set 1 (the most 
complex a>b>c>d>e the least complex) 

 
As a result of visual complexity evaluations made by the 

LLMs, the ranking results are shown in the following tables. 
The ranking results for ChatGPT and Bard are shown in Table 
1 and Table 2, respectively. The results were discussed in two 
stages: 1) the first ranking results made by the LLMs 2) the 
modified ranking results as a result of promptings in addition 
to the first ranking. According to the first ranking results, it 
can be said that the LLMs produce similar outputs, with the 
ranking results having a low to moderate level of correlation 
with the ground truth. However, it is obvious that the variance 
of ChatGPT's outputs is higher than Bard. That is because 
unlike Bard's consistent outputs (0.19≤τ≤0.39), ChatGPT can 
produce negligible results (τ=0.0), while it can produce results 
having moderate to strong correlation (τ=0.6) with the ground 
truth. Moreover, it may also be possible to say that ChatGPT 
performs visual complexity analysis in a wide perspective 
(0.0≤τ≤0.6). When we look at the modified ranking results, it 

is possible to say that both LLMs showed the expected 
reaction to the prompts. It has been observed that, with the help 
of promptings applied, LLMs can produce outputs that have a 
higher correlation (τ=0.79) with the ground truth. Despite this, 
another common property of LLMs is that they can remain 
indifferent to prompts in some case. 

 
Table 1. Ranking results generated by ChatGPT for the 

mobile UIs in image set 1 
 

Number of 
Occurrences 

First Ranking 
Results 

Ranking Results After 
Prompting Applied 

3 a>c>e>b>d 
(τ=0.39) 

a>b>c>e>d 
(τ=0.79) 

2 b>c>a>e>d 
(τ=0.39) 

No change 
(τ=0.39) 

2 b>c>e>d>a 
(τ=0.0) 

c>b>e>a>d 
(τ=0.0) 

2 a>e>c>b>d 
(τ=0.19) 

a>b>e>c>d 
(τ=0.6) 

2 a>c>b>e>d 
(τ=0.6) 

No change 
(τ=0.6) 

 
Table 2. Ranking results generated by Bard for the mobile 

UIs in image set 1 
 

Number of 
Occurrences 

First Ranking 
Results 

Ranking Results After 
Prompting Applied 

3 a>c>d>e>b 
(τ=0.39) 

No change 
(τ=0.39) 

3 b>a>c>e>d 
(τ=0.31) 

a>b>c>e>d 
(τ=0.79) 

2 c>a>d>e>b 
(τ=0.19) 

c>a>b>d>e 
(τ=0.6) 

2 a>c>e>b>d 
(τ=0.39) 

No change 
(τ=0.39) 

2 c>a>b>e>d 
(τ=0.39) 

No change 
(τ=0.39) 

 
At the end of each session, the LLMs were asked which 

visual complexity factors were considered. Then, these factors 
were brought together after all sessions were completed. 
Accordingly, the factors frequently considered in visual 
complexity evaluation by the LLMs were as follows: 

ChatGPT: Number and order of elements on the UI, text and 
information density, readability, visual hierarchy, color usage, 
typography and overall layout. 

Bard: Number of elements, element density, color and 
contrast, typography, whitespace, layout and hierarchy. 

The key point here is that LLMs do not take all of these 
factors into account every time, they evaluate visual 
complexity with a different set of factors in each session. That 
is why the ranking order created at the end of each session may 
differ from each other. However, where similar factors were 
considered, it was observed that the ranking results were close 
to each other. The results obtained at the end of each session 
conducted with LLMs were compared with the ground truth 
using Kendall correlation coefficient. The resulting correlation 
coefficient is given in each table together with the ranking 
results. We also tried visual complexity evaluation with more 
UIs for each session to obtain a more accurate result. However, 
we observed that as the number input images increases, the 
context consistency of the LLMs decreases. That’s why we 
decided to make comparisons for five UIs. 

The mobile UIs in image set 2 are shown in Figure 3. The 
key difference between two image sets is the UIs in the image 
set 2 are simpler and text-based compared to the UIs in the 
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image set 1. The ranking results for ChatGPT and Bard for 
image set 2 are shown in Table 3 and Table 4, respectively. 

 

 
 

Figure 3. Representation of mobile UI images in image set 2 
(the most complex a>b>c>d>e the least complex) 

 
Table 3. Ranking results generated by ChatGPT for the 

mobile UIs in image set 2 
 

Number of 
Occurrences 

First Ranking 
Results 

Ranking Results After 
Prompting Applied 

3 a>c>d>b>e 
(τ=0.6) 

No change 
(τ=0.6) 

2 a>b>c>d>e 
(τ=0.99) 

No need 
(τ=0.99) 

2 c>a>b>d>e 
(τ=0.6) 

a>c>b>d>e 
(τ=0.79) 

2 c>a>e>b>d 
(τ=0.19) 

c>a>b>e>d 
(τ=0.39) 

2 a>c>d>b>e 
(τ=0.6) 

a>c>b>d>e 
(τ=0.79) 

 
Table 4. Ranking results generated by Bard for the mobile 

UIs in image set 2 
 

Number of 
Occurrences 

First Ranking 
Results 

Ranking Results After 
Prompting Applied 

3 c>a>e>b>d 
(τ=0.19) 

a>c>e>b>d 
(τ=0.39) 

2 a>c>d>e>b 
(τ=0.39) 

a>c>b>d>e 
(τ=0.79) 

2 b>e>c>a>d 
(τ=0.0) 

b>e>c>d>a 
(τ=-0.19) 

2 b>e>a>c>d 
(τ=0.19) 

No change 
(τ=0.19) 

2 c>a>e>d>b 
(τ=0.0) 

c>a>b>e>d 
(τ=0.39) 

 

According to the text-based outputs, it could be said that 
LLMs are able to understand the aim of the study and produce 
appropriate responses. Similarly, based on the ranking results 
and statistical tests when the number of UIs to be compared is 
kept at a reasonable number, LLMs are able to rank the UI 
images within the content specified in the question without 
straying from the topic. However, it has been observed that the 
ranking results vary considerably. Namely, the resulting tables 
are sorted by the number of occurrences of the ranking results 
out of a total of 15 sessions, it has been observed that the 
rankings are quite different from each other in almost every 
session. According to the first ranking results for the image set 
1, although the LLMs seem to have produced similar results, 
it can be seen that ChatGPT produced results with a positive 
correlation (τ=0.6) with ground truth for two times. 
Additionally, it is possible to say that for the image set 2, this 
situation becomes more evident in favor of ChatGPT. Because 
for these images, while ChatGPT frequently produces results 
that have a strong positive correlation with the ground truth, it 
is seen that it produces completely the same ranking results as 
ground truth twice (τ=0.99). 

Finally, the responses of the LLMs corresponding to the 
promptings were also examined. As mentioned before, 
directions or implications through promptings that could cause 
potential bias were avoided. Although there are cases where 
LLMs do not change the rankings they produced at the end of 
the prompts, it seems that LLMs mostly respond positively to 
the prompts as clearly seen in all tables. So much so that, with 
the promptings applied, the correlation rate in the ranking 
results for both image sets increased positively. Therefore, 
LLMs are more likely to update their rankings through 
promptings than insisting on the initial rankings. 

 
 

5. DISCUSSION 
 
Our study shows that there is a potential to benefit from 

general purpose multimodal LLMs for visual complexity 
evaluation of UIs. Although the first ranking results of LLMs 
has not shown strong correlation with the ground truth, it is 
possible to obtain results closer to the ground truth when 
promptings applied. In relation to the RQ2 and RQ3, LLMs do 
not consider any factors other than the existing visual 
complexity factors in the literature. Both LLMs perform 
analysis by considering the basic factors such as the number 
and order of the UI components, the amount of text and images, 
color density and overall layout. 

There exist variations in the definitions of the concept of 
visual complexity in the literature. LLMs cannot be expected 
to consider all the factors affecting it due to their intrinsic 
reliance on training data source. Therefore, in order for LLMs 
to evaluate the visual complexity from an alternative 
perspective, source code of UIs can be given as input in 
addition to UI images. Considering the rapid development of 
LLMs, we plan to expand this work by using more UIs with 
their source codes in a supportive way and LLMs in the future. 

Regarding the RQ4, LLMs cannot yet evaluate visual 
complexity at a level close to user perception unless 
directional promptings applied. This may be due to the 
complexity and subjectivity of the problem, but LLMs respond 
positively with promptings resulting in increased correlation 
with user perception. In order to improve the performance of 
LLMs on visual complexity evaluation, a possible future 
direction might be fine tuning of the LLMs specifically for this 
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problem, so that they can generate more accurate and elaborate 
responses that can potentially guide designers. Similarly, 
developing innovative approaches to the prompting techniques 
can also be considered as potential development direction. 

 
 

6. LIMITATIONS 
 
There are a number of limitations that may affect the 

validation of this study. One of these can be thought as the 
small number of UIs used. It is possible to make more precise 
measurements using a large number of UI images. Likewise, 
other LLMs could also be included to extend the evaluation to 
further compare LLMs with each other to see their capabilities 
for visual complexity evaluation in a broader perspective. At 
this point, it could be a good idea to fine-tune a multi modal 
LLM for this purpose. In this way, more precise observations 
on the potential drawbacks of existing LLMs can be obtained 
for UI evaluation. 

Additionally, keeping the prompts at a basic level is 
considered another limitation as more accurate and elaborate 
responses can be obtained with advanced prompting 
techniques. However, we plan to examine the further 
responses when we knowingly and willingly direct LLMs and 
make use of various prompting techniques. Another value-
adding approach could be trying to understand the internal 
mechanism and the decision arguments of the LLMs with 
explainable AI techniques. Since this type of research requires 
a large amount of effort, we plan to a study this issue in the 
future. In this way, we may better understand the reasoning 
and maybe direct LLMs to take initiative and to discover new 
factors that affect visual complexity. 

 
 

7. CONCLUSION 
 
The purpose of this study was to reveal the potential of 

LLMs for visual complexity understanding. For this purpose, 
the role and potential of LLMs for UI visual complexity 
analysis were examined through an experimental study. With 
the evaluation study conducted with ChatGPT and Bard, it was 
observed that although both LLMs were able to generate 
meaningful responses, there were still discrepancies between 
the responses obtained by user evaluations. Although the 
responses of LLMs can be improved with the directional 
promptings, it is obvious that LLMs are still open to 
improvement in terms of visual complexity understanding.  
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