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Medical imaging roles an important play in distinct medical applications like medical 
processes utilized for early recognition, analysis, observing, and treatment evaluation of 
several clinical conditions. The fundamentals of the rules and executions of artificial neural 
networks (ANN) and deep learning (DL) are vital to understanding medicinal image analysis 
from computer vision. A medical image classifier is an essential approach for Computer-
Aided Diagnosis (CAD) system. The recent DL approaches offer an effective manner for 
constructing an end-to-end method which is to calculate last classifier labels with raw pixels 
of medicinal images. This research gives rise to the MNODBN-MIC model, which stands 
for MobileNet with optimal deep belief network based medical image classification. There 
will be multiple class labels applied to the medical images in accordance with the 
MNODBN-MIC model. The MNODBN-MIC model is able to achieve this objective mainly 
through the usage of the GF based noise removal methodology. In addition, the MNODBN-
MIC model finds the impacted areas by determining a graph-cut based segmentation tool. 
And feature vectors are also generated using the MobileNet model. Combining the DBN 
model with elephant herd optimisation (EHO) is the last stage in classifying the data. The 
EHO algorithm is tasked with adjusting the DBN parameters during this procedure. Using a 
benchmark dataset, we conduct experimental validation of the MNODBN-MIC model, and 
the findings show that it outperforms other methods that have been used recently. 
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1. INTRODUCTION

In recent times, the field of automatic medical image
analysis has witnessed a speedy enhancement [1]. The 
structures illustrated robust estimation abilities and reached 
similar executions as clinicians [2]. The consolidation of in-
depth learning related to automatic medical image 
interpretations in the clinical routine is presently a famous 
research topic. The subdomain medical image classification 
(MIC) focuses to mark a whole image to predefined classes [3, 
4]. Recent research has shown that the most efficient and 
correct MIC pipelines are also greatly dependent on ensemble 
learning strategy [5]. In the machine learning (ML) domain, 
the main focus is finding out appropriate hypothesis which 
increases estimation exactness. Though, identifying the 
optimum hypothesis is considered very hard that is why the 
method was developed to merge numerous hypotheses into a 
prime forecaster nearer to an optimum hypothesis [6, 7]. The 
combination of ensemble learning strategies in a deep learning 
related pipeline is known as deep ensemble learning. 

New advancements in Deep Neural Networks (DNNs) 
coupled with a flood of medical images have recently made 
fast and accurate disease diagnosis possible. To be more 
precise, it aids neuro-oncologists in making better patient 
diagnoses and treatment recommendations [8]. The challenges 
of earlier diagnosing of disorders have risen the significance 

of new deep learning methods in medical sciences [9]. One of 
the major advantages of CNN in comparison to conventional 
network systems is that it detects important structures 
automatically and the network structures provide CNN the 
capacity for learning difficult characteristics from pictures 
[10]. The new approaches are also enhancing the effectiveness 
of CNNs and their accurateness. 

Masquelin et al. [11] compared discrete wavelet transforms 
(DWT) with convolutional layer in CNN for evaluating the 
capability to categorize suspicious lung nodules as benign or 
malignant. Lai et al. [12] presented a DL method that 
incorporates Coding Network to Multilayer Perceptron 
(CNMP) that integrates higher-level features that are extracted 
from a Deep Convolutional Neural Network (DCNN) and 
conventional features. Hirano et al. [13] focused on three 
representation DNN-based medicinal image classification 
tasks (that is., pneumonia classification, skin cancer, and 
referable diabetic retinopathy) as well as investigated the 
susceptibility to the seven structures of UAP. Then, illustrate 
that DNN is susceptible to non-targeted UAP that causes 
failure which leads to input allocating an improper class. 
Huang et al. [14] presented a lightweight hybrid neural 
network that comprises of adapted PCANet cascaded with 
DenseNet. The adapted PCANet has two phases where the 
network generates the efficient feature maps at all the stages 
via convoluting input with learned kernels. Kowsari et al. [15] 
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implemented a hierarchical classifier with Hierarchical 
Medical Image classification (HMIC) method. HMIC employs 
stack of DL methods for providing understanding at all the 
levels of the medical image hierarchy. 

 
1.1 Motivation 
 

Medical images are vital for verifying the accuracy of data 
regarding the human body's anatomy. Diagnostic imaging with 
digital imaging tools including computed tomography (CT), 
magnetic resonance imaging (MRI), and positron emission 
tomography/computed tomography (PET/CT) is becoming 
important in the medical industry. The development of these 
technologies is the reason behind this. Considering medical 
imaging, classifying automatically and retrieval introduces a 
new radiograph into the archives that exist without interaction, 
and mostly the images that are retrieved provides a new 
perspective in making specific diagnoses based on image input. 
As the pathologic appearance of the images of a person is 
compared with the image database, clinician is able to make 
fast and accurate decision, thus reducing cost involved in 
medical care. 

 
1.2 Scope of the research study 
 

Medical image classification is becoming an integral part of 
the process of creating computer-aided diagnostic (CAD) 
models. Conventional CAD models rely largely on the 
complementing forms, colours, and textures seen in medical 
imaging, which are problem-oriented. Recent advances in 
deep learning (DL) have paved the way for a viable method of 

creating specialised models for categorization problems. Still, 
the highest possible resolution of medical images, along with 
the relatively small datasets, is causing deep learning models 
to overspend on processing. The proposed study mainly 
focuses on medical image categorization and offers three 
different methods to circumvent the limitations mentioned 
before. 

The presented MNODBN-MIC employs Gaussian filtering 
(GF) based noise removal approach. Also, the MNODBN-
MIC model derives a graph cut based segmentation technique 
to identify the affected regions. Moreover, MobileNet model 
is exploited to produce feature vectors. Finally, elephant herd 
optimization (EHO) with DBN model is utilized for data 
classification in which the EHO algorithm fine tunes the DBN 
parameters. 

 
 

2. THE PROPOSED MODEL 
 

In order to sort the medical images into their correct folders, 
a new MNODBN-MIC model was built specifically for this 
study. To improve the general quality of medical images, the 
MNODBN-MIC model primarily used a GF-based noise 
removal method. Also, to find out what areas are impacted 
right now, the MNODBN-MIC model provides a 
segmentation approach using graph cuts. Furthermore, feature 
vectors are generated using the MobileNet model. In the end, 
the data is classified using the EHO with DBN model. Figure 
1 is a schematic of the MNODBN-MIC method's general 
procedure. 

 

 
 

Figure 1. Overall flow of MNODBN-MIC 
 

2.1 Image pre-processing 
 
At its inception, the MNODBN-MIC model relied heavily 

on GF-based noise removal to improve the medical image 
quality. The most prevalent uses of a two-dimensional growth 
function are in the fields of noise reduction and smoothing. 
The efficiency with which this is executed is inspiring research, 
because it takes a large amount of processing resources. The 

convolutional operator can be utilised to achieve the 
suggestion of Gaussian smoothness [16], and it is the 
convolutional operator that describes the Gaussian operator. 
Here we see the one-dimensional version of the Gaussian 
operator: 

 

𝐺𝐺1𝐷𝐷(𝑥𝑥) =
1

√2𝜋𝜋𝜎𝜎
𝑒𝑒−�

𝑥𝑥2
2𝜎𝜎2� (1) 
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It was essential to localise in both the spatial and frequency 
domains to obtain the best picture smoothing filter. We were 
able to achieve this by honouring the uncertainty relationship 
through: 

 

∆𝑥𝑥∆𝜔𝜔 ≥
1
2

. (2) 

 
This two-dimensional operator's Gaussian operator is seen 

in the following equation: 
 

𝐺𝐺2𝐷𝐷(𝑥𝑥, 𝑦𝑦) =
1

2𝜋𝜋𝜎𝜎2
𝑒𝑒−�

𝑥𝑥2+𝑦𝑦2
2𝜎𝜎2 � (3) 

 
Here, σ (Sigma) designates the SD of Gaussian function. As 

soon as it has maximal value, the image smoothing is high. 
(𝑥𝑥,𝑦𝑦) signifies the Cartesian coordinate of the images which 
illustrates the dimension of window. 
 
2.2 Image segmentation 

 
Once the medical images are segmented, the MNODBN-

MIC model derives a graph cut based segmentation technique 
to identify the affected regions. The graph cuts method was 
usually utilized in medicinal image segmentation because of 
its benefit in globally optimum solution calculation [17]. As 
the graph was being sliced: 

 
𝐸𝐸(𝑓𝑓) = (1 − 𝜆𝜆)�𝑅𝑅

𝑢𝑢∈𝑃𝑃

(𝑓𝑓𝑢𝑢) + 𝜆𝜆 � 𝐵𝐵
𝑢𝑢∈𝑃𝑃,𝑣𝑣∈𝑁𝑁𝑢𝑢

(𝑓𝑓𝑢𝑢, 𝑓𝑓𝑣𝑣) (4) 

 
The four-neighborhood of pixel u is denoted as 𝑁𝑁𝑢𝑢, the pixel 

set of images 𝑓𝑓  is represented by P, the region term 𝑅𝑅(𝑓𝑓𝑢𝑢) 
punishes separate pixels that are assigned to the object and the 
background, and the boundary term 𝐵𝐵(𝑓𝑓𝑢𝑢, 𝑓𝑓𝑣𝑣)  punishes a 
discontinuity between 𝑢𝑢 and 𝑣𝑣. 

 

𝑅𝑅(𝑓𝑓𝑢𝑢) = �1 −𝐻𝐻(𝑙𝑙𝑢𝑢), 𝑖𝑖𝑓𝑓 𝑓𝑓𝑢𝑢 = 𝑡𝑡𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡”
𝐻𝐻(𝑙𝑙𝑢𝑢), 𝑖𝑖𝑓𝑓 𝑓𝑓𝑢𝑢 = 𝑛𝑛𝑡𝑡𝑛𝑛- 𝑡𝑡𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡” (5) 

 
𝐵𝐵�𝑓𝑓𝑢𝑢,𝑓𝑓𝑣𝑣�

= �exp �−
(𝑙𝑙𝑢𝑢 − 𝑙𝑙𝑣𝑣)2

2𝜂𝜂2
� ⋅

1
𝑑𝑑(𝑢𝑢, 𝑣𝑣) , 𝑖𝑖𝑓𝑓 𝑓𝑓𝑢𝑢 ≠ 𝑓𝑓𝑣𝑣

0, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑢𝑢 = 𝑓𝑓𝑣𝑣
 

(6) 

 

𝜂𝜂 = �
1
𝑇𝑇𝑢𝑢

� |
𝑢𝑢∈𝑃𝑃𝑣𝑣∈𝑁𝑁𝑢𝑢

𝑙𝑙𝑢𝑢 − 𝑙𝑙𝑣𝑣|2 (7) 

 
where, as 𝑇𝑇𝑢𝑢 stands for the pixel number of fixed 𝑃𝑃. 
 
2.3 Feature extraction 

 
Next to image segmentation, the MobileNet model is 

exploited to produce feature vectors. Related to other 
approaches like Inception, it can be established that the 
MobileNets utilize minimal regularized and dependent upon 
depthwise separable convolutional but Inception V3 for 
sample utilized typical convolutional, this outcome as to 
minimal amount of parameters from MobileNet, but, this 
outcomes in small reduce from the efficiency so well, thus it 
can be essential to place a minimum or no weighted decay on 
depthwise filter as there are several parameters [18]. 

Specifically, for training the huge methods, it can utilize 
minimal data-organizing approaches such as executing 
geometric transformation, as lesser methods are minimal 
trouble. The size of inputs to the network is also smaller, the 
output of NN is 3 class labels of 1 crop. The infrastructure of 
MobileNets was training as well as testing utilizing Python 
language with Tensorflow CPU library. It can be utilized with 
other approaches named MobileNetV2 which is a CNN 
infrastructure that is dependent upon an inverted residual 
framework, it can be an enhanced version of MobileNet, the 
fundamental of network remained similar that is a detachable 
convolutional. Figure 2 showcases the stacked in MobileNet. 

 

 
 

Figure 2. Stacked in MobileNet 
 

2.4 Image classification 
 
Generally, DBN is composed of restricted Boltzmann 

machine (RBM) in which all the layers are made up of hidden 
layer ℎ  and visible layer 𝑣𝑣 . The vector 𝑤𝑤  is applied for 
improving layer connectivity amongst the RBM, and unit 
existing in the equivalent layer is independent [19]. Energy 
efficiency can be defined and steady state fo the network 
corresponding to less power utilization. Thus, it is given in the 
following: 

 

𝐸𝐸(v, ℎ) = −�𝑎𝑎𝑖𝑖

𝑚𝑚

𝑖𝑖=1

𝑣𝑣𝑖𝑖 −�𝑏𝑏𝑗𝑗

𝑛𝑛

𝑗𝑗=1

ℎ𝑗𝑗 −��𝑣𝑣𝑖𝑖

𝑚𝑚

𝑖𝑖=1

𝑛𝑛

𝑗𝑗=1

ℎ𝑗𝑗𝑤𝑤𝑖𝑖𝑗𝑗 , (8) 

 
Now 𝑎𝑎 and 𝑏𝑏 indicate the bias vector of visible and hidden 

layers. Next, the unit of visible and hidden layers are 
represented as 𝑡𝑡 and 𝑛𝑛. The conditional and joint distribution 
for all the layers is defined by following equation: 

 
( , )

( , )

,

( , )
E v h

E v h

v h

eP v h
e

−

−=
∑

 (9) 

 
( , )

( , )
( , )( )
( )

E v h

E v h

v

P v h eP v h
P h e

−
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∑

∣  (10) 
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Once the unit is not interconnected with each other, the 
conditional probability of unit is evaluated by following 
equation: 

 

𝑃𝑃�ℎ𝑗𝑗 = 1|𝑣𝑣� =
𝑃𝑃�ℎ𝑗𝑗 = 1, 𝑣𝑣�

𝑃𝑃�ℎ𝑗𝑗 = 1, 𝑣𝑣� + 𝑃𝑃�ℎ𝑗𝑗 = 0, 𝑣𝑣�

= 𝜎𝜎 ��𝑎𝑎𝑖𝑖

𝑚𝑚

𝑖𝑖=1

+ 𝑤𝑤𝑖𝑖𝑗𝑗𝑣𝑣𝑖𝑖�, 
(12) 

 

𝑃𝑃(𝑣𝑣𝑖𝑖 = 1|ℎ) =
𝑃𝑃(𝑣𝑣𝑖𝑖 = 1, ℎ)

𝑃𝑃(𝑣𝑣𝑖𝑖 = 1, ℎ) + 𝑃𝑃(𝑣𝑣𝑖𝑖 = 0, ℎ)

= 𝜎𝜎��𝑏𝑏𝑗𝑗

𝑛𝑛

𝑗𝑗=1

+ 𝑤𝑤𝑖𝑖𝑗𝑗ℎ𝑗𝑗�, 
(13) 

 

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
. (14) 

 
The training procedure of RBM depends on contrast 

divergence technique as given in the following: 
Initialization of parameters. The RBM has hidden layer ℎ 

and visible layer 𝑣𝑣  applied and developed together with 
𝑤𝑤, 𝑎𝑎, 𝑏𝑏  whereas learning rate 𝑒𝑒  has minimized arbitrariness. 
The epochs and batches of RBM are fixed according to the test 
knowledge. After that, training sample has appeared in the 
visible layer 𝑣𝑣. 

Update parameters. The conditional probability of hidden 
layer ℎ1 is evaluated by the abovementioned formula. Then, 
Gibbs sampling method is applied to regenerate ℎ1  and 𝑣𝑣. 
Based on the regeneration error amongst reconstructed 𝑣𝑣 and 
actual 𝑣𝑣 , the Stochastic Gradient Descent (SDG) method is 
employed for variable upgrading 𝑤𝑤, 𝑎𝑎, 𝑏𝑏. 
 
2.5 Hyperparameter optimization 

 
In this work, the EHO algorithm is utilized to fine tune the 

DBN parameters [20]. The procedure of EHO has been 
described in the following [20]: 

 
1) Elephant belongs to different clans and they live 

together led by an appropriate elephant. Each clan 
contains a large number of elephants. In this phase, it 
is assumed that each clan includes a similar, 
unchanged number of elephants. 

2) The place of the elephant in a clan effectively 
depends on the connectivity for the appropriate 
elephant. 

3) The mature male elephant (ME) left the family set 
and live independently. It is assumed that in each 
generation, a suitable number of MEs leaves the clan. 
Therefore, EHO method undergoes the update 
procedure utilizing a splitting function. 

4) Generally, the matriarch in each clan is the oldest 
female elephant (FE). In the operation, resolving, and 
modeling of the augmented problems, the appropriate 
elephant is considered by the matriarch separate in 
the clans. 

 
When the study focuses on improving the EHO update 

process, it provides further data regarding the EHO update 
operators. 

Assume that an elephant clan is represented by 𝑐𝑐𝑢𝑢 . The 

succeeding location of elephants 𝑣𝑣 in the clan are upgraded as 
follows: 

 
𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛,𝑐𝑐𝑢𝑢,𝑣𝑣 = 𝑝𝑝𝑐𝑐𝑢𝑢,𝑣𝑣 + 𝛼𝛼 × �𝑝𝑝𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏,𝑐𝑐𝑢𝑢 − 𝑝𝑝𝑐𝑐𝑢𝑢,𝑣𝑣� × 𝑡𝑡 (15) 

 
Here, 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛,𝑐𝑐𝑢𝑢,𝑣𝑣  indicates the upgraded location, 𝑝𝑝𝑐𝑐𝑢𝑢,𝑣𝑣 

denotes the preceding location of elephant 𝑣𝑣  in clan 𝑐𝑐𝑢𝑢 . 
𝑝𝑝𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏,𝑐𝑐𝑢𝑢 denotes the matriarch of clan 𝑐𝑐𝑢𝑢 and is the appropriate 
elephant individually presented in the clan. A scale factor 𝛼𝛼 ∈
[0,1] determines the control of the matriarch of 𝑐𝑐𝑢𝑢 on 𝑝𝑝𝑐𝑐𝑢𝑢,𝑣𝑣. 
𝑡𝑡 ∈ [0, 1] indicates a different stochastic distribution provides 
a significant improvement to various populations in the 
exploration phase. In our work, uniform distribution was 
employed. 

It should be noted that 𝑝𝑝𝑐𝑐𝑢𝑢,𝑣𝑣 = 𝑝𝑝𝑏𝑏𝑛𝑛𝑏𝑏𝑏𝑏,𝑐𝑐𝑢𝑢 , implies that the 
matriarch in the clan couldn’t be upgraded. To avoid this 
condition, it can be upgraded as the matriarch employing the 
subsequent formula: 

 
𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛,𝑐𝑐𝑢𝑢,𝑣𝑣 = 𝛽𝛽 × 𝑝𝑝𝑐𝑐𝑛𝑛𝑛𝑛𝑏𝑏𝑛𝑛𝑐𝑐,𝑐𝑐𝑢𝑢 (16) 

 
in which, the control of 𝑝𝑝𝑐𝑐𝑛𝑛𝑛𝑛𝑏𝑏𝑛𝑛𝑐𝑐,𝑐𝑐𝑢𝑢 on 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛,𝑐𝑐𝑢𝑢, is normalized as 
𝛽𝛽 ∈ [0,1]. The data from all the individuals in the clan 𝑐𝑐𝑢𝑢 is 
employed to create the new individual 𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛,𝑐𝑐𝑢𝑢,𝑣𝑣. The center of 
clan 𝑐𝑐𝑢𝑢 , 𝑝𝑝𝑐𝑐𝑛𝑛𝑛𝑛𝑏𝑏𝑛𝑛𝑐𝑐,𝑐𝑐𝑢𝑢 , is calculated to the 𝑑𝑑 -th dimensional 
searching space in D computation, in which, D indicates the 
whole dimension in the following: 

 

𝑝𝑝𝑐𝑐𝑛𝑛𝑛𝑛𝑏𝑏𝑛𝑛𝑐𝑐,𝑐𝑐𝑢𝑢,𝑑𝑑 =
1
𝑛𝑛𝑐𝑐𝑢𝑢

× �𝑝𝑝𝑐𝑐𝑢𝑢,𝑣𝑣,𝑑𝑑

𝑛𝑛𝑐𝑐𝑢𝑢

𝑣𝑣=1

   (17) 

 
where, as 1 ≤ 𝑑𝑑 ≤ 𝐷𝐷  denotes the 𝑑𝑑 -th dimensional vector, 
𝑛𝑛𝑐𝑐𝑢𝑢 represent the individual count in 𝑐𝑐𝑢𝑢, and 𝑝𝑝𝑐𝑐𝑢𝑢,𝑣𝑣,𝑑𝑑 indicates 
the 𝑑𝑑th dimension of individual 𝑝𝑝𝑐𝑐𝑢𝑢,𝑣𝑣. 

In elephant clan, ME leaves the family set and lives 
independently on getting puberty. In the process of divider, it 
can be modelled by separating an operator when resolving the 
problem. For enhancing the exploration ability of the EHO 
method; it is considered that the individual elephant with the 
bad fitness implemented the separation operator to each 
generation, as follows: 

 
𝑝𝑝𝑛𝑛𝑤𝑤𝑐𝑐𝑏𝑏𝑏𝑏,𝑐𝑐𝑢𝑢 = 𝑝𝑝𝑚𝑚𝑖𝑖𝑛𝑛 + (𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑝𝑝𝑚𝑚𝑖𝑖𝑛𝑛 + 1) × 𝑡𝑡𝑎𝑎𝑛𝑛𝑑𝑑 (18) 

 
in which, 𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥  and 𝑝𝑝𝑚𝑚𝑖𝑖𝑛𝑛  denotes the upper and lower bounds, 
of the location of the individual elephant. 𝑝𝑝𝑛𝑛𝑤𝑤𝑐𝑐𝑏𝑏𝑏𝑏,𝑐𝑐𝑢𝑢 indicates 
the worse elephant in clan 𝑐𝑐𝑢𝑢 . 𝑡𝑡𝑎𝑎𝑛𝑛𝑑𝑑 ∈ [0, 1]  indicates 
stochastic distribution and uniform distribution within [0,1] is 
employed in the work. 

The EHO approach achieves better classifier performance 
through the construction of an FF. According to this definition, 
a positive integer represents the best possible performance of 
potential solutions. In this case, we'll use Eq. (19), which gives 
us the minimum classifier error rate, as FF. A lower mistake 
rate indicates a better outcome, whereas a higher rate indicates 
a worse answer. 

 
𝑓𝑓𝑖𝑖𝑡𝑡𝑛𝑛𝑒𝑒𝑓𝑓𝑓𝑓(𝑥𝑥𝑖𝑖) = 𝐶𝐶𝑙𝑙𝑎𝑎𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑒𝑒𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑅𝑅𝑎𝑎𝑡𝑡𝑒𝑒(𝑥𝑥𝑖𝑖) 

=
𝑛𝑛𝑢𝑢𝑡𝑡𝑏𝑏𝑒𝑒𝑡𝑡 𝑡𝑡𝑓𝑓 𝑡𝑡𝑖𝑖𝑓𝑓𝑐𝑐𝑙𝑙𝑎𝑎𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑒𝑒𝑑𝑑 𝑡𝑡𝑒𝑒𝑑𝑑𝑖𝑖𝑐𝑐𝑎𝑎𝑙𝑙 𝑖𝑖𝑡𝑡𝑎𝑎𝑖𝑖𝑒𝑒𝑓𝑓

𝑇𝑇𝑡𝑡𝑡𝑡𝑎𝑎𝑙𝑙 𝑛𝑛𝑢𝑢𝑡𝑡𝑏𝑏𝑒𝑒𝑡𝑡 𝑡𝑡𝑓𝑓 𝑖𝑖𝑡𝑡𝑎𝑎𝑖𝑖𝑒𝑒𝑓𝑓
∗ 100 

(19) 

2666



Psuedo Code of Hyperparameter Optimization using 
Elephant Herding Optimization (EHO) 

# Initialization 
initialize_parameters() # Initialize DBN parameters and 

other EHO-related parameters 
# Main 
for generation in range(num_generations): 
    for clan in elephant_clans: 
        for elephant in clan: 
            # Update location of elephants in the clan 
            update_location(elephant, clan) 
             
            # Apply separation operator for exploration 
            if should_apply_separation_operator(elephant): 
                separation_operator(elephant, clan) 
 # Evaluate fitness of each individual in the population 
    evaluate_fitness(elephant_clans) 
# Update matriarchs and explore 
    update_matriarchs_and_explore(elephant_clans) 
best_solution = find_best_solution(elephant_clans) 

 

3. EXPERIMENTAL VALIDATION 
 
Using the HIS2828 Dataset and the ISIC 2017 dataset, this 

section assesses the MNODBN-MIC model's performance 
validation. See a couple of picture examples in Figure 3. 

 

 
 

Figure 3. Sample images 
 

 
 

Figure 4. The MNODBN-MIC method's confusion matrix 
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Table 1. Analysis of the MNODBN-MIC approach's output 
utilising individual metrics 

 
Class Labels 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒚𝒚 𝒑𝒑𝒑𝒑𝒑𝒑𝒂𝒂𝒏𝒏 𝒑𝒑𝒑𝒑𝒂𝒂𝒂𝒂𝒍𝒍 𝒔𝒔𝒑𝒑𝒑𝒑𝒂𝒂𝒚𝒚 𝑭𝑭𝒔𝒔𝒂𝒂𝒔𝒔𝒑𝒑𝒑𝒑 

Entire Dataset 
Nervous Tissue 99.43 99.61 98.83 99.78 99.22 

Connective Tissue 99.33 97.94 98.14 99.57 98.04 
Epithelial Tissue 99.05 97.55 99.13 99.01 98.33 
Muscular Tissue 99.22 98.43 97.28 99.65 97.85 

Average 99.26 98.38 98.34 99.50 98.36 
Training (70%) 

Nervous Tissue 99.60 99.72 99.17 99.84 99.44 
Connective Tissue 99.34 97.92 98.21 99.57 98.07 
Epithelial Tissue 99.04 97.70 98.93 99.08 98.31 
Muscular Tissue 99.39 98.88 97.79 99.75 98.33 

Average 99.34 98.56 98.52 99.56 98.54 
Testing (30%) 

Nervous Tissue 99.06 99.33 98.03 99.63 98.68 
Connective Tissue 99.29 97.97 97.97 99.57 97.97 
Epithelial Tissue 99.06 97.21 99.59 98.84 98.39 
Muscular Tissue 98.82 97.33 96.05 99.43 96.69 

Average 99.06 97.96 97.91 99.37 97.93 
 
The confusion matrices generated by the MNODBN-MIC 

model when applied to the test dataset HIS2828 are shown in 
Figure 4. Regarding the entire dataset, the MNODBN-MIC 
model has classified 1014 samples as nerve tissue, 475 as 
connective tissue, 797 as epithelial tissue, and 500 as muscle 
tissue, in that order. In addition, 70 percent of the TRS dataset 
has been classified by the MNODBN-MIC model as nerve 
tissue (716 samples), connective tissue (330 samples), 
epithelial tissue (553 samples), and muscle tissue (354 
samples). Moreover, out of the thirty percent total surface area 
dataset, the MNODBN-MIC model has identified 298, 145, 
244, and 146 samples that belong to the categories of nerve 
tissue, connective tissue, epithelial tissue, and muscle tissue, 
respectively. 

Table 1 provides a thorough synopsis of the MNODBN-
MIC model's classifier findings on the test HIS2828 dataset. 
An average result for the entire dataset has been given by the 
MNODBN-MIC model. 𝑎𝑎𝑐𝑐𝑐𝑐𝑢𝑢𝑦𝑦 , 𝑝𝑝𝑡𝑡𝑒𝑒𝑐𝑐𝑛𝑛 , 𝑡𝑡𝑒𝑒𝑐𝑐𝑎𝑎𝑙𝑙 , 𝑓𝑓𝑝𝑝𝑒𝑒𝑐𝑐𝑦𝑦 , and 
𝐹𝐹𝑏𝑏𝑐𝑐𝑤𝑤𝑐𝑐𝑛𝑛  of 99.26%, 98.38%, 98.34%, 99.50%, and 98.36% 
respectively. In addition, on the 70% of TRS dataset, the 
MNODBN-MIC model has resulted in average 𝑎𝑎𝑐𝑐𝑐𝑐𝑢𝑢𝑦𝑦, 𝑝𝑝𝑡𝑡𝑒𝑒𝑐𝑐𝑛𝑛, 
𝑡𝑡𝑒𝑒𝑐𝑐𝑎𝑎𝑙𝑙, 𝑓𝑓𝑝𝑝𝑒𝑒𝑐𝑐𝑦𝑦, and 𝐹𝐹𝑏𝑏𝑐𝑐𝑤𝑤𝑐𝑐𝑛𝑛 of 99.34%, 98.56%, 98.52%, 99.56%, 
and 98.54% correspondingly. Also, on the 30% of TSS dataset, 
the MNODBN-MIC model has resulted in average 
𝑎𝑎𝑐𝑐𝑐𝑐𝑢𝑢𝑦𝑦 , 𝑝𝑝𝑡𝑡𝑒𝑒𝑐𝑐𝑛𝑛 , 𝑡𝑡𝑒𝑒𝑐𝑐𝑎𝑎𝑙𝑙 , 𝑓𝑓𝑝𝑝𝑒𝑒𝑐𝑐𝑦𝑦 , and 𝐹𝐹𝑏𝑏𝑐𝑐𝑤𝑤𝑐𝑐𝑛𝑛  of 99.06%, 97.96%, 
97.91%, 99.37%, and 97.93% correspondingly. 

The MNODBN-MIC model demonstrated its efficacy on 
the HIS2828 dataset in terms of both training accuracy (TA) 
and validation accuracy (VA), as shown in Figure 5. 
According to the experimental findings, the MNODBN-MIC 
model has attained the maximum conceivable values of TA 
and VA. The VA seems to have done better than the TA, to be 
more specific. 

Figure 6 shows the training loss (TL) and validation loss 
(VL) that the MNODBN-MIC model achieved on the 
HIS2828 dataset. The experimental results showed that the 
MNODBN-MIC model got the lowest TL and VL values 
conceivable. To be more precise, it could seem like the VL is 
lower than the TL. 

The confusion matrices generated by the MNODBN-MIC 

model using the test ISIC2017 dataset are shown in Figure 7. 
Among all samples in the dataset, 371 were classified as 
Melanoma and 1610 as NS Keratosis according to the 
MNODBN-MIC model. Also worth noting is that out of the 
70% of the TRS dataset that was analysed, the MNODBN-
MIC model classified 268 samples as Melanoma and 1120 
samples as NS Keratosis. The MNODBN-MIC model has 
revealed that 103 samples on the 30% TSS dataset are 
Melanoma and 490 samples are NS Keratosis, adding insult to 
injury. 

Table 2 reports comprehensive results of the MNODBN-
MIC model on the test ISIC2017 dataset. On the entire dataset, 
the MNODBN-MIC model has resulted in average 
𝑎𝑎𝑐𝑐𝑐𝑐𝑢𝑢𝑦𝑦 ,𝑝𝑝𝑡𝑡𝑒𝑒𝑐𝑐𝑛𝑛 , 𝑡𝑡𝑒𝑒𝑐𝑐𝑎𝑎𝑙𝑙 , 𝑓𝑓𝑝𝑝𝑒𝑒𝑐𝑐𝑦𝑦 , and 𝐹𝐹𝑏𝑏𝑐𝑐𝑤𝑤𝑐𝑐𝑛𝑛  of 99.05%, 97.84%, 
99.11%, 99.11%, and 98.46% correspondingly. In addition, on 
70% of TRS dataset, the MNODBN-MIC model has resulted 
in average 𝑎𝑎𝑐𝑐𝑐𝑐𝑢𝑢𝑦𝑦,𝑝𝑝𝑡𝑡𝑒𝑒𝑐𝑐𝑛𝑛, 𝑡𝑡𝑒𝑒𝑐𝑐𝑎𝑎𝑙𝑙, 𝑓𝑓𝑝𝑝𝑒𝑒𝑐𝑐𝑦𝑦, and 𝐹𝐹𝑏𝑏𝑐𝑐𝑤𝑤𝑐𝑐𝑛𝑛 of 99.14%, 
98.11%, 99.19%, 99.19%, and 98.64% correspondingly. Also, 
on the 30% of TSS dataset, the MNODBN-MIC model has 
resulted in average 𝑎𝑎𝑐𝑐𝑐𝑐𝑢𝑢𝑦𝑦,𝑝𝑝𝑡𝑡𝑒𝑒𝑐𝑐𝑛𝑛, 𝑡𝑡𝑒𝑒𝑐𝑐𝑎𝑎𝑙𝑙, 𝑓𝑓𝑝𝑝𝑒𝑒𝑐𝑐𝑦𝑦, and 𝐹𝐹𝑏𝑏𝑐𝑐𝑤𝑤𝑐𝑐𝑛𝑛 of 
98.83%, 97.15%, 98.91%, 98.91%, and 98% correspondingly. 

 

 
 

Figure 5. TA and VA analysis of MNODBN-MIC technique 
 

 
 

Figure 6. TL and VL analysis of MNODBN-MIC technique 
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Figure 7. Confusion matrix of MNODBN-MIC technique 
 

Table 2. Result analysis of MNODBN-MIC technique with distinct measures 
 

Class Labels Accuracy Precision Recall Specificity F-Score 
Entire Dataset 

Melanoma 99.05 95.87 99.20 99.02 97.50 
NS Keratosis 99.05 99.81 99.02 99.20 99.41 

Average 99.05 97.84 99.11 99.11 98.46 
Training (70%) 

Melanoma 99.14 96.40 99.26 99.12 97.81 
NS Keratosis 99.14 99.82 99.12 99.26 99.47 

Average 99.14 98.11 99.19 99.19 98.64 
Testing (30%) 

Melanoma 98.83 94.50 99.04 98.79 96.71 
NS Keratosis 98.83 99.80 98.79 99.04 99.29 

Average 98.83 97.15 98.91 98.91 98.00 
 

Table 3. Comparative analysis of proposed methods 
 

Proposed Methods Dataset Accuracy Precision Recall Specificity 

MNODBN-MIC HIS2828  99.26 98.38 98.34 99.50 
ISIC2017  99.05 97.84 99.11 99.11 

DCNN-HSNN HIS2828  91.09 92.08 97.32 95.97 
ISIC2017  78.82 92.87 94.25 94 

IBAS-DTL HIS2828  97.79 95.64 95.12 98.47 
ISIC2017  98.8 97.4 98.75 98.75 
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Figure 8. TA and VA analysis of MNODBN-MIC technique 
on ISIC2017 dataset 

 

 
 

Figure 9. TL and VL analysis of MNODBN-MIC technique 
on ISIC2017 dataset 

 

 
 

Figure 10. Comparative analysis of MNODBN-MIC 
technique on HIS2828 dataset 

 
 

Figure 11. Comparative analysis of MNODBN-MIC 
technique on ISIC2017 dataset 

 
When applied to the ISIC2017 dataset, the MNODBN-MIC 

model produced the TA and VA are shown in Figure 8. The 
experimental results showed that the MNODBN-MIC model 
got the maximum TA and VA values that could be imagined. 
In particular, it seems that the VA exceeds the TA sum. Figure 
9 displays the TL and VL values generated from the ISIC2017 
dataset using the MNODBN-MIC model. The experimental 
results showed that the MNODBN-MIC model found the 
lowest TL and VL values that could be achieved. To be more 
specific, it seems like the VL is below the TL.  

On the HIS2828 dataset, Figure 10 displays a thorough 
evaluation of the MNODBN-MIC model in contrast to newer 
models. In contrast to the SVM-TF model's 0.7525 accuracy, 
the coding network and SVM-TDF models achieved 
marginally better results with 0.8225 and 0.8236, respectively. 
The figure reported this information. Furthermore, with an 
accuracy of 0.8691 and 0.8631 respectively. With a maximum 
accuracy of 0.9906, the MNODBN-MIC model outperforms 
the other methods. This stands in stark contrast to the 0.9130 
accuracy achieved by the CNMP model. 

Using more modern models on the ISIC2017 dataset, Figure 
11 presents the findings of a complete investigation of the 
MNODBN-MIC model. According to the figures, the coding 
network model had a slightly better accuracy of 0.7540 and the 
SVM-TDF model had a little higher accuracy of 0.7964, but 
the SVM-TF model had a lower accuracy of 0.6948. Together 
with this, the R-FF and KPCA-FF models have come near to 
the actual value, with R-FF at 0.9008 and KPCA-FF at 0.8973. 
Even though the CNMP model has achieved results that are 
near the ideal level of accuracy-0.9147-the MNODBN-MIC 
model outperforms the others with a maximum accuracy of 
0.9883. 

Thus, the experimental results shown in Table 3 portrayed 
that the MNODBN-MIC model has resulted in maximum 
outcomes over the other methods. 

 
 

4. CONCLUSION 
 

In this study, a new MNODBN-MIC model has been 
developed to categorize the medical images into distinct class 
labels. The MNODBN-MIC model primarily employed GF 
based noise removal approach to optimize medical image 
quality. In addition, the MNODBN-MIC model derives a 
graph cut based segmentation technique to identify the 

2670



affected regions. Moreover, MobileNet model is exploited to 
produce feature vectors. Finally, EHO with DBN model is 
utilized for data classification in which the EHO algorithm fine 
tunes the DBN parameters. Using a benchmark dataset, we 
conduct experimental validation of the MNODBN-MIC model, 
and the findings show that it outperforms other methods that 
have been used recently. In the future, it will be feasible to 
improve the performance of the MNODBN-MIC 
mathematical model using ensemble learning methods. 
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