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In the area of sleep study, automatic sleep stage identification through 

Electroencephalogram (EEG) is an important step. However, the outcomes obtained with 

modern, cutting-edge techniques are not satisfactory; hence, they cannot be used in standard 

clinical procedures. In the following paper, we suggest a simple yet productive solution with 

automated sleep staging through analytical features and hierarchical classification. As an 

initial step, the proposed method segments the input EEG signal into different epochs and 

describes each epoch with 22 features extracted from multiple domains, including 

frequency-domain, time-frequency-domain, time-domain, and non-linear domain. The 

ability of analytical features to perfectly differentiate between sleep stages with similar 

characteristics demonstrates their efficacy. Further, this work introduces a new classification 

scheme called hierarchical classification, which solves the complex classification problem 

by breaking it into small problems. At classification, we employed the binary Support Vector 

Machine (SVM). In terms of performance, the proposed system is validated through a 

standard and publicly available Sleep-EDF dataset. In comparison with gold-standard 

manual scoring, we achieved 92.3500% accuracy and a 0.8646 kappa coefficient with our 

method. Further, the suggested method outperformed current cutting-edge automatic sleep 

stage classification techniques in terms of better results. 

Keywords: 

automatic sleep staging, 

Electroencephalogram (EEG), hierarchical 

classifier, instantaneous phase, envelope, 

entropy 

1. INTRODUCTION

One of life's most important daily activities, sleep is shown 

to follow the circadian rhythm of human psychological 

processes [1]. Sleep follows a stage-by-stage process that is 

indirectly linked to the functions of the autonomous nervous 

system [2]. The quality of sleep shows a significant impact on 

so many human activities like concentration, memorization, 

and learning [3]. Recently, some research has revealed that 

abnormal sleep leads to severe health issues like increased 

neurocognitive function disorders and the risk of 

cardiovascular strokes [4, 5]. So, a proper understanding and 

analysis of sleep disorders like sleep apnea and insomnia are 

essential. For this purpose, a precise sleep stage detection from 

the sleep cycles is necessary. Accurately identifying the 

various stages of sleep is crucial for the diagnosis and 

treatment of sleep disorders [6]. 

Currently, the mechanism for staging sleep is being carried 

out through a Polysomnograph (PSG) record acquired the 

whole night during sleep. Mainly, the PSG record involves the 

acquisition of six activities: respiratory rate, Blood Oxygen 

Level, Electromyogram (EMG), Electrooculogram (EOG), 

Electrocardiogram (ECG), and the Electroencephalogram 

(EEG). Based on these activities, sleep staging is performed 

by a well-trained professional based on common rules induced 

by Rechtschaffen and Kales (R&K) [7] and the American 

Academy of Sleep Medicine (AASM) [8]. Total sleep is 

divided into seven stages, as per R&K rules: movement time 

(MT), Rapid Eye Movement (REM), Stages from one to four 

(S1-S4), and Wake (W). However, the AASM amended the 

R&K guidelines and came up with new rules for classifying 

different stages of sleep, which are now used. According to the 

AASM, the stages of sleep are derived as REM, N1, N2, N3, 

and W [9]. AASM is considered to have three major attributes 

at the sleep staging; they are duration, pattern, and Spectral 

content of PSG signals. For instance, attributes like high EMG 

amplitudes combined with frequent eye movements and faster 

frequency rhythms in a 30s EEG window (called an epoch) or 

alpha band (8-12Hz) are used to characterize the wake stage. 

Next, the vertex waves and more than 50% of the epoch 

occupied by the alpha band are used to characterize the N1 

stage [10]. Further, the K-complexes and the sleep spindles are 

major attributes to characterize the stage N2. Next, N3 Stage 

(called Slow Wave Sleep (SWS)) is distinguished by the 

presence of more than 20% of delta band (0-4Hz) activity in 

the epoch. At last, attributes like low EMG amplitudes, 

saccadic eye movements, and sawtooth waves are used to 

characterize the REM stage. 

Manual sleep staging, however, takes a lot of time and is 

highly subjective in nature, and totally dependent on the expert. 
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Mostly, the agreement between two independent experts is 

unsatisfactory. For example, Danker-Hopfe et al. [11] 

discovered that the Inter-Rate Reliability (IRR) computed with 

the help of Kappa’s Coefficient between two scorers is 

approximately 0.78 [11]. But the international score shows 

poor staging at the N1 stage and hence the IRR is 

approximated to be low in the range of 0.58 to 0.63 [12-15]. It 

has been proven that the approximated value of the N1 stage’s 

agreement among the European laboratories is only 0.19, 

while it is approximated at 0.31 between international 

laboratories. Further, the manual sleep staging score gets 

worse if the patient is experiencing any medical conditions like 

Obstructive Sleep Apnea (OSA) [16]. Compared with 

automatic scoring, manual scoring enhances sleep staging 

consistency between healthcare centers and hospitals. 

Furthermore, automatic sleep stage scoring ensures minimal 

computational complexity by considering only a few signals. 

Therefore, we are driven to develop an automated, reliable 

sleep staging system based on signal processing and machine 

learning methods. 

Over the past few years, several automatic staging methods 

have been developed by researchers. In general, automated 

approaches depend on predefined rules, features extracted 

from signals, and classification methods [17]. However, in 

most past methods, the classifier was trained with all stage 

features which in turn rises the computational burden over the 

system. Moreover, the Pats methods employed only a limited 

set of features to describe the sleep stages through EEG. Hence, 

this paper proposes a new sleep staging framework that 

considers multiple and diversified features and employs a 

hierarchical classification. The following are the main 

contributions of this paper: 

• To give a clear differentiation of the various stages of 

sleep, a new method that elucidates EEG signal-

based sleep stages is proposed. Totally, we use 22 

different features to represent each EEG signal epoch. 

The features include non-linear, time-domain, 

frequency-domain, and time-frequency domain 

features. 

• To achieve a reduced computational burden during 

training and testing, this work employs a hierarchal 

classification based on brute-force methodology. 

Support Vector Machine (SVM) is employed at 

multiple phases to classify each and every sleep stage. 

 

The rest sections of the study are organized as follows: 

specifics of the literature survey are explored in the second 

section. Following that, the third section explores the specifics 

of the suggested sleep stage classification mechanism. The 

details of experimental investigations are examined in the 

fourth section, and the study is concluded in the fifth. 

 

 

2. LITERATURE SURVEY 

 

Earlier, the automatic methods of sleep staging were 

broadly classified into two learning-based methods: deep 

learning and machine learning-based. The former methods 

extracted handcrafted features and fed them to machine 

learning algorithms to get class labels, while the next methods 

employed deep learning algorithms for both component 

extraction and classification. Since the withdrawal of features 

that are handcrafted increases time complexity, recent deep 

learning algorithms have been replaced with traditional 

machine learning methods. However, deep learning 

algorithms employ a set of convolutional operations as they 

increase computational complexity. In this section, we outline 

the details of both methods briefly. 

 

2.1 Machine learning based staging 

 

In the method proposed by Memar and Faradji [18], initially, 

every EEG epoch is partitioned into eight sub-bands based on 

the rhythm of EEG (i.e., gamma 1, gamma 2, beta 1, beta 2, 

sigma, alpha, theta, and delta). Totally, each epoch is 

represented with 104 features, and they employed a feature 

significance examination by employing the Kruskal-Wallis 

test, which helped in eliminating the less significant features. 

Then they removed redundant features with the help of 

Minimal Redundancy Maximal Relevance(MRMR) and 

finally fed them to random forest classifier. Sharma et al. [19] 

proposed a new Least Squares design with a Bi-orthogonal 

Wavelet Filter Bank (BWFB) for feature extraction and 

employed different supervised classifiers for automatic sleep 

stage scoring. They used only EEG channels that are unipolar, 

such asC3-M2 andO1-M2, and extracted Hjorth Parameters 

(HP) from the wavelet sub-bands. 

Alickovic and Subasi [20] considered single-channel EEG 

and proposed executing the automatic sleep staging system in 

three modules. In the first module, the input EEG signal 

acquired from the Pz-Oz electrode is subjected to denoising 

through Multiscale Principal Component Analysis (MSPCA) 

[21]. The 2nd module applies the discrete wavelet transform 

(DWT) to withdraw informative features through the 

computation of statistical values from DWT bands. At last, 

they employed an ensemble classifier called Rotational SVM 

for classifying the signal. Widasari et al. [22] proposed a five-

stage methodology for an automatic sleep staging. They are: 

(1) Pre-processing through R-peak detection, filtering, and 

interpolation of R-R intervals; (2) Extraction of spectral 

features through the Hanning window with the Welch method; 

(3) Decision tree-based SVM for sleep stage detection; and (4) 

Sleep quality features assessment and classification of sleep 

disorders through the ensemble of bagged tree classifiers. 

Zapata et al. [23] employed the Multitaper with 

Convolution (MT&C) methodology for the feature withdraws 

from EEG signals. They employed two methods for 

classification of sleep stage. In the 1ststage, EEG waves are 

used directly, and the sleep stages classification is predefined 

and rule-based. The next method uses SVM with a quadratic 

equation (SVM-Q) as a classifier to classify the stages of sleep 

based on the scores of the experts. Ye et al. [24] employed self-

supervised learning (SSL) [25, 26] mechanisms that make the 

system learn roust and generalizable features from 

physiological signals. They employed a novel co-training 

mechanism that exploits complementary information from 

multiple orientations (like time and frequency) of EEG signals 

to dig out the more positive samples. 

Karimzadeh et al. [27] proposed to extract two informative 

features from the EEG signal: the Shannon entropy of the 

instantaneous envelope and an instantaneous frequency. Then, 

the obtained set of features is used to build a decision tree-

based classifier in a distributed manner. The design is done 

according to brute-force methodology, and the K-Nearest 

Neighbor classifier is used at each decision node in the 

distributed decision tree model. Li et al. [28] proposed a 

scoring method, hybrid automatic sleep stage called Hy 

CLASS, which considers the single-channel EEG as input. Hy 
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CLASS employed two types of features, namely signal 

features and transition features [29], to describe each epoch of 

the EEG signal. Under signal features, totally they extracted 

30 features, which include both time and frequency features. 

At classification, they employed a random forest algorithm 

along with correction rules. The stage transition characteristics, 

which import the sleep property and describe the transition of 

the sleep stage, are the foundation upon which the correction 

rules are created. 

 

2.2 Deep learning based staging 

 

Under this category, the sleep staging [30] methods for 

sleep stages classification employed deep learning methods. 

Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs) are the two approaches that have been 

widely used. 

In order to score sleep stages, Zhou et al. [31] suggested a 

new deep learning architecture called a segmented Attention 

Network (SAN). The entire architecture is two-fold: one is the 

Feature Extraction (FE) and the other is the Time Sequence 

Encoder (TSE). The reinforced features are taken from 

numerous, identical-length EEG epochs using FE, which 

consists of Multiple Multiscale CNN (MMCNN), Residual 

Squeeze, and Excitation Block. The features extracted by the 

FE module are used by TSE to derive temporal information. 

Abdollahpour et al. [32] considered single-channel EEG 

and extracted only one feature (i.e., standard deviation) from 

the frequency sub-bands of EEG. For classification, they 

employed a two-stream CNN and a two-stage learning model. 

Similarly, Sun et al. [33] proposed classification methods 

consisting of two stages that include a learning network of two 

stages for automatic sleep staging. The first stage consisted of 

the handcrafted feature extraction, and 2nd stage involved the 

RNN for full utilization of learning the temporal information 

between EEG epochs. Further, they proposed a data 

augmentation scheme to solve the data imbalance problems. 

Leino et al. [34] combined the CNN and RNN models to 

diagnose several sleep disorders from the single-channel (i.e., 

F4-M1) EEG signals recorded through an ambulatory 

electrode set (AES). Liu et al. [35] built a new deep learning 

network by combining Multi-Scale Extraction (MSE) based 

Convolutional Block Attention Module (CBAM) and U-

Structure for the extraction of multi-scale salient features from 

the single-channel EEG signals. First, the U-structured CNN 

model with MSE extracts multi-scale features from EEG, and 

then CBAM is employed to leverage the salient variations and 

then learn transition rule among different stages. 

Phan et al. [36] proposed a joint prediction and 

classification architecture for automatic sleep staging depends 

on CNNs. For a given EEG epoch, their architecture jointly 

identifies its label and also the labels of its neighboring epochs. 

Due to this kind of joint classification, the method can leverage 

the dependency between successive epochs while surpassing 

the traditional Machine learning-based method’s problems. 

An energy-based optimization technique for the improvisation 

of hypnograms produced by automatic sleep staging methods 

was developed by Aristimunha et al. [37]. For each epoch, they 

compute energy followed by conditional probabilities and then 

apply an energy minimization process for sleep stage 

prediction. 

Recently, transfer learning-based deep learning 

architectures have been put forth to enhance categorization 

efficiency. Based on this fact, Abdollahpour et al. [38] 

introduced a new method that uses EEG and EOG signals for 

performing automatic sleep staging. At feature extraction, they 

extracted two sets of features: features of EEG and features of 

a composite of EEG and EOG. Then the obtained features are 

transformed into an HV (Horizontal Visibility) Graph and the 

HV Graph image is classified through the transfer learning 

CNN for Fusion (TLCNN-DF). Table 1 shows the comparison 

between the state of the art methods. 

 

Table 1. Comparison between state of the art methods 

 
Ref. No Feature Extraction Classification Demerit 

Memar and 

Faradji [18] 

1. Epochs extraction from rhythm of EEG 

2. 104 features from each epoch 

3. Kruskal-Wallis test for feature 

significance 

Random forest classifier 
Huge computational complexity due to 

more number of features 

Sharma et al. 

[19] 

Least Squares design with a Bi-orthogonal 

Wavelet Filter Bank (BWFB) 

Multiple supervised learning 

algorithms for classification 

Scale Invariance occurrence due to 

wavelet filter 

Alickovic and 

Subasi [20] 

Multiscale Principal Component Analysis 

(MSPCA) and DWT 
Rotational SVM 

DWT is a multiscale transform and PCA 

over such features results in information 

loss 

Widasari et al. 

[22] 
Spectral Features and Welch features 

Ensemble of bagged tree 

classifiers 

The width of main lobe is more in 

Hanning window 

Karimzadeh et 

al. [27] 

Shannon entropy of the instantaneous 

envelope and an instantaneous frequency 

brute-force methodology and the 

K-Nearest Neighbor 
Very less features 

Zhou et al. [31] 
Reinforced features are taken from 

numerous, identical-length EEG epochs 

Time Sequence Encoder (TSE) 

for classification 
Huge complexity due to TSE 

Sun et al. [33] Temporal features Recurrent neural Networks Not involved the statistical features 

Liu et al. [35] 
U-structure for the extraction of multi-scale 

salient features 

Multi-Scale Extraction based 

Convolutional Block Attention 

Module 

More errors due to MSE 

 

 

3. METHODOLOGY 

 

3.1 Overview 

 

Under the methodology, we explore the complete details of 

the proposed automatic sleep staging system. Figure 1 shows 

the overall working schematic of the proposed system, which 

consists of two stages: feature extraction and classification. As 

we noticed a huge computational burden through deep 

learning approaches, we used simple and effective machine 
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learning methods for sleep stage scoring. To ensure better 

differentiation between various stages of sleep, we employed 

a robust and composite set of feature extraction in multiple 

domains: the non-linear domain, frequency domain, time 

domain, and time-frequency domain. Unlike the conventional 

ML-based method, which employs direct classification, we 

employed hierarchical classification to lessen the 

computational burden on the system. The major novelty of this 

system is a hierarchical classification based on an exhaustive 

search strategy over different feature set combinations. Further, 

the consideration of multiple features makes the scoring 

system fully aware and helps in the accurate classification of 

sleep stages. 

 

 
 

Figure 1. Overall working schematic of proposed sleep staging system 

 

3.2 Pre-processing 

 

At this stage, the EEG signal is subjected to quality 

enhancement. Towards such an aspect, we apply an 8th order 

Butterworth bandpass filter with a pass band ranging from 0.5 

Hz to 35 Hz. Let’s consider 𝑥(𝑡) being an input EEG signal, 

after filtering, it is denoted as 𝑥𝑓(𝑡). Then 𝑥𝑓(𝑡) is processed 

for segmentation where it is divided into different epochs each 

having a time span of 30 seconds, let the ith epoch is denoted 

as 𝑥𝑓
𝑖 (𝑡). Instead of processing the complete EEG signal for 

scoring, epochs are processed where each epoch is associated 

with one sleep stage. 

 

3.3 Features extraction 

 

For feature extraction, the earlier features that are reported 

are considered for the study. From each epoch signal, a total 

of 22 features are extracted from four different perspectives: 

eleven features in the frequency domain, six features in the 

time domain, two non-linear features and three time-frequency 

domain features. The complete details of the features are 

explored here. 

 

A. Time domain features 

Time domain features play a fundamental role in EEG 

classification by capturing the temporal dynamics and 

morphological characteristics of EEG signals, facilitating the 

discrimination of different brain states and conditions for 

various clinical and research applications. EEG signals are 

inherently temporal in nature, representing the electrical 

activity of the brain over time. Time domain features capture 

various temporal characteristics of EEG signals, such as 

amplitude, frequency, duration, and temporal dynamics. Time 

domain features allow capturing the shape, amplitude, and 

timing of various EEG waveform patterns, such as spikes, 

sharp waves, and rhythmic oscillations, which can provide 

valuable insights into brain function and dysfunction. Under 

the time domain, each epoch is characterized by six different 

features; they are namely Mean, Minimum, maximum, Mean 

Absolute Deviation (MAD), Standard Deviation (SD), and 

Root Sum of Squared Level (RSS). They are expressed as 

follows. 

Mean: The mean explores the average amplitude variations 

in the epoch. For a given epoch, the mean is computed as a 

sum of the amplitudes of all samples, followed by the division 

of the sum by the total number of the samples present in the 

epoch. Mathematically, expressed as: 

 

𝜇𝑖 =
1

𝑁
∑ 𝑥𝑓

𝑖 (𝑗)

𝑁

𝑗=1

 (1) 

 

where, 𝑥𝑓
𝑖 (𝑗) denotes the jth sample’s amplitude in ith epoch of 

filtered EEG signal and N express the total number of samples 

present in the epoch. 

Minimum and Maximum: Minimum and Maximum 

values explore the least and most values among the given input 

samples. These features help in the discrimination between sag 

and swell signals, as well as between sag with harmonics and 

swell with harmonics. For a given window w, the minimum 

and maximum are computed as follows: 

 

𝑀𝑥𝑖 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (𝑥𝑓
𝑖 (𝑗)) , 𝑗 ∈ 1, … , 𝑁 (2) 

 

𝑀𝑛𝑖 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 (𝑥𝑓
𝑖 (𝑗)) , 𝑗 ∈ 1, … , 𝑁 (3) 

 

SD: SD explores the EEG signal’s statistical distribution 

with respect to the mean. For a given epoch, the initial mean 

is computed, and then each sample’s amplitude is subtracted 

from the mean, followed by summation, normalization, and 

square root computation. Mathematically, SD is computed as: 
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𝜎𝑖 = √
1

𝑁
∑(𝜇𝑖 − 𝑥𝑓

𝑖 (𝑗))
2

𝑁

𝑗=1

 (4) 

 

MAD: It reveals the signal’s variability. For a given epoch, 

the mean is calculated first, and then each sample’s amplitude 

is subtracted from the mean, followed by summation and 

normalization. Since the means of epochs are different in 

nature, the MAD ensures better discrimination between sleep 

stages. Mathematically, MAD is computed as: 

 

𝑀𝑖 =
1

𝑁
∑(𝜇𝑖 − 𝑥𝑓

𝑖 (𝑗))

𝑁

𝑗=1

 (5) 

 

RSS: It is measured as the square root of the mean of 

summation of the squared amplitudes of each sample in the 

epoch. For a given epoch, initially, each sample is squared, and 

then all the values are subjected to summation, followed by 

normalization and square root computation. RSS alleviates the 

difference between EEG amplitudes and noises perfectly since 

the squared amplitude clears the ambiguity. For a given epoch, 

the RSS is computed as follows: 

 

𝑅𝑖 = √
1

𝑁
∑(𝑥𝑓

𝑖 (𝑗))
2

𝑁

𝑗=1

 (6) 

 

Table 2. Different frequency bands of EEG signal 

 
Notation Name Frequency Range 

Beta 1 𝑥𝛽1
 [15.0, 20.0] 

Beta 1 𝑥𝛽2
 [20.0, 30.0] 

Spindle 𝑥𝑆 [10.5, 14.5] 

Alpha 𝑥𝛼 [8.0, 10.5] 

Theta 𝑥𝜃 [4.0, 8.0] 

Delta 𝑥𝛿  [1.0, 4.0] 

SWA 𝑥𝑆𝑊𝐴 [0.5, 5.5] 

Sigma 𝑥Σ [12.0, 15.0] 

Fast_Sigma 𝑥ΣF [13.5, 15.0] 

Slow_Sigma 𝑥ΣS [12.0, 13.5] 

Osscilate_Slow 𝑥OS [0.5, 2.0] 

 

B. Features of frequency domain 

Frequency domain features are essential for EEG 

classification by capturing the spectral characteristics, 

functional connectivity patterns, and neurophysiological 

correlates of brain activity, which are critical for 

discriminating between different cognitive states, tasks, and 

neurological conditions. EEG signals contain information 

about the rhythmic electrical activity of the brain, which can 

be decomposed into different frequency bands, such as delta 

(0.5-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz), and 

gamma (30-100Hz). Frequency domain analysis allows 

capturing the spectral characteristics of EEG signals, revealing 

the distribution of power across different frequency bands. The 

diverse sleep stage EEG signals have distinctive frequency-

domain characteristics, and many past methods have analyzed 

such characteristics [39]. The importance of spectral power is 

reported by most of the previous methods, which showed 

better performance at stage scoring [40] of automatic sleep. 

For example, the rise in the depth of sleep makes the power of 

EEG signals stronger at low frequencies. Next, the amplitudes 

of stage 1 sleep are larger in the frequency range between 2Hz 

and 7Hz. Next, stage 2 is easily determined with the help of 

sleep spindles at a frequency range between 12Hz and 14Hz. 

SWS is scored if the frequency is observed to be less than 2Hz. 

The epoch is first sent through the Fast Fourier Transform 

(FFT) at this stage to extract features in the frequency domains, 

and then the spectral power is calculated as features in the 

frequency domain. Table 2 shows all the frequency bands & 

their ranges. 

 

C. Time-Frequency domain features 

Under this category, we extract two features from each 

epoch; they are namely instantaneous phase and envelope. 

Generally, the conventional methods employed a three-phase 

strategy for the determination of envelope and phase, which is 

(1) Narrow-band filtering, (2) Computation of the narrowband 

signal analytical form, and (3) estimation of envelope and 

phase from analytical expression [41, 42]. However, the 

inaccurate measurement of these two features results in a false 

diagnosis in the presence of background EEG activity 

(cerebral activity is treated as noise). Moreover, the phase and 

amplitudes of the input signal must be least affected by the 

process of narrow-band filtering. 

To sort out these problems, we propose robust instantaneous 

envelope (IE), instantaneous frequency (IF), and instantaneous 

phase (IP) estimation mechanisms for each epoch. These two 

features explore the presence of instantaneous variations in the 

temporal attributes of EECG which directly associated with 

brain functioning. Especially, these three features help in 

determination of early stage sleep stage disorders. The 

proposed mechanism is inspired by the Mote-Carlo simulation 

developed for IP and IE prediction from the EEG’s analytical 

form, with the help of infinitesimal perturbations over the 

transfer function of a narrow band filter [43]. This mechanism 

employs a zero-phase backward and forward strategy through 

very narrow-band FIR or IIR filters. Then they estimate the 

phase with the help of EEG signals analytical expression. Here, 

we utilized the new toolbox introduced by Seraj and Sameni 

[44] for the extraction of robust IE and IP features. We use a 

narrow-band IIR filter of frequency 1 Hz as a primary filter 

bank for IE and IP computation. From the filter, center 

frequency is passed through the entire range of frequencies 

that lie within the pass band range. 

In each frequency bin, the analytical expression of the EEG 

epoch is computed as: 

 

𝑦𝑓
𝑖 (𝑡, 𝑓) = 𝑥𝑓

𝑖 (𝑡, 𝑓) + 𝑗ℋ{𝑥𝑓
𝑖 (𝑡, 𝑓)} (7) 

 

where, 𝑥𝑓
𝑖 (𝑡, 𝑓) is the filtered ith epoch at frequency bin f and 

ℋ{𝑥𝑓
𝑖 (𝑡, 𝑓)} is the Hilbert transform of 𝑥𝑓

𝑖 (𝑡, 𝑓). With the help 

of above analytical expression, we compute the IE and IP and 

let they are denoted as 𝐼𝑃𝑓
𝑖(𝑡, 𝑓) and 𝐼𝐸𝑓

𝑖 (𝑡, 𝑓). Mathematically 

they are expressed as follows: 

 

𝐼𝑃𝑓
𝑖(𝑡, 𝑓) = 𝑎𝑟𝑐𝑡𝑎𝑛 (

ℋ{𝑥𝑓
𝑖 (𝑡, 𝑓)}

𝑥𝑓
𝑖 (𝑡, 𝑓)

) (8) 

 

And 

 

𝐼𝐸𝑓
𝑖(𝑡, 𝑓) = √𝑥𝑓

𝑖 (𝑡, 𝑓)2 + ℋ{𝑥𝑓
𝑖 (𝑡, 𝑓)}

2
= |𝑦𝑓

𝑖 (𝑡, 𝑓)| (9) 
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Based on the obtained instantaneous phase, the 

instantaneous frequency is derived as: 

 

𝐼𝐹𝑓
𝑖(𝑡, 𝑓) =

1

2𝜋

𝑑

𝑑𝑡
𝐼𝑃𝑓

𝑖(𝑡, 𝑓) (10) 

 

At the computation of time-frequency features, the filter 

specifications are altered for multiple times. The final values 

of IE, IP and F are obtained through the average of the values 

obtained at past iterations. 

 

D. Non-linear features 

Under this category, we compute the non-linear features 

from each epoch. For this purpose, we consider computing two 

entropy features from each epoch: Shannon entropy [45] and 

spectral entropy [46, 47]. The main reason behind the 

computation of entropies is that they are directly linked with 

the information present within the Epoch. Mainly, the irregular 

variations present in the epoch are characterized by entropy. 

Even though entropy and variance explore the same 

information, the entropy is non-sensitive while the variance is 

feature amplitude sensitive. Hence, we can state that larger 

entropy values signify more information, which is required for 

getting better classification results. 

Here, the Shannon entropy measures the irregularity of the 

signal in time domain and directly associated with the irregular 

temporal patterns of the epoch. For a given ith epoch 𝑥𝑓
𝑖  the 

Shannon entropy is mathematically is expressed as: 

 

𝐻𝑠 = − ∑ 𝑝𝑘 log 𝑝𝑘 (11) 

 

where, k denotes the entire discrete amplitude bin’s range of 

an epoch and 𝑝𝑘  denotes the probability of a sample in the 

epoch having the kth amplitude. Here we consider each 

amplitude as a bin, and hence the total number of bins present 

in each epoch is the total number of unique amplitudes of the 

epoch. 

The spectral entropy is measured with the help of Shannon 

entropy. Spectral entropy explores the digital signal’s 

irregularity in the frequency domains. For the computation of 

Spectral entropy, initially the signal is subjected to Fourier 

transform followed by power spectrum computation. Consider 

𝑥𝑓
𝑖  and 𝑝(𝑥𝑓

𝑖 ) be the corresponding probability, the Shannon 

entropy is calculated with Eq. (11) while the Spectral entropy 

is calculated as Shannon entropy of the Probability distribution 

of a signal in the frequency domain. Hence the Shannon 

entropy is considered as spectral entropy if we assume 𝑝(𝑥𝑓
𝑖 ) 

as the probability distribution of a power spectrum. The power 

spectrum is defined as psd(𝑝(𝑥𝑓
𝑖 )) which signifies the absolute 

value of the digital signal in the Discrete Fourier Transform 

(DFT). 

 

3.4 Hierarchical classification 

 

Once the feature extraction is completed, then they are 

trained to the system through machine learning algorithms. 

Here, we built a hierarchical classifier based on brute-force 

search (BFS) methodology. The major reason behind this 

model is the idea of decision tree structures and ensemble 

classification [48] where the typical classification issues are 

solved by breaking them into small problems and solved by 

the simple traditional classifiers. The proposed classifier 

architecture is a unique architecture that can classify one class 

against the remaining classes. In such a way, due to the 

presence of only a few classes, we employed a general 

exhaustive search technique using which a class or a group of 

classes can be well separated from each other. 

Here, to find the better combination through the BFS 

mechanism, initially one class is separated against all the two 

classes; then the separation of a set of two-classes compared 

to a single-class and a set of two-classes compared to two-

classes. Further, the set of three classes is separated in 

comparison with a single-class, against two classes, and then 

against three-classes. This process is repeated until the 

investigation of all combinations of classes is completed. The 

classifier is formulated into a hierarchical tree structure by 

such kind of separable set of classes as: The full classes are 

attended for classification in the 1st level of the tree, and 

optimal combination of one or two classes is determined 

against the remaining classes. As a result, the number of 

classes will be reduced to the next level. The remaining classes 

are attended for classification and determined against one or 

two classes in the 2nd level of the tree. This process is repeated 

until the tree structure reaches the leaves. 

 

 
 

Figure 2. Hierarchical classification over Sleep-EDF dataset 

 

Here, we employed a simple SVM classifier at each node of 

the proposed hierarchical classification tree. The main reason 

is that it didn’t require any complex training process, and it 

also won’t produce any bias for the classes with more samples 
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in the database. Further, the SVM is superior in local decision 

making which is a more suitable technique for class 

distributions that are multi-modal in nature. Though the 

SVM’s decision-making is completely dependent on the 

majority voting, it ensures better performance even for classes 

that have scattered feature distributions in multi-dimensional 

space. In such situations, SVM suits more than several state-

of-the-art classifiers including K-NN, Random Forest, and 

Linear Discriminant Analysis (LDA) [49]. Figure 2 shows the 

hierarchical classification of six classes in the Sleep-EDF 

dataset. Algorithm 1 shows the step by step process of sleep 

stage disorders classification. 

 

Algorithm: Hierarchical Classification 

Input: Test Epoch Features (𝐹𝑡𝑟𝑡𝑒𝑠𝑡), Trained Epoch 

features and Labels (𝐹𝑡𝑟𝑇𝑟𝑎𝑖𝑛
𝑗

, 𝐿𝑎𝑏𝑙𝑒𝑠𝑒𝑡) 

Output: Class Label (𝐶𝐿) 

Step 1: Stage 1 classification, 𝐿𝑎𝑏𝑒𝑙1 =

𝑆𝑣𝑎𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝐹𝑡𝑟𝑡𝑒𝑠𝑡 , 𝐹𝑡𝑟𝑇𝑟𝑎𝑖𝑛
𝑗

) 

If 𝐿𝑎𝑏𝑒𝑙1 = +1, 

          CL=W, REM, S1 and S2 

Else if 𝐿𝑎𝑏𝑒𝑙1 = −1, 

         CL=S3 and S4 

End if 

Step 2a: Stage 2 classification, 𝐿𝑎𝑏𝑒𝑙2𝑎 =

𝑆𝑣𝑎𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝐹𝑡𝑟𝑡𝑒𝑠𝑡 , 𝐹𝑡𝑟𝑇𝑟𝑎𝑖𝑛
𝑗

) 

If 𝐿𝑎𝑏𝑒𝑙2𝑎 = +1,  

          CL=W and S2 

Else if 𝐿𝑎𝑏𝑒𝑙2𝑎 = −1, 

         CL=S1 and REM 

End if 

Step 2b: Stage 2 classification, 𝐿𝑎𝑏𝑒𝑙2𝑏 =

𝑆𝑣𝑎𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝐹𝑡𝑟𝑡𝑒𝑠𝑡 , 𝐹𝑡𝑟𝑇𝑟𝑎𝑖𝑛
𝑗

) 

If 𝐿𝑎𝑏𝑒𝑙2𝑏 = +1, 

          CL=S3 

Else if 𝐿𝑎𝑏𝑒𝑙2𝑏 = −1, 

         CL=S4 

End if 

Step 3a: Stage 3 classification, 𝐿𝑎𝑏𝑒𝑙3𝑎 =

𝑆𝑣𝑎𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝐹𝑡𝑟𝑡𝑒𝑠𝑡 , 𝐹𝑡𝑟𝑇𝑟𝑎𝑖𝑛
𝑗

) 

If 𝐿𝑎𝑏𝑒𝑙3𝑎 = +1, 

          CL=S2 

Else if 𝐿𝑎𝑏𝑒𝑙3𝑎 = −1, 

         CL = W 

End if 

Step 3b: Stage 3 classification, 𝐿𝑎𝑏𝑒𝑙3𝑏 =

𝑆𝑣𝑎𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝐹𝑡𝑟𝑡𝑒𝑠𝑡 , 𝐹𝑡𝑟𝑇𝑟𝑎𝑖𝑛
𝑗

) 

If 𝐿𝑎𝑏𝑒𝑙3𝑏 = +1, 

          CL =S1 

Else if 𝐿𝑎𝑏𝑒𝑙3𝑏 = −1, 

CL =REM 

End if 

 

 

4. EXPERIMENTAL INVESTIGATIONS 

 

This section explores the details of experimental 

investigations carried out on the proposed sleep staging 

mechanism. For experimental investigation, we used 

MATLAB tools with signal processing and statistics toolboxes. 

In the current section, we initially explore the details of the 

dataset and then the results derived from various simulation 

studies. 

 

A. Dataset 

A standard and publicly available dataset called Sleep-EDF 

[50, 51] is used here for experimental investigations. Sleep-

EDF is composed of two distinct sets of files: Sleep Cassette 

(SC) files and Sleep Telemetry (ST) files. The Sleep Cassette 

files are related to twenty healthy subjects (10 male and 10 

female, ages ranging from 21-35) without any sleep associated 

issues or medications. All the SC files were acquired over a 

period of two consecutive day and nights, approximately 20 

hours. During the acquisition, the subjects continued their 

normal activities but wore a modified Walkman like cassette 

tape recorder. The files are named in the form SC4ssNEO-

PSG.edf, where ss are the subject number and N is the night. 

During the time of recording, the 2nd night of subject 13 and 

the 1st nights of subjects 36 and 52 were lost because their 

laserdisc or cassette has fallen down. The sampling frequency 

is maintained at 100 Hz for both EOG and EEG signals. A 

sample EEG waveform and its staging details are shown in 

Figure 3. 

On the other hand, the ST files are associated with subjects 

who have mild sleep issues, like difficulty falling asleep. The 

acquisition of ST files was done after Temazepam and Placebo 

intakes. The PSGs were acquired for about nine hours from the 

subjects who stayed in the hospital for two nights. The 

individuals were equipped with a small, high-quality telemetry 

equipment at the time of capture. ST7ssNEJ0-PSG.edf is the 

format used for the file names, where ss stand for the topic 

number and N for the night. Similar to SC files, the sampling 

frequency is maintained at 100 Hz for both EOG and EEG 

signals. 

With the aid of R&K rules, each EEG wave is manually 

segmented into 30s epochs. W, R, S1, S2, S3, S4, M 

(movement Time), and U (Uncensored) were the annotations. 

In this research, we use a single-channel EEG acquired at the 

Pz-Oz electrodes because past approaches [52] suggested that 

it has deeper sleep stages and can be detected effectively. 

Further, the last two annotations, namely M and U, are 

eliminated since there is a very little chance that they will 

occur; consequently, there are six classes overall. An 

illustration of hierarchical classification on the Sleep-EDF is 

shown in Figure 2 where we employed the binary SM 

classifier, which classifies only two classes at a time. In the 

first level, the binary SVM Classified the set of S3&S4 classes 

with other classes such as S1, S2, REM, and W. This means 

that the first level of classification identified whether or not the 

epoch belongs to S3 or S4. Next, the 2nd level classification 

executes the classification of three subset of classes. They are 

S3 & S4, S2 & W, and R & S1. At the second level, the input 

features are fed to a binary SVM to determine the input epoch 

into one of three subsets. Finally, at the third, two SVMs are 

applied to classify the two subsets into individual classes. One 

SVM separates S1 from R, and another classifier separates W 

from S2. At every level, the SVM produces two labels for two 

classes: +1 and -1. For example, in the third level, S2 is 

assigned for +1 while W is assigned for -1. Since SVM is a 

binary classifier, it can classify only two classes at a time. 

Hence, the complexity of SVM is evaluated as 𝑂(𝑁2). 
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Figure 3. Example EEG wave form with sleep staging 

 

B. Performance evaluation 

Here we assess the proposed approach’s performance with 

the help of four metrics of performance that include the 

Accuracy, Specificity, the Sensitivity, and the Kappa 

Coefficient. Mathematically, they are described as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑒𝑠𝑢𝑙𝑡𝑠⋂𝐺𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ 𝑅𝑒𝑠𝑢𝑙𝑡𝑠

𝑙𝑒𝑛𝑔𝑡ℎ(𝐺𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑔𝑡ℎ 𝑅𝑒𝑠𝑢𝑙𝑡𝑠)
 

(12) 

  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (13) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (14) 

 

where, FP denotes False Positives, TP denotes the True 

positives, and FN denotes False Negatives. Next, kappa 

coefficient (k) is defined as: 

 

𝑘 =
𝑃𝑎 − 𝑃𝑐

1 − 𝑃𝑐

 (15) 

 

where, 𝑃𝑎  denotes the portion of correctly classified epochs 

and 𝑃𝑐 denotes the portion of epochs expected to get classified 

correctly. They are mathematically described as: 

 

𝑃𝑎 = ∑ 𝐶𝑖𝑖

𝑁

𝑖=1

∑ ∑ 𝐶𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

⁄  (16) 

 

And 

 

𝑃𝑐 = ∑ (∑ 𝐶𝑖𝑗

𝑁

𝑗=1

∑ 𝐶𝑗𝑖

𝑁

𝑗=1

)

𝑁

𝑖=1

(∑ ∑ 𝐶𝑖𝑗

𝑁

𝑗=1

𝑁

𝑗=1

)

2

⁄  (17) 

 

where,𝐶𝑖𝑖 denotes ith predicted class and ith ground truth class. 

The range of kappa coefficient is defined as 0-1 where 0 

denotes poor and 1 denotes excellent. Further the kappa 

coefficient is arranged in six levels as 0.00 to 0.2 (slight), 0.21 

to 0.40 (Fair), 0.41 to 0.60 (Moderate), 0.61 to 0.80 

(Substantial) and >0.80 (excellent). 

Table 3 shows the proposed approach's performance in 

accuracy and sensitivity terms and is specific to different 

classes of the Sleep-EDF dataset. As per the results, the mean 

accuracy, mean sensitivity, and mean specificity are observed 

as 92.3500%, 82.3652%, and 92.9614%, respectively. Further, 

we can see that the specificity of all sleep stages is greater than 

88%, which infers that the suggested strategy is effective in 

terms of accurate classification. Next, Table 4 shows the 

correct classification and misclassification rates for individual 

classes. Here, we evaluate the performance of the suggested 

strategy in the terms of excellent and bad classifications by 

measuring TPR and FPR. From the results, we observed that 

the maximum TPR is at Wake and the minimum TPR is at S3. 

Next, the maximum misclassification of wake is observed at 

S1 and S2, while for the remaining stages, such as REM, S1, 

S2, S3, and S4, it is observed at S1, REM, S4, S4, and S3, 

respectively. Since S3 and S4 resemble similar characteristics, 

their misclassification rates are observed to be high. 

 

Table 3. Performance of proposed approach in terms of 

sensitivity, accuracy, and specificity 

 
Class Accuracy Sensitivity Specificity 

Wake 97.4120 97.3562 97.4420 

REM 94.3756 92.7689 94.5560 

S1 91.6320 81.8472 93.5560 

S2 88.2300 74.7520 90.8140 

S3 79.7780 56.2380 93.1856 

S4 82.8850 63.2300 88.2150 

 

Table 4. False Positive Rates (FPR) and True Positive Rate 

(TPR) assessment on Sleep-EDF dataset 

 
 Wake REM S1 S2 S3 S4 

Wake 97.3562 0 1.3219 1.3219 0 0 

REM 2.0751 92.7689 5.1560 0 0 0 

S1 2.2564 8.2580 81.8472 4.6630 1.4554 1.5200 

S2 2.9162 0 6.7750 74.7520 3.3368 12.2200 

S3 2.5950 5.3210 3.2250 10.2560 56.2380 22.3650 

S4 1.1550 7.5620 11.2230 2.5680 14.2620 63.2300 

 

Next, to check the effectiveness of the proposed hierarchical 

classification mechanism, we used different classifiers 

(namely KNN, RF, and LDA), and obtained results are 

reported in Figure 4 and Figure 5 with sensitivity and 

specificity, respectively. The outcomes demonstrate that, 

when compared to traditional classifiers, the proposed method 

performed better. The average sensitivity of HSVM is 

observed as 82.3652%, while for remaining methods such as 

KNN, RF, and LDA, it is observed as 47.3300, 64.2033, and 

72.3520%, respectively. Further, the maximum sensitivity is 

observed by the proposed HSVM at the wake-sleep stage, 

while the minimum sensitivity is observed at S3. Next, the 

average specificity of HSVM is observed as 92.9583%, while 

for remaining methods such as KNN, RF, and LDA, it is 

observed as 86.1200, 87.5420, and 73.6350%, respectively. 

Further, the maximum specificity is observed by the proposed 

HSVM at the wake-sleep stage, while the minimum sensitivity 

is observed at S4. 

Figure 6 and Figure 7 show the details of FNR and FPR at 

different classifiers respectively. The average FNR of HSVM, 

KNN, RF and LDA classifiers is observed as 22.8333%, 

52.6667%, 46.0000% and 47.8333% respectively. Similarly, 
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the average FPR of HSVM, KNN, RF and LDA classifiers is 

observed as 7.0417%, 14%%, 12.3333% and 27.00% 

respectively. From the results, it can be noticed that the 

proposed HSCM has less misclassification than the other 

classifiers. The main reason is that the HSVM ensures stage-

wise discrimination capability to the scoring system through 

SVM algorithm. 

 

 
 

Figure 4. Sensitivity comparison between different 

classifiers 

 

 
 

Figure 5. Specificity comparison between different 

classifiers 

 

 
 

Figure 6. FNR comparison between different classifiers 

 

The comparison between the suggested method and various 

other ways that are currently in use is demonstrated in Table 5. 

Here we refer to recent methods (both machine learning-based 

and deep learning-based) for comparison purposes. From the 

results, we can see that the suggested method has shown 

superior performance to the traditional approaches. Even 

though some authors, like Zhou et al. [31] and Phan et al. [36], 

applied deep learning approaches, they didn’t identify the 

discriminative features between sleep stages. They directly 

applied deep learning methods to the Raw EEG signal, which 

cannot provide discriminative knowledge to the system. On 

the other hand, the machine learning methods employed 

different features to describe the epoch and processed them 

through traditional classifiers. But they didn’t focus on the 

local level discrimination, i.e., the two different sleep stages 

may resemble at some epochs if the global features like 

Wavelet features and frequency features are considered. In 

such instances, time domain features such as mean, SD, MAD, 

and RSS give better discrimination. 

 

 
 

Figure 7. FPR comparison between different classifiers 

 

Table 5. Overall system performance at different classifiers 

 

Method/Metric 
Accuracy 

(%) 

Kappa 

Coefficient 

Testing 

Time (sec) 

Proposed 

SVM 92.3500 0.8646 20.2 

RF 79.6360 0.7715 15.6 

LDA 65.8900 0.6235 12.2 

Karimzadeh 

et al. [27] 

KNN 88.9700 - - 

RF 77.6600 - - 

LDA 61.0100 - - 

Alickovic 

and Subasi 

[20] 

Ensemble 

SVM 
91.1000 - - 

Zapata et 

al. [23] 

MT & C 87.6000  - 

SVM-Q 90.0000  - 

Zhou et al. 

[31] 
TSE+SAN 85.8000 0.8540 42.1 

Phan et al. 

[36] 
SeqSleepNet 85.000 0.8470 - 

 

The recent existing method proposed by Karimzadeh et al. 

[27] considered Shannon entropy for different frequency 

domain images constructed based on IP and IE. However, such 

image formation induces more redundant information, which 

adds additional processing burden to the system. Moreover, 

the redundant information results in higher false positive rates 

between similar sages like S3 and S4. In such a situation, there 

is a need for additional features that can overcome the 

confusion and ensure perfect discrimination between sleep 

stages, and the proposed method can provide such flexibility. 

Hence, our method gained better accuracy and kappa 

coefficient. 
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5. CONCLUSION 

 

This study suggests a straightforward and accurate system 

for classifying sleep stages that is based on composite features 

and hierarchical classification. The composite features 

concept is an alternative solution for sleep analysis that 

ensures perfect discrimination between sleep stages, 

especially those with a shorter transition period. The 

composite features include a total of 22 features in multiple 

domains, including time, frequency, tie-frequency, and non-

linear. In addition, we suggested a hierarchical classifier, 

which solves the complex classification problem by breaking 

it into several small problems. At the classification, we 

employed the Binary SVM, which ensures a perfect decision 

between two different classes. An extensive set of simulation 

experiments on the developed system through the standard 

Sleep-EDF database proves its effectiveness. The average 

improvement in accuracy gained by the proposed system is 

observed at 3.38% compared to the recent existing methods. 

As the manual diagnosis process for sleep stage disorders 

identification is a lengthy process, the proposed automatic 

system is more beneficial. The proposed system can be 

integrated into current clinical workflows at diagnosis stage 

because the current diagnosis methods are time consuming. 

This system reduces manual errors along with manual burden 

and no limitations are found. In perspective of ethical 

considerations, the periodic EEG signal recordings are 

requiring which makes the patients discomfort. 

As we considered only machine learning algorithms for 

automatic sleep staging, in the future we can apply deep 

learning algorithms for better identification of sleep stages 

through EEG. Deep learning can provide more distinctive 

features which can ensure a better classification performance 

at sleep staging. 
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