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Precision agriculture relies on semantic segmentation models to optimize crop yield and 

minimize environmental impact. ContexNestedU-Net is proposed to improve the capture of 

contextual information for efficient utilization of multispectral remote sensing images in 

precision agriculture applications. For this purpose, it includes a novel redesign of the 

convolutional blocks in the Nested U-Net model. Through the application of depthwise 

separable convolution in the convolution blocks, the ContexNestedU-Net efficiently 

preserves unique spectral information. Subsequently, dilated convolution is applied to 

capture rich contextual information. Three image sets are utilized in the experiments, one 

from the WorldView-3 satellite and the others from aerial vehicles. Extensive experiments 

demonstrate that the ContexNestedU-Net outperforms other U-Net-based models for 

various precision agriculture tasks. When using NDVI images, the proposed architecture 

improves the Jaccard index by 13% for tree objects, 0.9% for crop objects, and 4.5% for 

wheat yellow-rust objects compared to Nested U-Net. In addition, the ContexNestedU-Net 

model reduces the number of trainable parameters from 36.63 to 19 compared to Nested U-

Net, and the computational complexity (GLOPs) decreases from 849.3 to 302.4. 
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1. INTRODUCTION

Precision agriculture is a set of cost-effective technologies 

to maximize yield and minimize environmental impact [1]. 

Many agricultural practices are applied for these purposes. 

Crop detection provides an accurate solution to the 

discrimination of crop and soil, which is known as one of the 

most challenging tasks in precision agriculture applications [2]. 

Tree detection is a remarkably effective tool in reducing 

greenhouse gas emissions which can minimize environmental 

impact for the benefit of precision agriculture [3]. Plant disease 

detection at the early stage prevents outbreaks and yield loss 

while reducing pesticide usage, in addition to minimizing 

environmental impact [4]. Figure 1 displays examples of tree, 

crop, and wheat yellow-rust objects. 

(a) (b)     (c) 

Figure 1. Example samples 

The U-Net architecture [5] is widely utilized in precision 

agriculture applications, specifically with multispectral images 

[6-8]. Over time, this architecture undergoes enhancements 

through various mechanisms, leading to the emergence of 

multiple U-Net architecture variations [9-14].  

Some research studies incorporate attention mechanisms 

into the U-Net architecture to address tasks like forest cover 

detection [15], tree detection [16], crop type mapping [17], 

land cover identification [18, 19], and, yellow-rust disease 

severity level detection [20]. In recent years, a growing trend 

involves integrating residual connections into the U-Net 

architecture for remote sensing-based tree detection [21-23]. 

Additionally, the literature reveals several studies that employ 

recurrent [24, 25] and residual structures [26, 27], or in 

combination [28], to enhance U-Net architecture for crop 

recognition using remote sensing imagery. Lastly, one study 

introduces Ir-UNet [29], which includes irregular encoder and 

decoder modules along with content-aware channel re-

weighting, to detect wheat yellow-rust disease in aerial remote 

sensing images. Recent literature also introduces the 

utilization of transformer-based decoder to design U-Net-like 

model for urban scene segmentation [30]. 

Contextual information plays a crucial role in early 

detection, efficient resource allocation, and precise 

intervention in precision agriculture applications. When 

employing the U-Net architecture with multispectral images, a 

key challenge arises as it struggles to extract adequate 

contextual information [31]. This study is based on the Nested 

U-Net architecture, which can capture more contextual
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information by employing a hierarchical structure with 

multiple nested levels [32]. However, the high computational 

complexity stemming from the nested design makes it less 

practical for precision agriculture applications. 

In this study, the first layer in the convolutional block of the 

Nested U-Net architecture incorporates depthwise separable 

convolution [33], chosen for its computational efficiency 

compared to standard convolution. Multispectral images in 

precision agriculture convey diverse information about crops 

and vegetation through different spectral bands. Depthwise 

separable convolution is suitable for precision agriculture 

applications relying on multispectral images, as it has the 

potential to preserve distinct spectral characteristics by 

applying separate convolutions for each channel [34-38]. 

Moreover, dilated convolution, also known as atrous 

convolution, is employed as the second layer to capture 

additional contextual information [39-41]. Given that some 

feature relationships in precision agriculture applications span 

a larger area, this approach is more beneficial, as the model 

considers both the current pixel and the surrounding area when 

making predictions. 

This study proposes the ContexNestedU-Net architecture, 

specifically designed for precision agriculture applications 

using multispectral remote sensing data. It enhances the 

Nested U-Net by improving convolutional blocks in the 

following ways: 

• The first layer employs depthwise separable 

convolution to preserve unique spectral features 

while reducing computational complexity and the 

number of trainable parameters, making the model 

highly suitable for multispectral imagery. 

• The second layer utilizes dilated convolution to 

capture broad scene context and enhance 

contextual awareness. 

ContexNestedU-Net efficiently learns spectral features, 

captures rich contextual information, and reduces 

computational complexity. Preserving the quality of analysis 

while efficiently managing computational resources is a 

crucial consideration in precision agriculture, and 

ContexNestedU-Net addresses this requirement.  

The paper is structured as follows: Section 2 describes the 

ContexNestedU-Net architecture. Section 3 presents extensive 

experiments using satellite and aerial multispectral image 

datasets to compare the semantic segmentation performance of 

the ContexNestedU-Net architecture with other models, 

including U-Net, Nested U-Net (UNet++), Attention U-Net 

(AttU-Net), Recurrent Residual Attention U-Net (R2AttU-

Net), Categorical Normalization U-Net (DualNormU-Net), 

Inception U-Net (InceptionU-Net), UNetFormer, and Spatial-

Channel Attention U-Net (scAGAttU-Net). Finally, Section 4 

discusses the conclusions. 

 

 

2. MATERIALS AND METHOD 

 

This section explains the proposed ContexNestedU-Net 

architecture, image sets and implementation details. 

 

2.1 ContexNestedU-Net 

 

The Nested U-Net architecture [11] is obtained by re- 

designing the skip connections of U-Net as nested and dense 

skip pathways that combine the high-resolution feature maps 

in the encoder with those of their corresponding decoder maps. 

These nested, dense convolution blocks enhance the semantic 

similarity between concatenated feature maps, which 

facilitates capturing high-resolution details. The design of skip 

connections inspired by DenseNet [42] is the essential feature 

of the Nested U-Net architecture. 

The ContexNestedU-Net architecture (Figures 2 and 3) is 

built upon the foundation of the nested skip pathway utilized 

in the Nested U-Net model, aiming to enhance its capacity for 

capturing contextual information. 

Eq. (1) shows the output feature map of layer 𝑙 , denoted by 

𝑥𝑙,𝑗. Here the j index represents the convolution layer of the 

dense block utilized along the skip pathway: 

 

𝑥𝑙,𝑗 = {
ℋ(𝑥𝑙−1,𝑗)                                            𝑖𝑓 𝑗 = 0

ℋ ([[𝑥𝑙,𝑘]
𝑘=0

,𝑗−1
,∪ (𝑥𝑙+1,𝑗−1)])           𝑖𝑓 𝑗 > 0

 (1) 

 

where, the ℋ(.) function denotes the implementation of the 

convolution block, whereas the ∪(.) function represents the 

up-sampling layer. The concatenation operation is represented 

by [ . ] symbol. 

 

 
 

Figure 2. ContexNestedU-Net architecture 

 

As shown in Figure 2, when the convolution layer of the 

dense block has an index of 𝑗 = 0, it receives input only from 

the preceding layer in the encoder. However, for an index 

value of 𝑗 ≥ 1, this layer is fed a total of 𝑗 + 1 inputs. These 

inputs include the outputs of all preceding 𝑗 layers belonging 

to the same skipway and the output up-sampled from a sub-

skipway. The reason for utilizing all prior feature maps is to 

incorporate a dense convolution block along each skip 

pathway. Figure 3 shows the first skip pathway of the 

ContexNestedU-Net. 

 

 
 

Figure 3. First skip pathway of ContexNestedU-Net 

 

2.1.1 Convolution block 

The convolution block of the Nested U-Net architecture 
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employs two standard convolutional layers with batch 

normalization and ReLU activation on the input feature map, 

as visualized in Figure 4 (a). 

The process of standard convolution, as illustrated in Figure 

5 (a), is executed in the following manner, resulting in the 

expression of the output feature map at layer l+1 as Eq. (2): 

 

𝑥𝑙+1
(𝑐′ ,𝑖,𝑗)

= ∑ ∑ ∑ 𝑥𝑙
(𝑐,𝑖+𝑚−1,𝑗+𝑛−1)

. 𝜔(𝑐′ ,𝑚,𝑛)

𝐾

𝑛=1

𝐾

𝑚=1

𝐶

𝑐=1

 (2) 

 

where, C stands for the number of input channels, K represents 

the size of the convolutional kernel and 𝑥𝑙+1
(𝑐′ ,𝑖,𝑗)

 represents the 

output feature map at layer l+1 with dimensions 𝑖 (height), 𝑗 

(width) and 𝑐′ (output channel). 𝑥𝑙  is the input feature map at 

layer l. The term 𝜔 refers to the 𝐾 × 𝐾 kernel specific to the 

output channel 𝑐′. 

 

 
(a) Convolution block of NestedU-Net 

 

 
(b) Convolution block of ContexNestedU-Net 

 

Figure 4. Convolution block designs 

 

In the ContexNestedU-Net architecture, the objective is to 

enhance the acquisition of contextual information by 

redesigning the convolution block. As shown in Figure 5 (b), 

the new block design replaces the initial standard 

convolutional layer with a depthwise separable convolutional 

layer. Since different channels in multispectral image data 

represent specific characteristics of target objects in precision 

agriculture applications [43], using depthwise separable 

convolution is beneficial for capturing the unique spectral 

features of each channel. Moreover, compared to standard 

convolution, depthwise separable convolution reduces the 

number of parameters and computations, which is 

advantageous for the sustainability of precision agriculture 

practices. 

 

2.1.2 Depthwise separable convolution 

As illustrated in Figure 4 (b), the first stage of the two- step 

depthwise separable convolution process includes the 

application of depthwise convolution. This operation works 

independently on each input channel, preserving their distinct 

characteristics.  

Depthwise convolution generates a set of intermediate 

feature maps for each input channel 𝑙, as follows:  

𝑥𝑙+1
(𝑐,𝑖,𝑗)

= ∑ ∑ 𝑥𝑙
(𝑐,𝑖+𝑚−1,𝑗+𝑛−1)

𝐾

𝑛=1

𝐾

𝑚=1

𝜔𝑑
(𝑐′,𝑚,𝑛)

 (3) 

 

where, 𝑥𝑙+1
(𝑐,𝑖,𝑗)

 denotes the intermediate feature map at layer 

l+1 acquired for channel c and 𝜔𝑑  represents the kernel 

associated with channel c. 

 

 
(a) Standard convolution operation 

 

 
(b) Depthwise separable convolution operation 

 

Figure 5. Illustrations of convolution operations 

 

As shown in Figure 5 (b), pointwise convolution is applied 

to merge the intermediate feature maps acquired from all input 

channels. During this phase, while generating linear 

combinations of features, the existing unique spectral 

information remains preserved. This process can even be 

instrumental in emphasizing significant features while 

reducing irrelevant information. Therefore, depthwise 

separable convolution can learn rich features effectively [44].  

Pointwise convolution involves the application of a 1 × 1 

convolution with 𝑐′ filters and yields the final output map as 

outlined below: 

 

𝑥𝑙+1
(𝑐′ ,𝑖,𝑗)

= ∑ 𝑥𝑙+1
(𝑐,𝑖,𝑗)

. 𝜔𝑝
(𝑐′ ,𝑐)

𝐶

𝑐=1

, (4) 

 

where, 𝑥𝑙+1
(𝑐′ ,𝑖,𝑗)

 denotes the final output feature map belonging 

to the output channel 𝑐′ at layer l+1, while 𝑥𝑙+1
(𝑐,𝑖,𝑗)

 represents 

the intermediate feature map at the 𝑐  channel. For each 𝑐 

output channel, 𝜔𝑝 refers to the 1 × 1 kernel used to combine 

information from all input channels. Pointwise convolution 

helps to effectively combine the feature information of 
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different channels at the same spatial location [45]. 

ContexNestedU-Net becomes more efficient by employing 

depthwise separable convolution, which boasts a time 

complexity of:  

 

𝑂~(𝐶 ∗ 𝐾2 ∗ 𝐻 ∗ 𝑊 + 𝐶′ ∗ 𝐶 ∗ 𝐻 ∗ 𝑊), (5) 

 

Instead of the conventional standard convolution, which 

carries a time complexity of: 

 

𝑂~(𝐶′ ∗ 𝐶 ∗ 𝐾2 ∗ 𝐻 ∗ 𝑊), (6) 

 

where, 𝐶′  denotes the output channels, and 𝐶  represents the 

input channels, 𝐾 is the kernel size, while 𝐻 and 𝑊 represent 

the height and width dimensions.  

 

2.1.3 Dilated convolution 

In the convolution block of the ContexNestedU-Net 

architecture, as shown in Figure 4 (b), the second standard 

convolution operation is replaced with a dilated convolution 

using a dilation rate of 2. Dilated convolution improves 

contextual understanding by capturing information from a 

broader area (refer to Figure 6). Despite this contextual 

improvement, there is no additional computational overhead. 

The result is the output feature map at layer 𝑙 + 1, which is 

derived as follows: 

 

𝑥𝑙+1
(𝑐′,𝑖,𝑗)

= ∑ ∑ ∑ 𝑥𝑙
(𝑐,𝑖+(𝑚−1).𝐷,𝑗+(𝑛−1).𝐷)

𝐾

𝑛=1

𝐾

𝑚=1

. 𝜔(𝑐′,𝑚,𝑛)

𝐶

𝑐=1

 
(7) 

 

where, 𝐷 > 1 is the dilation rate. 

 

 
(a) Standard convolution with a kernel size 3 × 3. (b) Dilated 

convolution with a kernel size 3 × 3 and dilation rate of 2. The 

blue regions represent receptive fields of the convolutions, and 

the red circles show the parameters used for the calculations 

 

Figure 6. Dilated convolution operation  

 

Since dilated convolutions allow to extract fine-grained 

details as well as capture more contextual information, these 

are used in the convolution block of the ContexNestedU-Net 

model [46, 47]. 

 

2.2 Image sets 

 

In the experiments three remote sensing image sets are used 

namely DSTL Satellite Imagery Feature Detection Image Set, 

RIT-18 (The Hamlin State Beach Park) Aerial Image Set and 

Wheat Yellow-rust Aerial Image Set. The following part 

describes the details of the image sets. 

 

DSTL satellite imagery feature detection image set: This 

image set is from the Kaggle competition [48], which contains 

25 Worldview-3 [49] satellite images of 1 km × 1 km size, 

provided by DSTL (Defense Science and Technology 

Laboratory). The images are labeled pixel-wise for 10 

different classes. In this study, only the tree and crop target 

classes from the DSTL image set are utilized, with each class 

being considered as a separate binary classification problem. 

Figure 7 (a) and 7 (b) illustrate an example image and the 

corresponding ground truth, respectively. The ground truth 

indicates that the tree class is represented by dark green pixels, 

while the crop class is denoted by light green pixels. 

Data is given in the 3-band form consisting of RGB images 

and in the 16-band form consisting of multispectral images, all 

of which have different spatial resolutions in GeoTiff format. 

Panchromatic (P) and RGB images have a size of 3348 × 3392 

pixels and the spatial resolution of 0.31 m. Multispectral (M) 

images have a wavelength range of 400–1040 nm, a size of 

837 × 848 pixels, and a spatial resolution of 1.24 m. Short-

wave infrared (A) images have a wavelength range of 1195-

2365 nm, a size of 134 × 136 pixels, and a spatial resolution 

of 7.5 m. During the pre-processing step, 5985 image patches 

are created by resizing all the images into 224 × 224 image 

patches. 

 

RIT-18 (The Hamlin State Beach Park) aerial image set: 

Images in RIT-18 [50] were captured from an octocopter with 

the Tetracam MicroMCA6 multispectral sensor, resulting in a 

very high-resolution aerial image set. As shown in Figure 7 (c) 

alongside its corresponding ground truth (Figure 7 (d)), the 

training image has a size of 9393 × 5642 pixels. Here, the 

pixels marked in blue represent the tree class. 

The RIT-18 image set is known for its high spatial 

resolution of 0.047 m and contains images in 6 bands, 

including RGB and near-infrared (NIR), offering exceptional 

detail. The NIR intervals correspond to the following 

wavelength ranges: 715-725 nm, 795-805 nm, and 890–910 

nm. This study uses the tree class, even though the image set 

includes 18 distinct pixel-wise labeled class categories. The 

training image is partitioned into patches of size 224 × 224, 

resulting in 1778 number samples for training. 

 

Wheat Yellow-rust aerial image set: The collection site is 

Caoxinzhuang experimental station of Northwest Agriculture 

and Forestry University, Yangling, China. The DJI Matrice 

100 (M100) quadcopter and MicaSense RedEdge 

multispectral camera captured the images in this aerial image 

set, which are not publicly available [8]. The seedlings of the 

Xiaoyan 22 wheat variety were inoculated with a mixture of 

Pst races (CYR 29/30/31/32/33) [51]. The image in GeoTIFF 

format at 1336 × 2991 pixel size with a spatial resolution of 

0.013 m will be used in this study and shown in Figure 7 (e) 

with its corresponding ground truth (Figure 7 (f)). After 

randomly applying yellow-rust inoculum to 2 m × 2 m areas, 

the affected regions are highlighted in blue in Figure 7 (f) to 

indicate the presence of the disease. 

This aerial image set consists of a total of five bands, i.e., 

blue (20 nm bandwidth, 475 nm central wavelength), green (20 

nm bandwidth, 560 nm central wavelength), red (10 nm 

bandwidth, 668 nm central wavelength), red edge (10 nm 

bandwidth, 717 nm central wavelength) and NIR (40 nm 

bandwidth, 840 nm central wavelength). The division of the 

image into many 224 × 224 pixels results in a total of 1299 

image patches. 
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(a) (b) (c) (d) (e) (f) 

 

Figure 7. Image set illustrations. (a) An example original image from the DSTL image set. (b) The corresponding ground truth 

image from the DSTL image set. (c) Original training image from the RIT-18 image set. (d) The corresponding ground truth 

image from the RIT-18 image set. (e) Original training image from the Wheat Yellow Rust image set. (f) The corresponding 

ground truth image from the Wheat Yellow Rust image set 

 

2.3 Experimental setup 

 

The implementation of experiments involves the use of the 

PyTorch framework. The server utilized for training the 

architectures has the NVIDIA Quadro RTX 5000 GPU. All 

architectures are trained with adaptive moment estimation 

(Adam) algorithm [52], where the mini-batch size is 8. During 

training and validation, the loss function employed is binary 

cross-entropy with logits. Xavier uniform is used for weight 

initialization. All image sets undergo training with the 

architectures for a maximum of 70 epochs. The DSTL and 

RIT-18 image sets start with an initial learning rate of 10−4, 

which is decreased by 9% every five iterations. On the other 

hand, for training the Wheat Yellow-rust image set, the initial 

learning rate is 5 ∗ 10−5, which is decreased by 9% every ten 

iterations. The validation process uses a 5-fold cross-

validation approach. The image sets are partitioned into a 

training set (72%), a test set (20%), and a validation set (8%), 

with the total number of patches allocated accordingly. 

 

2.4 Evaluation metrics 

 

The Jaccard Index (also known as Intersection over Union 

or IoU) is the main metric employed in this study to evaluate 

performance, which is given in Eq. (8) as follows: 

 

𝐼𝑜𝑈 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)⁄  (8) 

 

where, TP represents pixels that are correctly recognized, 

while FP represents incorrectly identified pixels, and FN 

represents pixels that are not detected. As a second metric to 

provide a more detailed comparative analysis, the 𝐹1 -score 

calculates the harmonic mean value of precision and recall, 

which can measure the model’s robustness. 𝐹1 -score 

calculation is given in Eq. (9):  

 

𝐹1-score = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (9) 

 

where, the calculations are 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)  and 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁). 

 

 

3. RESULTS 

 

Table 1 compares the efficiency of the proposed 

ContexNestedU-Net architecture across various image sets, 

focusing on memory requirement, computational complexity 

and inference speed. Computational complexity is measured 

using model parameters and giga floating-point operations per 

second (GFLOPs), while frames per second (FPS) measures 

inference speed.  

As shown in Table 1, the ContexNestedU-Net architecture 

outperforms Nested U-Net in terms of computational cost, 

reducing GFLOPs by a factor of 2.8. Additionally, 

ContexNestedU-Net exhibits a remarkable 48.1% reduction in 

model parameters compared to Nested U-Net. When 

considering FPS, ContexNestedU-Net is approximately 1.19 

times faster than Nested U-Net across all image sets. The 

memory requirement is reduced by approximately 68.7 MB 

compared to Nested U-Net. 

 

 

Table 1. Performance comparison of semantic segmentation architectures estimated on the RIT-18, DSTL, and Wheat Yellow-

Rust image sets. Input size is 224 × 224 and GPU is RTX 5000 

 

Architectures 

GPU Memory 

Requirement for 

Inference (MB) 
Params 

(M) 
GFLOPS 

RIT-18 

Image Set 
DSTL Image 

Set 

Wheat 

Yellow-Rust 

Image Set 
FPS FPS FPS 

U-Net 64.09 14.79 190.07 20.54 20.69 20.48 
AttU-Net 141.60 34.88 408.12 11.57 11.58 11.55 

R2AttU-Net 158.04 39.44 943.42 4.57 4.59 4.58 
InceptionU-Net 130.26 32.04 482.26 9.51 9.49 9.43 

DualNormU-Net 75.34 17.29 141.13 23.78 23.93 23.87 
scAGAttU-Net 40.67 8.66 101.03 22.36 22.60 22.53 
UNetFormer 51.95 11.71 17.95 106.66 106.31 104.92 
Nested U-Net 147.98 36.63 849.3 5.57 5.60 5.55 

ContexNestedU-Net(proposed) 79.28 19.00 302.40 6.67 6.68 6.64 
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Table 2. Tree semantic segmentation test results in terms of Jaccard Index (IoU) and F1 score for the different U-Net 

architectures with DSTL image set 

 
 RGB Images NDVI Images 

Architectures IoU F1 IoU F1 

U-Net 0.570 ± 0.206 0.700 ± 0.198 0.462 ± 0.253 0.601 ± 0.252 

AttU-Net 0.575 ± 0.206 0.705 ± 0.196 0.487 ± 0.240 0.618 ± 0.231 

R2AttU-Net 0.445 ± 0.246 0.570 ± 0.253 0.339 ± 0.275 0.443 ± 0.298 

DualNormU-Net 0.548 ± 0.209 0.679 ± 0.211 0.444 ± 0.243 0.574 ± 0.247 

InceptionU-Net 0.552 ± 0.203 0.686 ± 0.197 0.486 ± 0.233 0.616 ± 0.240 

scAGAttU-Net 0.550 ± 0.216 0.681 ± 0.212 0.477 ± 0.244 0.606 ± 0.245 

UNetFormer 0.497 ± 0.213 0.636 ± 0.211 0.390 ± 0.252 0.515 ± 0.263 

Nested U-Net 0.549 ± 0.216 0.680 ± 0.200 0.496 ± 0.235 0.627 ± 0.234 

ContexNestedU-Net 0.603 ± 0.412 0.712 ± 0.193 0.626 ± 0.420 0.723 ± 0.237 

 

Table 3. Crop semantic segmentation test results in terms of Jaccard Index (IoU) and F1 score for the different U-Net 

architectures with DSTL image set 

 
 RGB Images NDVI Images 

Architectures IoU F1 IoU F1 

U-Net 0.894 ± 0.237 0.904 ± 0.240 0.857 ± 0.285 0.883 ± 0.263 

AttU-Net 0.893 ± 0.243 0.902 ± 0.220 0.879 ± 0.275 0.898 ± 0.260 

R2AttU-Net 0.857 ± 0.306 0.874 ± 0.296 0.804 ± 0.337 0.836 ± 0.314 

DualNormU-Net 0.903 ± 0.234 0.922 ± 0.214 0.882 ± 0.259 0.904 ± 0.238 

InceptionU-Net 0.897 ± 0.236 0.919 ± 0.213 0.886 ± 0.252 0.913 ± 0.225 

scAGAttU-Net 0.895 ± 0.262 0.910 ± 0.248 0.884 ± 0.279 0.906 ± 0.267 

UNetFormer 0.880 ± 0.283 0.896 ± 0.268 0.865 ± 0.307 0.879 ± 0.297 

Nested U-Net 0.897 ± 0.234 0.919 ± 0.209 0.880 ± 0.268 0.900 ± 0.251 

ContexNestedU-Net 0.907 ± 0.231 0.943 ± 0.180 0.889 ± 0.257 0.925 ± 0.211 

 

Table 4. Tree semantic segmentation test results in terms of Jaccard Index (IoU) and F1 score for the different U-Net 

architectures with RIT-18 image set 

 
 RGB Images NDVI Images 

Architectures IoU F1 IoU F1 

U-Net 0.860 ± 0.285 0.887 ± 0.243 0.841 ± 0.306 0.878 ± 0.269 

AttU-Net 0.881 ± 0.265 0.906 ± 0.243 0.883 ± 0.252 0.907 ± 0.227 

R2AttU-Net 0.878 ± 0.243 0.904 ± 0.210 0.683 ± 0.464 0.710 ± 0.364 

DualNormU-Net 0.880 ± 0.237 0.905 ± 0.215 0.803 ± 0.334 0.828 ± 0.318 

InceptionU-Net 0.864 ± 0.269 0.891 ± 0.239 0.873 ± 0.260 0.900 ± 0.236 

scAGAttU-Net 0.873 ± 0.271 0.898 ± 0.251 0.860 ± 0.294 0.892 ± 0.262 

UNetFormer 0.870 ± 0.260 0.899 ± 0.232 0.842 ± 0.296 0.871 ± 0.272 

Nested U-Net 0.885 ± 0.254 0.910 ± 0.228 0.893 ± 0.242 0.918 ± 0.220 

ContexNestedU-Net 0.888 ± 0.251 0.914 ± 0.223 0.896 ± 0.231 0.921 ± 0.205 

 

Table 5. Wheat yellow rust semantic segmentation test results in terms of Jaccard Index (IoU) and F1 score for the different U-

Net architectures with UAV image set 

 
 RGB Images NDVI Images 

Architectures IoU F1 IoU F1 

U-Net 0.521 ± 0.294 0.647 ± 0.333 0.502 ± 0.335 0.582 ± 0.353 

AttU-Net 0.553 ± 0.293 0.659 ± 0.289 0.477 ± 0.269 0.529 ± 0.335 

R2AttU-Net 0.208 ± 0.310 0.266 ± 0.310 0.292 ± 0.250 0.405 ± 0.257 

DualNormU-Net 0.576 ± 0.304 0.672 ± 0.298 0.507 ± 0.324 0.601 ± 0.312 

InceptionU-Net 0.588 ± 0.262 0.699 ± 0.248 0.569 ± 0.264 0.662 ± 0.252 

scAGAttU-Net 0.563 ± 0.301 0.664 ± 0.298 0.555 ± 0.281 0.644 ± 0.250 

UNetFormer 0.664 ± 0.241 0.769 ± 0.203 0.515 ± 0.320 0.615 ± 0.313 

Nested U-Net 0.615 ± 0.264 0.718 ± 0.242 0.560 ± 0.292 0.653 ± 0.279 

ContexNestedU-Net 0.691 ± 0.201 0.794 ± 0.157 0.605 ± 0.258 0.717 ± 0.232 

 

Table 2 displays the test results for semantic segmentation 

of tree target objects in the DSTL satellite image set. The 

ContexNestedU-Net architecture outperforms all others for 

both RGB and NDVI images. In the case of RGB images, it 

exhibits a 5.4% improvement in the Jaccard index over Nested 

U-Net. For NDVI images, which incorporate near-infrared 

data, this improvement reaches a substantial 13%. 

ContexNestedU-Net excels at preserving discriminative near-

infrared reflectance information for vegetation, making it 

particularly effective for multispectral images. 

Table 3 shows test results for semantic segmentation of crop 

target objects in the DSTL satellite image set. ContexNestedU-

Net excels in crop segmentation for RGB and NDVI images, 

surpassing all other architectures. It enhances Jaccard index by 

1% with RGB images and 0.9% with NDVI images when 

compared to the Nested U-Net architecture. The capacity of 
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ContexNestedU-Net to improve performance, even with 

reduced computational costs, stems from its ability to capture 

rich contextual information. 

Similar to the DSTL image set, the RIT-18 aerial image set, 

which boasts higher spatial resolution, also incorporates the 

tree target object. Table 4 illustrates test results for tree 

semantic segmentation within the RIT-18 aerial image set, 

where ContexNestedU-Net consistently outperforms other 

architectures. Notably, the proposed ContexNestedU-Net 

architecture enhances Jaccard index values for RGB and 

NDVI images by approximately 0.3% compared to NestedU-

Net.  

Table 5 displays Jaccard index results for yellow-rust 

disease detection in the Wheat Yellow-Rust aerial image set. 

Despite the generally low Jaccard index scores due to limited 

training data, the ContexNestedU-Net model performs 

exceptionally well by effectively capturing contextual 

information in all cases. Compared to Nested U-Net, it boosts 

the Jaccard index by 7.6% for RGB input and 4.5% for NDVI 

input. The improvement in NDVI performance highlights the 

model’s ability to leverage near-infrared band data effectively 

for detecting wheat yellow-rust disease. ContexNestedU-Net 

excels in preserving critical discriminative information, 

especially related to healthy vegetation found in near-infrared 

reflectance.  

Figure 8 presents a visualization of prediction results using 

sample images and their corresponding ground truth masks. In 

the illustrations, light green denotes accurately predicted 

pixels (hits), dark green represents missed pixels, and red 

signifies pixels falsely identified (false alarms).  
 

          

          

          
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

 

Figure 8. Semantic segmentation test results. Light green represents a hit, dark green represents a miss, and red represents a 

false alarm. First row shows NDVI tree predictions, second row shows NDVI wheat-yellow rust predictions predictions and third 

row shows RGB tree predictions. (a) Ground-truth masks. (b) U-Net. (c) AttU-Net. (d) R2AttU-Net. (e) DualNormU-Net. (f) 

InceptionU-Net. (g) scAGAttU-Net. (h) UNetFormer. (i) Nested U-Net. (j) ContexNestedU-Net 
 

 
(a) 
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(d) 

 

Figure 9. Box-plots of cross-validation results for the different U-Net architectures with DSTL image set. (a) Box-plot 

comparison of F1 scores for crops in RGB images. (b) Box-plot comparison of Jaccard Index values for crops in RGB images. (c) 

Box-plot comparison of F1 scores for trees in RGB images. (d) Box-plot comparison of Jaccard Index values for trees in RGB 

images 

 

The first row shows tree predictions using NDVI data from 

the RIT-18 image set. Notably, the ContexNestedU-Net 

architecture significantly reduces false alarms; showcasing its 

ability to effectively preserve the unique spectral 

characteristics of trees within NDVI input data. In contrast, 

other architectures tend to misinterpret similar spectral 

patterns as trees. The second row illustrates the predictions for 

yellow rust within the NDVI data entries from the Wheat 

Yellow-rust image set. The ContexNestedU-Net model 

minimizes both false alarms and missed pixels. The reduction 

in missed pixels indicates the model’s capacity to comprehend 

the broader contextual information in the scene. The last row 

shows crop predictions utilizing RGB inputs from the DSTL 

image set, where the ContexNestedU-Net architecture tends to 

decrease false alarm pixels.  

Figure 9 shows the box-plots over cross-validation results 

for the DSTL image set. Figure 9 (a) and Figure 9 (b) reveal 

that ContexNestedU-Net has the highest 𝐹1 scores and Jaccard 

index values for crop objects, respectively. In Figure 9 (a), the 

ContexNestedU-Net achieves the highest mean value of 0.931 

and the highest median value of 0.930. Similarly, in Figure 9 

(b) it obtains the highest mean (0.909) and the highest median 

(0.907).  

Figure 9 (c) and (d) demonstrate that ContexNestedU-Net is 

also superior in tree objects as compared to other models. It 

has the highest mean (0.711) and the highest median (0.711) 

in terms of 𝐹1  score (Figure 9 (c)). It also has the highest 

median (0.601) and the highest mean (0.603) for Jaccard index 

values (Figure 9 (d)).  

 

3.1 Limitations 

 

  
(a) (b) 

 

Figure 10. Prediction masks of ContexNestedU-Net 

model. (a) Some examples with possible tree occlusion in 

RIT-18 image set. (b) Some examples with possible tree 

occlusion in DSTL image set 

 

The proposed ContexNestedU-Net model consistently 

outperforms other U-Net-based models by capturing more 

contextual information. However, ContexNestedU-Net still 
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falls short of predicting possibly occluded tree objects. Some 

parts of the tree may be blocked by obstacles when there is an 

occlusion. Examples in Figure 10 (a) and Figure 10 (b) 

demonstrate that the proposed method is not able to predict 

possibly occluded trees accurately. 

One other challenge is the requirement of having FPS values 

greater than 30 to be considered as a real-time model. The 

ContexNestedU-Net is still far from being considered as a real-

time model (Table 1). 

 

 

4. CONCLUSIONS 

 

The ContexNestedU-Net architecture enhances the 

effectiveness and efficiency of various precision agriculture 

applications using multispectral remote sensing data. It 

achieves this by preserving unique spectral information while 

reducing computational complexity and model parameters 

through depthwise separable convolution in the first stage of 

the convolution block. Moreover, the architecture boosts the 

model’s contextual awareness by applying dilated convolution 

afterwards.  

In extensive experiments with diverse multispectral remote 

sensing image sets, including satellite and aerial imagery, 

ContexNestedU-Net outperforms various U-Net architectures 

across all precision agriculture applications. By improving the 

Nested U-Net’s capacity to capture contextual information and 

maintain unique spectral details, it not only enhances 

performance but also significantly reduces computational 

complexity. The proposed ContexNestedU-Net model holds 

great promise for effectively monitoring large regions, 

facilitating timely interventions, and enhancing resource 

utilization in remote sensing-based precision agriculture. As a 

future work, although the proposed model is faster than the 

Nested U-Net model, its FPS value needs further improvement 

to acquire real-time capabilities. 
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