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 With the increasing demand for intelligent surveillance and public safety, pedestrian re-

identification and tracking technology has become a focal point in the field of computer 

vision. Traditional algorithms for pedestrian re-identification and tracking exhibit 

significant performance degradation when applied to cross-domain scenarios, such as those 

involving different surveillance devices or varying lighting conditions. Although existing 

studies have made some progress through the use of deep learning techniques, challenges 

remain in enhancing cross-domain adaptability. To address this issue, this study proposes a 

pedestrian re-identification image keypoint detection method based on adversarial 

generative domain adaptation networks, as well as a pedestrian re-identification and tracking 

algorithm based on deep self-supervised adversarial domain adaptation networks. By 

combining generative adversarial networks (GANs) with self-supervised learning, the 

proposed method significantly improves the accuracy and robustness of pedestrian re-

identification and tracking in complex cross-domain environments, demonstrating high 

practical value and applicability. 
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1. INTRODUCTION 

 

In recent years, with the widespread adoption of intelligent 

surveillance technologies and the growing demand for public 

safety [1-4], pedestrian re-identification and tracking have 

garnered increasing attention as core issues within the field of 

computer vision [5, 6]. Pedestrian re-identification aims to 

recognize the same individual from images or videos captured 

from different viewpoints and at different times, while 

pedestrian tracking involves the continuous localization and 

tracking of the same target throughout a video sequence. These 

technologies hold significant potential for applications in 

smart cities, security surveillance, and public safety. However, 

the cross-domain challenges present in real-world scenarios, 

such as the varying distribution of monitoring devices and 

changes in environmental lighting conditions, substantially 

increase the complexity and difficulty of pedestrian re-

identification and tracking tasks [7-10]. 

The research on pedestrian re-identification and tracking 

algorithms is not merely focused on solving technical 

problems but also serves as a critical approach to enhancing 

public safety and optimizing resource allocation in the current 

social context [11, 12]. As technology advances and practical 

demands continue to grow, existing algorithms for pedestrian 

re-identification and tracking have become insufficient to meet 

the needs of complex environments. In particular, traditional 

algorithms exhibit significant performance degradation in 

cross-domain scenarios due to their strong dependency on 

environmental conditions [13-16]. Therefore, developing an 

algorithm that can efficiently adapt to cross-domain scenarios 

is of paramount importance for improving the reliability and 

efficiency of public safety systems.  

Despite the progress made in pedestrian re-identification 

and tracking algorithms, most existing methods still exhibit 

notable deficiencies in cross-domain adaptability [17, 18]. 

Traditional approaches typically rely on large-scale annotated 

data for training, lacking the ability to effectively extract and 

adapt to target domain features, resulting in poor performance 

in cross-domain applications [19-22]. Furthermore, although 

recent deep learning methods have somewhat improved the 

accuracy of re-identification and tracking, they still struggle to 

adequately address the disparities between domains in 

complex and dynamic cross-domain scenarios. 

This study primarily focuses on two key aspects. First, a 

pedestrian re-identification image keypoint detection method 

based on adversarial generative domain adaptation networks 

was proposed, which effectively improved re-identification 

accuracy in cross-domain scenarios through the adaptive 

capabilities of GANs. Second, a pedestrian re-identification 

and tracking algorithm based on deep self-supervised 

adversarial domain adaptation networks was designed, aiming 

to enhance model adaptability in the target domain through the 

combination of self-supervised learning and adversarial 

training. This study not only introduces innovative algorithm 

designs but also demonstrates practical effectiveness, offering 

significant theoretical and practical value for enhancing the 

cross-domain adaptability of pedestrian re-identification and 

tracking systems.
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2. PEDESTRIAN RE-IDENTIFICATION IMAGE

KEYPOINT DETECTION BASED ON ADVERSARIAL

GENERATIVE DOMAIN ADAPTATION NETWORKS

2.1 Problem description 

In real-world applications of pedestrian re-identification 

and tracking, surveillance systems often encounter complex 

cross-domain challenges. These challenges arise from 

variations in camera angles, lighting conditions, and 

background complexity, leading to significant marginal 

distribution differences between source domain data (query 

images) and target domain data (pedestrian re-identification 

candidate images). Specifically, the distributions of the source 

domain data Ft={(at
u,bt

u)}vt
u=1 and the target domain data 

Fs={(as
k,bs

k)}vs
k=1 differ substantially, which severely limits 

the performance of traditional pedestrian re-identification 

algorithms in the target domain. 

To address this challenge, a pedestrian re-identification 

image keypoint detection method based on adversarial 

generative domain adaptation networks was proposed in this 

study. Initially, a generator h(·) and a detector df(·) were 

collaboratively trained to transform the source domain data at 

into pseudo-target domain data ad, such that the distribution 

o(ad) of the pseudo-target domain closely approximates the 

distribution o(as) of the target domain. Subsequently, the 

pseudo-target domain data Fd and the target domain data Fs 

were utilized to train the keypoint detector df(·). By training 

on the combined dataset {Fd,Fs}, the keypoint detector was 

enabled to learn features that are more adaptive to the target 

domain. This ultimately allows for precise keypoint detection 

on target domain data at during actual pedestrian re-

identification and tracking tasks, achieving bs=df(as). 

2.2 Overall network architecture 

In pedestrian re-identification and tracking tasks, domain 

discrepancies in cross-domain scenarios significantly impact 

the accuracy of identification and tracking. To effectively 

address these challenges, the proposed method leverages 

GANs to reduce distribution differences between domains, 

thereby enhancing the model's adaptability and recognition 

accuracy in the target domain. As a reference network, the 

Cyc1eGAN architecture serves as an important foundation for 

this study. 

The Cyc1eGAN network architecture comprises two 

generators, HS2OR and HOR2S, and two discriminators, FOR and 

FSIM. The generator HS2OR is responsible for converting the 

image style of the source domain into that of the target domain, 

while the generator HOR2S performs the reverse task, 

converting the image style of the target domain into that of the 

source domain. The discriminators FOR and FSIM are tasked 

with distinguishing whether the input images originate from 

the target domain or the source domain, respectively. The 

optimization process of Cyc1eGAN primarily relies on two 

loss functions: the adversarial loss MADV and the cycle 

consistency loss MCL. The adversarial loss MADV ensures that 

the generated images closely resemble those of the target 

domain, making it difficult for the discriminators to 

differentiate between original and generated images. 

Meanwhile, the cycle consistency loss MCL maintains the 

content consistency of the generated images by ensuring that 

the images retain their original content features after passing 

through both generators. The definitions of these loss 

functions are as follows: 
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The total loss function of Cyc1eGAN is defined as: 

( )

( )
2

2

2

2

,

,
SIM OR SIM

OR SIM OR

CG

ADV SIM OR OR

H H ADV OR SIM SIM
H H

CY

M

M H F

MIN MAX M H F

M

=

 
 
+ 
 + 

(3) 

In practical applications of pedestrian re-identification and 

tracking, cross-domain issues often lead to distributional 

differences between the source and target domains, thereby 

affecting the model's detection performance. To effectively 

address this challenge, an improved network architecture 

based on Cyc1eGAN, termed RegCycleGAN, was proposed 

in this study. The architecture of RegCycleGAN is illustrated 

in Figure 1. RegCycleGAN builds upon the Cyc1eGAN 

framework by incorporating four additional pedestrian re-

identification keypoint detectors: DETS-S, DETS-T, DETO-S, and 

DETO-T. DETS-S and DETS-T are responsible for keypoint 

detection in source domain images, while DETO-S and DETO-T 

are used for keypoint detection in target domain images. To 

achieve stable pedestrian re-identification keypoint detection, 

RegCycleGAN introduces the Exponential Moving Average 

(EMA) method, which facilitates parameter transfer between 

the student and teacher networks. Specifically, the parameters 

of the student networks are progressively updated and 

transferred to the teacher networks via the EMA method 

between DETS-S and DETS-T, as well as between DETO-S and 

DETO-T. This approach ensures that the teacher networks 

maintain relatively stable parameters during the training 

process. By employing this method, the model becomes more 

robust to data perturbations during training, leading to more 

stable and accurate keypoint detection results. 

To enhance the performance of cross-domain pedestrian re-

identification, the proposed RegCycleGAN network 

introduces multiple loss functions to optimize various 

components of the model, thereby enabling efficient 

pedestrian re-identification keypoint detection. The network 

first incorporates the CycleGAN loss function MCG, which 

ensures that the images generated through the generators retain 

their original content and structure after being transformed 

across different domains. Furthermore, the network introduces 

the query domain detector loss function MD-O and the re-

identification candidate domain detector loss function MD-S, 

corresponding to the optimization objectives of the keypoint 

detectors in the two domains. MD-O optimizes keypoint 

detection performance in the query domain, while MD-S 

optimizes keypoint detection performance in the candidate 

domain. 

Additionally, the self-consistency loss function MS-C was 

proposed within the RegCycleGAN network to enhance the 

stability of the teacher-student detector networks in keypoint 

detection tasks. By introducing this loss function between the 
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teacher and student networks, RegCycleGAN ensures 

consistency in parameter updates, thereby improving the 

stability and accuracy of keypoint location detection. 

Assuming β1 and β2 are balancing factors, the overall loss 

function for RegCycleGAN is defined as: 

1 2RCG CG D O D SM M M M − −= + + (4) 

Figure 1. RegCycleGAN network architecture 

2.3 Equivalent perturbation transformation 

The pedestrian re-identification keypoint detector 

comprises two components: the teacher network d(ϕ') and the 

student network d(ϕ). Both networks share the same UNet 

architecture, which effectively captures keypoint information 

in pedestrian images for pedestrian re-identification tasks and 

processes it at different scales. During the training phase, an 

equivalent perturbation transformation po was introduced into 

the input data a to enhance the model's robustness to data 

perturbations. This perturbation transformation simulates the 

style differences and noise between different domains, 

enabling the model to better adapt to cross-domain data. The 

perturbed input data was then fed into both the teacher network 

d(ϕ') and the student network d(ϕ), each producing keypoint 

detection results for the pedestrian images. Furthermore, a 

self-consistency loss function was employed to measure the 

consistency between the outputs of the teacher and student 

networks. The design of the self-consistency loss ensures that 

the outputs of the teacher and student networks remain 

consistent when faced with the same input data, thereby 

improving the stability of keypoint detection. 

The design of the equivalent perturbation transformation 

module aims to simulate environmental changes in cross-

domain scenarios by artificially introducing perturbations, 

thereby enhancing the model's robustness to cross-domain 

data. In practice, the equivalent perturbation transformation o 

is applied to the input data of the student network, which can 

include various forms of transformations such as image 

rotation, scaling, colour shift, and noise addition. Through 

these perturbation operations, the student network learns to 

extract pedestrian keypoint information consistently under 

varying conditions. Simultaneously, to ensure consistency 

between the outputs of the teacher and student networks, the 

equivalent perturbation transformation o is also applied to the 

output results of the teacher network. This consistent 

perturbation treatment allows the outputs of the teacher and 

student networks to be compared under the same conditions, 

effectively facilitating the calculation of the self-consistency 

loss. Minimizing the self-consistency loss is the core objective 

of the equivalent perturbation transformation module. During 

training, the parameters of the student network were adjusted 

based on the gradient information from the self-consistency 

loss, thereby enhancing its ability to adapt to perturbed inputs. 

On the other hand, the parameters of the teacher network were 

updated using the EMA method, wherein the parameters are 

not directly updated through gradient descent but are 

progressively smoothed based on the parameters of the student 

network. This update strategy maintains the stability of the 

teacher network, allowing it to retain high detection accuracy 

even when confronted with perturbed inputs. Letting β be the 

smoothing coefficient controlling the parameter updates of the 

teacher network, the update formula is given by: 

( )1 1s s s   −
 = + − (5) 

The definition of the self-consistency loss function is given 

by: 

( ) ( )( ) ( )( )
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In cross-domain pedestrian re-identification and tracking 

tasks, accurately locating keypoints in pedestrian images is 

crucial for improving re-identification performance. However, 

since keypoint detection is a pixel-level task, local feature 

information in images is highly sensitive. Traditional 

coordinate regression methods struggle to cope with complex 

variations and noise in images. To overcome the convergence 

challenges in keypoint detection tasks, a heatmap was 

employed as the training label in the pedestrian re-

identification model based on adversarial generative domain 

adaptation networks. This design effectively addresses the 

difficulties in model convergence during keypoint detection 

and enhances overall performance. Assuming that the 

keypoint coordinates, represented by the center of the heatmap, 

are denoted as (au,bu), and that the standard deviation of the 
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Gaussian distribution is denoted as δ, the generation of the 

heatmap is defined as follows: 

( ) ( ) ( ) ( )( )2 22, exp 1 2u u u ug a b a a b b = − − + −
 

(7) 

Assuming the heatmap label is denoted as b and the student 

network as d(ϕ), the loss function MLA for the keypoint 

detection network is defined as follows: 

( ) ( )
2

1 ,LA

u V

M V d a b


= − (8) 

Let η(s)=e(-5(1-s/S)2), where S represents the acceleration 

factor. The overall consistency regularization loss function 

MDE for the pedestrian re-identification keypoint detection 

network is defined as follows: 

( )DE LA S CM M s M −= + (9) 

In cross-domain pedestrian re-identification and tracking 

tasks, the application of GANs offers new possibilities for 

enhancing the robustness and adaptability of models in 

complex environments. However, GAN models often face the 

challenge of imbalanced training between the generator and 

discriminator, particularly when the discriminator becomes 

too powerful or the generator struggles to keep pace, which 

leads to vanishing gradients in the generator, making it 

difficult to improve the quality of the generated images. This 

issue is especially critical in pedestrian re-identification 

keypoint detection, where the accuracy and stability of 

detection heavily rely on the quality of generated images. 

Poor-quality generated images directly impact the model's 

detection precision and stability. To address this problem, 

spectral normalization (SN) from Lipschitz constraints was 

introduced to constrain the discriminator within the pedestrian 

re-identification model based on adversarial generative 

domain adaptation networks. The core idea of SN is to 

normalize the weights of each convolutional layer in the 

discriminator, controlling its spectral norm, thereby smoothing 

the network's derivatives and ensuring 1-Lipschitz continuity. 

Assuming the dual norm of Q is denoted by δ(Q), the formula 

is given by: 

( ) ( )TNQ Q Q Q= (10) 

3. PEDESTRIAN RE-IDENTIFICATION AND

TRACKING BASED ON DEEP SELF-SUPERVISED

ADVERSARIAL DOMAIN ADAPTATION

NETWORKS

3.1 Problem description 

In cross-domain pedestrian re-identification and tracking 

tasks, the primary challenge lies in effectively utilizing data 

from both the source and target domains, despite the 

significant differences in their marginal distributions. 

Specifically, the source domain data is labelled and can be 

used for supervised learning, while the target domain data is 

unlabelled. In this scenario, traditional pedestrian re-

identification methods are difficult to apply directly, as they 

rely on the consistency of feature spaces between the target 

and source domains. However, real-world pedestrian re-

identification tasks often involve scenarios that span multiple 

cameras, different environments, and even varying times, 

leading to substantial differences in data distribution between 

the source and target domains. 

To address this issue, a pedestrian re-identification model 

based on deep self-supervised adversarial domain adaptation 

networks was proposed in this study. The model first generates 

domain soft labels F[0,1] for each sample through a feature 

confusion mechanism, where a label value of 1 indicates that 

the sample features are closer to the source domain, and a 

value of 0 indicates that the sample features are closer to the 

target domain. During this process, the model learns how to 

confuse the features of different domains, bringing the 

distributions of the source and target domains closer in the 

feature space. Simultaneously, the model generates self-

rotation labels E={0,1,2,3} for each sample through a self-

supervised rotation proxy task, where these labels represent 

the different states of the sample after being rotated clockwise 

by 0°, 90°, 180°, and 270°, respectively. Through this proxy 

task, the model is able to learn more robust feature 

representations without relying on label information. During 

training, the model optimizes the feature extractor by 

predicting domain soft labels and self-rotation labels, enabling 

it to accurately classify the source domain while also 

developing strong cross-domain generalization capabilities. 

Finally, the model utilizes the classifier d(.), trained on the 

source domain, to classify samples in the target domain, i.e., 

bs=d(as), thereby enabling effective application of pedestrian 

re-identification tasks in the target domain. 

3.2 Overall network architecture 

In cross-domain pedestrian re-identification and tracking 

tasks, it is crucial to effectively address the distribution 

differences between the source and target domains. To tackle 

this issue, deep self-supervised adversarial domain adaptation 

networks were proposed in this study, which enhance the 

model's re-identification capabilities in the target domain by 

combining self-supervised learning and adversarial learning. 

Figure 2 illustrates the network architecture of the feature 

extractor and classifier within the model. Figure 3 depicts the 

overall architecture of the deep self-supervised adversarial 

domain adaptation networks. This network architecture 

comprises four main components: the feature extractor Dd, the 

classifier Zb, the adversarial domain fusion discriminator Zf, 

and the self-rotation predictor Ze. The feature extractor Dd is 

responsible for extracting low-level features from the input 

images, which serve as the foundation for subsequent 

processing. In pedestrian re-identification tasks, the input 

typically includes query images with unique pedestrian feature 

labels and candidate images without distinct pedestrian feature 

labels. The feature extractor captures the foundational features 

of these images, providing a unified feature representation for 

the entire network. The extracted features are fed into three 

different sub-networks: the classifier Zb, the adversarial 

domain fusion discriminator Zf, and the self-rotation predictor 

Ze. The primary function of the adversarial domain fusion 

discriminator Zf is to perform domain discrimination on the 

fused features via a gradient reversal layer (GRL), predicting 

whether these features originate from the source or target 

domain. Through this mechanism, the network learns feature 

representations that are consistent across domains, thereby 

reducing the feature distribution discrepancies between the 
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source and target domains. Meanwhile, the self-rotation 

predictor Ze further enhances the robustness of the features by 

predicting the rotation angle (0°, 90°, 180°, 270°) of the input 

images. The self-rotation proxy task involves randomly 

rotating the input images and generating corresponding 

rotation labels, allowing the network to learn effectively 

without explicit labels. This self-supervised mechanism 

enhances the network's ability to capture image features, 

especially when target domain data lacks labels, helping the 

model learn the target domain's characteristics more 

effectively. Finally, the classifier Zb uses the features 

processed by the adversarial domain fusion discriminator and 

the self-rotation predictor to predict the unique pedestrian 

feature labels. Zb can more effectively perform classification 

tasks in the target domain by utilizing the semantically 

consistent features extracted by the feature extractor Dd. This 

approach ensures that even when there are significant 

distributional differences between images from the source and 

target domains, the model can still effectively identify 

pedestrians in the target domain by extracting features 

consistent across domains. 

Figure 2. Network architecture of the feature extractor and 

classifier 

Figure 3. Network architecture of deep self-supervised 

adversarial domain adaptation networks 

3.3 Domain feature fusion 

In the proposed model, the feature extractor Dd first extracts 

feature vectors from the input images of the source and target 

domains, denoted as the source domain feature vector rt and 

the target domain feature vector rs, respectively. However, 

directly aligning these two feature vectors in the high-

dimensional feature space may not sufficiently capture their 

underlying similarities and differences. To address this, a 

feature-level mixing module was proposed in this study, which 

embeds features from different domains into a latent feature 

space for mixing, as illustrated in Figure 4. This feature fusion 

is achieved through an adversarial learning approach. In the 

latent feature space, the source domain and target domain 

feature vectors rt and rs are mixed to form a new feature 

representation. This representation not only retains the 

individual feature information of both domains but also 

reinforces their semantic consistency through the fusion 

process. During this process, the network optimizes the feature 

alignment by discriminating the domain soft labels of the 

mixed features, predicting the origin domain based on the 

feature distribution. The domain labels mt
DO and ms

DO 

represent the data from the source and target domains, with 

values of 1 and 0, respectively. 

Figure 4. Schematic diagram of the feature fusion module 

To further enhance the alignment of the model, the domain 

discriminator measures the similarity between the two 

domains using the features generated by the feature-level 

mixing module. In this way, the network can not only identify 

the differences between the source and target domain features 

but also automatically learn the semantic consistency features 

shared between the two domains. This alignment method 

directs the model's focus towards shared features across 

domains rather than being distracted by domain-specific noise. 

Assuming the feature fusion ratio is represented by η[0,1], 

the generated feature fusion vector rl and the corresponding 

domain soft label mL
DO are defined as follows: 

( )1l t sr r r = + − (11) 

l

DOm = (12) 

In the model, for each input image au, a feature vector was 

first extracted using the feature extractor Dd. This feature 

vector contains the foundational feature information of the 

input image. These feature vectors were then sent to the 

domain discriminator Zf for further processing. To enhance the 

alignment of domain features, the feature vectors pass through 
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a GRL before entering the discriminator. This layer reverses 

the gradient during training, aiding the network in learning 

more general features that are applicable across both the 

source and target domains. The input features received by the 

domain discriminator Zf include the source domain feature 

vector rt, the target domain feature vector rs, and the generated 

fusion feature vector rl. The fusion feature vector rl, generated 

in the latent feature space, was designed to smoothly transition 

the features between the source and target domains, making 

the feature alignment process more robust. During this process, 

Zf aligns domain features by distinguishing whether these 

feature vectors originate from the source domain, the target 

domain, or a mixture of both. To optimize the discrimination 

performance of Zf, the model employs domain soft labels for 

standard supervised training. Specifically, by minimizing the 

cross-entropy loss, Zf learns how to differentiate between the 

source domain, the target domain, and the fused features. This 

loss function guides Zf to more accurately determine the 

domain origin of the features during training. Simultaneously, 

the GRL applies gradient reversal to the feature extractor Dd, 

gradually enabling Dd to extract more generalised cross-

domain features. Ultimately, the optimized Dd can extract 

features that maintain semantic consistency between the 

source and target domains, thereby improving the re-

identification accuracy of the model in the target domain. The 

loss functions corresponding to the three types of feature 

vector discrimination are defined as follows: 
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Assuming the balancing factor is denoted by α, the total loss 

function MS_D of the domain discriminator is defined as 

follows: 
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3.4 Self-supervised rotation transformation 

 

In cross-domain pedestrian re-identification and tracking 

tasks, self-supervised learning is a critical method for 

enhancing the model's generalization ability, particularly 

when there is a lack of target domain data. Specifically, the 

self-supervised rotation transformation is achieved through a 

self-supervised rotation proxy task. In this task, the model 

automatically generates rotation labels and learns the 

variations in image features across different rotation angles 

through the self-rotation predictor Ze. The self-rotation 

predictor Ze receives low-level features from the feature 

extractor Dd as input and then outputs the probability 

distribution of all possible high-level feature rotations. 

Assuming that the network parameters of the feature extractor 

Dd and the self-rotation predictor Ze are denoted by ϕDd and ϕZe, 

respectively, the training optimization objective for Ze is 

defined as follows: 
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Assuming the rotation label space is represented by E, the 

rotation prediction loss function Mb is defined as follows: 
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3.5 Training process 

 

During the training process, the ultimate goal of the model 

is to simultaneously minimize the loss functions of the various 

modules. Specifically, the total loss function of the model is 

composed of three parts: a) The loss Mb of the classifier Zb, 

which is used to minimize the error in pedestrian identity 

classification. By optimizing Ly, the model can effectively 

recognize and distinguish different pedestrians. b) The loss Me 

of the self-rotation predictor Ze, which is aimed at minimizing 

the error in the self-supervised rotation prediction task. 

Optimizing Lr helps enhance the model's ability to capture 

image features. c) The loss MS-D of the adversarial domain 

fusion discriminator Zf, which is used to minimize the feature 

distribution shift between the source domain and the target 

domain. By optimizing Lsoft_domain, the model can learn 

more cross-domain consistent features. Assuming the number 

of image classes is denoted by B, and the probability that the 

model predicts au belongs to class b is denoted by Oau→b, the 

loss Mb is defined as follows: 
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Assuming the balancing factor is denoted by β, the final 

total loss function, composed of Mb, Me, and MS-D, is given by: 

 

_b e S DM M M M= + +
 (20) 

 

In this study, pedestrian re-identification and pedestrian 

tracking are closely related tasks. In practical applications, the 

results of pedestrian re-identification can directly enhance the 

accuracy and robustness of pedestrian tracking, especially in 

multi-camera surveillance systems or extensive public safety 

scenarios. The primary task of pedestrian re-identification is 

to confirm and identify the same individual by extracting 

features and matching pedestrian images across different 

cameras. Therefore, pedestrian re-identification provides 

identity information across camera views, helping the tracking 

system maintain identity consistency as pedestrians move 

from one camera to another. 

Pedestrian tracking based on re-identification results begins 

by capturing images of pedestrians using cameras deployed at 

multiple locations. The pedestrian re-identification model then 
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extracts features from these images. This model has undergone 

adaptive training under multi-domain conditions, enabling it 

to handle variations in images caused by different cameras, 

lighting conditions, and angles, thereby achieving accurate re-

identification results. Once a pedestrian's identity is 

recognized, this identity information is transmitted to the 

pedestrian tracking module. The core task of pedestrian 

tracking is to continuously label and locate pedestrians in each 

frame of the video based on the identified identity information 

and position. Using the features and identity labels extracted 

by the re-identification model, the tracking module can 

establish pedestrian trajectories across consecutive frames. 

Even in cases of brief occlusion or movement, the system can 

continue tracking the target by leveraging prior re-

identification information. For instance, in a surveillance 

system within a large shopping mall or airport, when a 

pedestrian exits the view of one camera, another camera may 

capture their image, at which point the re-identification results 

will assist the tracking module in re-locating and reconnecting 

the pedestrian’s trajectory. 

The integration of pedestrian re-identification and tracking 

offers significant advantages in practical applications. For 

example, in public security surveillance, the system can 

identify a target suspect through the pedestrian re-

identification model and continuously track the suspect’s 

movement using the tracking module, regardless of whether 

they move into the view of different cameras or experience 

occlusion. This cross-camera pedestrian tracking method 

greatly enhances the efficiency and accuracy of the 

surveillance system, mitigating the issues of tracking 

interruptions that often arise in traditional tracking methods 

due to changes in viewpoint or lighting conditions. 

4. EXPERIMENTAL RESULTS AND ANALYSIS

As shown in the experimental results in Table 1, there are 

significant performance differences under different domain 

conditions. When using only source domain training data, the 

F1 score was 4.851%, PPV (precision) was 14.265%, and TPR 

(recall) was 2.879%, indicating very poor performance. This 

result suggests that relying solely on source domain data 

results in insufficient generalization capability in the target 

domain. In contrast, when using only target domain training 

data, the F1 score significantly increased to 41.265%, with 

PPV reaching 74.268% and TPR at 28.152%. This 

demonstrates that, even in the absence of source domain data, 

the model can learn effectively within the target domain, 

though there remains room for further improvement. Finally, 

when combining source and target domain data, the F1 score 

was 37.589%, PPV was 60.125%, and TPR was 26.354%. 

Although mixed training performed slightly worse than using 

target domain data alone, its advantage lies in balancing the 

characteristics of both domains, offering a more robust 

solution. The results suggest that direct transfer of source 

domain data to the target domain is ineffective, highlighting 

significant domain differences and the challenge of model 

generalization in cross-domain scenarios. Therefore, training 

with only source domain data is insufficient to address the 

complexity of the target domain. While using only target 

domain data achieves better performance, it does not fully 

leverage the knowledge contained in the source domain, 

indicating that the scarcity of target domain data limits further 

model improvement. Although mixing source and target 

domain data shows slightly lower evaluation metrics 

compared to using only target domain data, this strategy 

demonstrates better robustness and adaptability, making it 

suitable for pedestrian re-identification tasks in cross-domain 

scenarios. 

Table 1. Experimental results of domain difference 

comparison 

Training Dataset 
Evaluation Metric (%) 

F1 PPV TPR 

Source domain only 4.851 14.265 2.879 

Target domain only 41.265 74.268 28.152 

Mixed source and target domains 37.589 60.125 26.354 

Table 2. Evaluation metrics for independent pedestrian 

feature detection results when using candidate image target 

domain for training 

Evaluation 

Metric 
Model D1 D2 D3 D4 μ±σ 

F1 (%) 

CycleGAN 16.785 18.524 18.254 17.214 117.265±0.665 

DiscoGAN 37.124 35.231 38.265 40.215 38.254±1.785 

Proposed 

model 
45.225 51.298 45.124 46.265 47.256±2.568 

PPV (%) 

CycleGAN 33.658 32.685 33.568 31.582 32.785±0.889 

DiscoGAN 67.582 75.124 66.254 72.16 70.151±3.854 

Proposed 

model 
79.125 79.235 75.321 77.265 77.624±1.856 

TPR (%) 

CycleGAN 11.125 12.897 12.258 12.125 12.235±0.658 

DiscoGAN 25.362 23.568 27.235 28.254 25.362±1.854 

Proposed 

model 
31.598 33.325 32.236 33.265 32.154±0.721 

The data presented in Table 2 reveals significant differences 

in independent pedestrian feature detection performance 

across different detection points (D1–D4) among the three 

models. The CycleGAN model's F1 score ranges from 16.785% 

to 18.524%, with a PPV of 32.785% ± 0.889 and a TPR of 

12.235% ± 0.658, indicating relatively poor detection 

performance in the target domain. In contrast, the DiscoGAN 

model shows improved performance across all detection 

points, with an F1 score ranging from 37.124% to 40.215%, a 

PPV of 70.151% ± 3.854, and a TPR of 25.362% ± 1.854, 

demonstrating stronger capability in capturing and 

recognizing features in the target domain. The proposed model 

outperforms the other models at all detection points, with F1 

scores ranging from 45.225% to 51.298%, a PPV of 77.624% 

± 1.856, and a TPR of 32.154% ± 0.721. These results are 

significantly higher than those of the comparative models, 

showcasing its robust capability in independent pedestrian 

feature detection. Based on the experimental analysis, the 

CycleGAN model struggles with detecting independent 

pedestrian features in the target domain, particularly in terms 

of recall, where it fails to effectively identify and capture key 

features. Although the DiscoGAN model shows considerable 

improvement in precision and recall, its performance remains 

limited, especially in scenarios with complex features, where 

the detection capabilities of the model are not fully utilized. In 

contrast, the proposed model significantly surpasses the other 

two models, excelling across all metrics, particularly precision 

and F1 score. This demonstrates that the integration of 

adversarial generative domain adaptation networks with self-

supervised learning significantly enhances the model’s 

adaptability and feature detection accuracy in the target 

domain. 
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Table 3. Experimental results combining complementary 

information from consecutive frames of pedestrian query 

images 

 

Method 
Evaluation Metric (%) 

AUC Accuracy Recall Precision F1 

Before 

combination 
83.26 77.41 86.25 81.25 83.41 

After 

combination 
84.56 79.56 79.56 83.65 85.26 

 

The data in Table 3 indicates that the integration of 

complementary information from consecutive frames of 

pedestrian query images leads to an improvement in all 

performance metrics of the model. Before the integration, the 

Area Under the Curve (AUC) was 83.26%, accuracy was 

77.41%, recall was 86.25%, precision was 81.25%, and the F1 

score was 83.41%. After the integration, the AUC increased to 

84.56%, and accuracy rose to 79.56%. Although recall slightly 

decreased to 79.56%, precision improved to 83.65%, and the 

F1 score also increased to 85.26%. These results suggest that 

combining complementary information from consecutive 

frames contributes to an overall enhancement of performance, 

particularly in terms of AUC, accuracy, and F1 score. This 

enhancement demonstrates that consecutive frames provide 

additional temporal information, enabling the model to better 

capture the dynamic features of pedestrians, thereby 

improving its recognition capabilities in complex scenarios. 

Although there was a slight decrease in recall, the increase in 

precision and F1 score indicates that the model maintained 

high recognition accuracy while reducing false positives. This 

finding suggests that the proposed method not only effectively 

leverages the advantages of adversarial generative domain 

adaptation networks but also further enhances the model's 

adaptability in the target domain through deep self-supervised 

learning, ultimately improving overall pedestrian re-

identification performance. 

 

Table 4. Experimental results of different methods for 

pedestrian re-identification tasks 

 

Method 
Evaluation Metric (%) 

AUC Accuracy Recall Precision F1 

ResNet50 54.12 68.55 92.36 71.26 80.21 

Vision 

Transformer 
78.23 74.51 86.26 78.69 81.36 

PCB 67.52 71.23 89.41 73.69 80.33 

DeepReID 64.12 71.26 93.26 83.65 81.57 

MGCAM 84.56 81.56 90.25 85.64 86.69 

DDA 71.23 72.69 96.58 72.36 82.51 

ADDA 86.25 84.26 92.64 83.69 88.26 

DAN 81.23 81.26 91.26 83.26 87.15 

Proposed 

method 
92.36 85.46 94.58 86.45 90.23 

 

The data in Table 4 reveals significant differences in 

performance across various methods used in pedestrian re-

identification tasks. The ResNet50 model shows relatively 

weak performance, particularly in AUC and accuracy, with an 

AUC of 54.12%. The Vision Transformer demonstrates some 

improvement in AUC and accuracy, reaching 78.23% and 

74.51%, respectively, although its performance in recall and 

precision is relatively average. Part-based Convolutional 

Baseline (PCB) and Deep Learning for Person Re-

Identification (DeepReID) models perform well in terms of 

recall but still fall short in AUC and accuracy. The Mask-

Guided Contrastive Attention Model (MGCAM) and Deep 

Adaptation Network (DAN) methods exhibit more balanced 

performance overall, with MGCAM achieving an AUC of 

84.56% and an F1 score of 86.69%, indicating strong 

recognition capability. The Adversarial Discriminative 

Domain Adaptation (ADDA) method attains an AUC of 

86.25% and an F1 score of 88.26%, showing good 

performance in both precision and recall. The proposed 

method demonstrates the most outstanding performance, with 

an AUC of 92.36%, accuracy of 85.46%, and an F1 score of 

90.23%, surpassing all other methods across these metrics, 

highlighting its strong advantages in pedestrian re-

identification tasks. Based on the experimental analysis, the 

proposed method exhibits clear superiority in pedestrian re-

identification tasks. Compared to other methods, this approach 

excels in key metrics such as AUC, accuracy, and F1 score, 

particularly with an AUC of 92.36% and an F1 score of 

90.23%, demonstrating its exceptional recognition 

capabilities. This indicates that the integration of adversarial 

generative domain adaptation networks and deep self-

supervised learning effectively enhances the model's 

adaptability and recognition accuracy in complex cross-

domain scenarios. In contrast, although traditional methods 

such as ResNet50 and PCB perform well in recall, they 

struggle with other key metrics, proving insufficient to address 

the challenges of cross-domain pedestrian re-identification 

tasks. 

 

 
 

Figure 5. AUC value trends for different methods in 

pedestrian re-identification tasks 

 

The data presented in Figure 5 demonstrates a clear trend in 

the AUC values for different methods in pedestrian re-

identification tasks as the number of iterations increases. The 

proposed method reached its peak AUC value of 97% at 250 

iterations, followed by a slight decline, stabilizing around 88%. 

In comparison, the ADDA method achieved an AUC value of 

86% at 200 iterations, remaining stable thereafter. The 

MGCAM method reached an AUC of 84.5% at 150 iterations, 

followed by minor fluctuations, ultimately stabilizing around 

83%. The DAN and DeepReID methods exhibited relatively 

slow and modest growth in AUC throughout the iterations, 

stabilizing between 75% and 79%. The Domain Discrepancy 

Alignment (DDA) method showed the smallest increase in 

AUC, reaching only 68% after 400 iterations. The analysis of 

the AUC value trends for different methods reveals that the 

proposed method exhibited rapid improvement in the early 

stages of training, achieving a peak AUC of 97% at 250 

iterations. This indicates that this method is capable of quickly 

learning and capturing effective features during the initial 

2422



training phase, demonstrating superior training efficiency. 

However, the slight decline in AUC after reaching its peak 

suggests that the model may have encountered some 

overfitting issues during the later stages of training. In contrast, 

although the ADDA method did not reach as high a peak as 

the proposed method, its AUC value remained relatively stable, 

indicating robust performance during model training. The 

MGCAM and DAN methods, while not achieving the same 

level of AUC growth as the proposed method and ADDA, still 

exhibited good stability and consistency. Overall, the 

proposed method demonstrated the best performance in 

pedestrian re-identification tasks, particularly in its rapid 

improvement during early training, showcasing its efficient 

feature-learning capability. 

5. CONCLUSION

A pedestrian re-identification image keypoint detection 

method based on adversarial generative domain adaptation 

networks was proposed in this study, along with a pedestrian 

re-identification and tracking algorithm that integrates deep 

self-supervised adversarial domain adaptation networks. 

These innovative approaches significantly enhanced the 

accuracy of pedestrian re-identification in cross-domain 

scenarios. The experimental results demonstrate that the 

proposed method outperforms traditional methods across 

various metrics, particularly excelling in AUC, accuracy, and 

F1 score. Additionally, the experiments incorporating 

complementary information from consecutive frames of 

pedestrian query images further validate the model's 

effectiveness in practical applications, leading to notable 

improvements in detection precision and overall performance. 

The analysis of AUC value trends across multiple iterations 

reveals that the proposed method exhibits rapid learning 

capabilities in the early stages and maintains high recognition 

accuracy across several experiments. 

This study provides a robust solution for pedestrian re-

identification, particularly in complex cross-domain scenarios. 

By combining GANs with self-supervised learning, significant 

contributions have been made toward enhancing the model's 

adaptability and recognition accuracy. These achievements 

not only address challenges in real-world applications but also 

offer new directions for future research. However, certain 

limitations persist in this study, especially regarding model 

stability and overfitting issues. The experimental results 

indicate that, although the model performs well during the 

early stages of training, a decline in performance may occur 

later. Furthermore, this study primarily focuses on image-level 

detection and recognition, leaving the potential of leveraging 

video-level information from consecutive frames to be further 

explored. Future research could be expanded in several 

directions: firstly, improving model stability to reduce the risk 

of overfitting; secondly, further exploring multi-modal data 

fusion techniques to enhance robustness in pedestrian re-

identification within complex environments; and thirdly, 

strengthening the extraction and utilization of video 

information to improve the model's recognition capabilities in 

dynamic scenarios. 
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