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Existing two-stage filtering algorithms in the literature assume that the system is nonlinear 

and Gaussian, with independent noise, meaning the noise in the state equation and 

measurement equation are uncorrelated and both follow Gaussian white noise distributions. 

However, in practical applications, noise correlations are common, and traditional 

computational methods that ignore these correlations inevitably lead to reduced estimation 

accuracy. This paper proposes a Noise-Correlated Two-Stage Cubature Kalman Filtering 

Algorithm (TSCKF-CN) based on model transformation. The algorithm introduces a 

coefficient ∆k to transform the model from a noise-correlated system to a noise-independent 

system. It then employs the noise from the transformed model in the recursive computation 

of the two-stage filter to achieve a noise-correlated TSCKF estimator. Simulation results 

from a pure azimuth tracking system demonstrate that this method, by accounting for noise 

correlation, achieves better tracking accuracy than methods that neglect noise correlations, 

leading to improved tracking performance. 
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1. INTRODUCTION

In practical applications, noise correlation in systems is 

common. For example, noise correlation can arise due to the 

dual effects of internal components and external 

environmental changes [1, 2]; systems with colored 

measurement noise that undergo noise dimensionality 

expansion also transform the original system into a noise-

correlated system after expanding it to the state [3, 4]; in 

systems that require multi-sensor information fusion, such as 

maneuvering target tracking, noise correlation is frequently 

encountered [5]. For noise-correlated systems, the Bayesian 

recursion framework, which is the foundation of nonlinear 

filtering algorithms, is no longer suitable, and thus the 

nonlinear filtering formulas are no longer valid. If 

conventional two-stage filtering algorithms are still applied, 

estimation accuracy will inevitably decrease. Therefore, 

discussing two-stage filtering for noise-correlated systems is 

of significant practical importance. Many researchers, both 

domestic and international, have studied noise-correlated 

filtering. Garcia et al. [4] presented the recursion process of 

Kalman filtering and extended Kalman filtering in noise-

correlated systems, Youn et al. [5] and Ran et al. [6] 

respectively derived the unscented Kalman filtering process 

for noise-correlated systems, and Qian et al. [7-9] extended 

Youn’s et al. [5] research to cubature Kalman filtering, 

presenting the cubature Kalman filtering algorithm for noise-

correlated systems [10-12]. 

This paper proposes the TSCKF-CN Algorithm. First, the 

noise-correlated system is transformed using the identity 

transformation method. By introducing the coefficient ∆𝑘, the

model is transformed from a noise-correlated system to a 

noise-independent system. Then, the noise in the new model is 

used in the recursive computation of the two-stage filtering 

process, resulting in a TSCKF-CN estimator. 

2. NOISE-CORRELATED CKF ALGORITHM

2.1 System model 

Consider the following nonlinear Gaussian system [13, 14]: 

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘) + 𝜔𝑘+1,𝑘 (1)

𝑧𝑘 = ℎ𝑘(𝑥𝑘) + 𝜐𝑘 (2)

where, k is the discrete time index, 𝑥𝑘 ∈ 𝑅𝑛×1 is the system

state vector, 𝑧𝑘 ∈ 𝑅𝑚×1  is the measurement vector, and f(⋅)
and h(⋅) are known nonlinear state transition and measurement 

functions that are continuously differentiable at 𝑥𝑘 . The

process noise sequence 𝜔𝑘+1,𝑘  and measurement noise

sequence 𝜐𝑘 are both Gaussian white noise sequences with the

means 𝐸(𝜔𝑘+1,𝑘) = 𝑞𝑘  and 𝐸(𝜐𝑘) = 𝑟𝑘 , and their

covariances 𝑄𝑘+1,𝑘 and 𝑅𝑘 satisfy the following conditions:

𝐸 [(
𝜔𝑘+1,𝑘

𝜐𝑘
) (𝜔𝑗+1,𝑗

𝑇 𝜐𝑗
𝑇)] = [

𝑄𝑘+1,𝑘 𝐷𝑘

𝐷𝑘
𝑇 𝑅𝑘

] 𝛿𝑘𝑗

The initial state 𝑥0  is independent of 𝜔𝑘+1,𝑘  and 𝜐𝑘 , and

satisfies: 

𝐸(𝑥0) = �̂�0|0, 𝐸 ([𝑥0 − �̂�0|0][𝑥0 − �̂�0|0]
𝑇
) = 𝑃0|0

Traitement du Signal 
Vol. 41, No. 5, October, 2024, pp. 2355-2364 

Journal homepage: http://iieta.org/journals/ts 

2355

https://orcid.org/0000-0002-2880-8306
https://orcid.org/0000-0003-0079-1327
https://orcid.org/0000-0002-9699-7006
https://orcid.org/0000-0003-2730-6408
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.410511&domain=pdf


 

2.2 Noise-correlated nonlinear gaussian filtering algorithm 

 

From the system model, it is clear that the system's process 

noise and measurement noise are correlated, which does not 

meet the conditions for directly applying the Bayesian filtering 

framework. Thus, nonlinear Gaussian filtering algorithms 

cannot be directly used for recursive computation. An intuitive 

solution is to transform the model using an identity 

transformation, converting the noise-correlated system into an 

uncorrelated one, and then proceed with filtering estimation 

[15-20]. 

From the model Eq. (2), we have: 

 

𝑧𝑘 − ℎ𝑘(𝑥𝑘) − 𝜐𝑘 = 0 

 

Let ∆𝑘 be the unknown coefficient, then: 

 

∆𝑘(𝑧𝑘 − ℎ𝑘(𝑥𝑘) − 𝜐𝑘) = 0 (3) 

 

Substitute into Eq. (1) and rearrange to obtain: 

 

𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘) + 𝜔𝑘+1,𝑘 + ∆𝑘(𝑧𝑘 − ℎ𝑘(𝑥𝑘) − 𝜐𝑘)

= 𝑓𝑘(𝑥𝑘) + ∆𝑘(𝑧𝑘 − ℎ𝑘(𝑥𝑘))

+ (𝜔𝑘+1,𝑘 − ∆𝑘𝜐𝑘)

= 𝐹𝑘(𝑥𝑘) + �̅�𝑘 

(4) 

 

where, 

 

𝐹𝑘(𝑥𝑘) = 𝑓𝑘(𝑥𝑘) + ∆𝑘(𝑧𝑘 − ℎ𝑘(𝑥𝑘)) (5) 

 

�̅�𝑘 = 𝜔𝑘+1,𝑘 − ∆𝑘𝜐𝑘 (6) 

 

Thus, the model Eqs. (1) and (2) are transformed into: 

 

𝑥𝑘+1 = 𝐹𝑘(𝑥𝑘) + �̅�𝑘 (7) 

 

𝑧𝑘 = ℎ𝑘(𝑥𝑘) + 𝜐𝑘 (8) 

 

where, �̅�𝑘 = 𝐶𝑜𝑣(�̅�𝑘, �̅�𝑗) = (𝑄𝑘+1,𝑘 − ∆𝑘𝑅𝑘∆𝑘
𝑇)𝛿𝑘𝑗. 

To transform the model from a noise-correlated system to a 

noise-independent system (i.e., to make the process noise and 

measurement noise uncorrelated), we require: 

 

𝐶𝑜𝑣(�̅�𝑘, 𝜐𝑘) = 0 

 

Expanding this equation gives: 

 

∆𝑘= 𝐷𝑘𝑅𝑘
−1 (9) 

 

When Eq. (9) is satisfied, the process noise and 

measurement noise in the system model are no longer 

correlated, allowing the application of nonlinear Gaussian 

filtering algorithms. The filtering equations derived from the 

transformed model are denoted with a superscript t to indicate 

the noise-correlated nonlinear Gaussian filtering. 

 

�̂�𝑘|𝑘−1
𝑡 = 𝐸(𝐹𝑘−1(𝑥𝑘−1))

= ∫ 𝐹𝑘−1(𝑥𝑘−1)

𝑅𝑛𝑥

× 𝑁(𝑥𝑘−1; �̂�𝑘−1|𝑘−1
𝑡 , 𝑃𝑘−1|𝑘−1

𝑡 )𝑑𝑥𝑘−1 + 𝑞𝑘−1 − ∆𝑘𝑟𝑘 

(10) 

 

𝑃𝑘|𝑘−1
𝑡 = 𝐸 ((𝑥𝑘

𝑡 − �̂�𝑘|𝑘−1
𝑡 )(𝑥𝑘

𝑡 − �̂�𝑘|𝑘−1
𝑡 )

𝑇
)  

= ∫ 𝐹𝑘−1(𝑥𝑘−1)𝐹𝑘−1
𝑇 (𝑥𝑘−1)

𝑅𝑛𝑥

× 𝑁(𝑥𝑘−1; �̂�𝑘−1|𝑘−1
𝑡 , 𝑃𝑘−1|𝑘−1

𝑡 )𝑑𝑥𝑘−1

− �̂�𝑘|𝑘−1
𝑡 (�̂�𝑘|𝑘−1

𝑡 )
𝑇

+ 𝑄𝑘,𝑘−1 − ∆𝑘𝑅𝑘∆𝑘
𝑇 

(11) 

 

�̂�𝑘|𝑘−1
𝑡 = 𝐸(ℎ𝑘(𝑥𝑘))

= ∫ ℎ𝑘(𝑥𝑘)

𝑅𝑛𝑥

× 𝑁(𝑥𝑘; �̂�𝑘|𝑘−1
𝑡 , 𝑃𝑘|𝑘−1

𝑡 )𝑑𝑥𝑘 + 𝑟𝑘 

(12) 

 

𝑃𝑧𝑧,𝑘|𝑘−1
𝑡 = 𝐸 ((𝑧𝑘

𝑡 − �̂�𝑘|𝑘−1
𝑡 )(𝑧𝑘

𝑡 − �̂�𝑘|𝑘−1
𝑡 )

𝑇
)

= ∫ ℎ𝑘(𝑥𝑘)ℎ𝑘
𝑇(𝑥𝑘)

𝑅𝑛𝑥

× 𝑁(𝑥𝑘; �̂�𝑘|𝑘−1
𝑡 , 𝑃𝑘|𝑘−1

𝑡 )𝑑𝑥𝑘

− �̂�𝑘|𝑘−1
𝑡 (�̂�𝑘|𝑘−1

𝑡 )
𝑇

+ 𝑅𝑘 

(13) 

 

𝑃𝑥𝑧,𝑘|𝑘−1
𝑡 = 𝐸 ((𝑥𝑘

𝑡 − �̂�𝑘|𝑘−1
𝑡 )(𝑧𝑘

𝑡 − �̂�𝑘|𝑘−1
𝑡 )

𝑇
)

= ∫ 𝑥𝑘ℎ𝑘
𝑇(𝑥𝑘)

𝑅𝑛𝑥

× 𝑁(𝑥𝑘; �̂�𝑘|𝑘−1
𝑡 , 𝑃𝑘|𝑘−1

𝑡 )𝑑𝑥𝑘

− �̂�𝑘|𝑘−1
𝑡 (�̂�𝑘|𝑘−1

𝑡 )
𝑇

 

(14) 

 

2.3 Noise-correlated CKF algorithm 

 

Based on the nonlinear Gaussian filtering formulas for 

noise-correlated systems derived in the previous section, the 

Noise-Correlated CKF Algorithm is described using the third-

order Spherical-Radial cubature rule as follows: 

Step 1: Time Update 

(1) Given the posterior density function at time k−1: 

 

𝑝(𝑥𝑘−1|𝐷𝑘−1) = 𝑁(𝑥𝑘−1; �̂�𝑘−1|𝑘−1
𝑡 , 𝑃𝑘−1|𝑘−1

𝑡 ), 

 

then: 

 

𝑃𝑘−1|𝑘−1
𝑡 = 𝑆𝑘−1|𝑘−1

𝑡 (𝑆𝑘−1|𝑘−1
𝑡 )

𝑇
 

 

(2) Compute the cubature points (𝑖 = 1,2, … ,𝑚 = 2𝑛𝑥): 

 

𝑋𝑖,𝑘−1|𝑘−1
𝑡 = 𝑆𝑘−1|𝑘−1

𝑡 𝜉𝑖 + �̂�𝑘−1|𝑘−1
𝑡  (15) 

 

(3) Propagate the cubature points (i=1,2,…,m): 

 

(𝑋𝑖,𝑘−1|𝑘−1
𝑡 )

∗
= 𝐹𝑘−1(𝑋𝑖,𝑘−1|𝑘−1

𝑡 , 𝑢𝑘−1) (16) 

 

where, 𝐹𝑘(𝑥𝑘) = 𝑓𝑘(𝑥𝑘) + ∆𝑘(𝑧𝑘 − ℎ𝑘(𝑥𝑘)) 

(4) Estimate the state prediction at time k: 

 

�̂�𝑘|𝑘−1
𝑡 =

1

𝑚
∑(𝑋𝑖,𝑘−1|𝑘−1

𝑡 )
∗

𝑚

𝑖=1

+ 𝑞𝑘−1 − ∆𝑘𝑟𝑘 (17) 

 

(5) Estimate the state error covariance at time k: 
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𝑃𝑘|𝑘−1
𝑡 =

1

𝑚
∑(𝑋𝑖,𝑘−1|𝑘−1

𝑡 )
∗

𝑚

𝑖=1

(𝑋𝑖,𝑘−1|𝑘−1
𝑡 )

∗𝑇

− �̂�𝑘|𝑘−1
𝑡 (�̂�𝑘|𝑘−1

𝑡 )
𝑇

+ 𝑄𝑘,𝑘−1

− ∆𝑘𝑅𝑘∆𝑘
𝑇 

(18) 

 

Step 2: Measurement Update 

(1) Perform Cholesky decomposition: 

 

𝑃𝑘|𝑘−1
𝑡 = 𝑆𝑘|𝑘−1

𝑡 (𝑆𝑘|𝑘−1
𝑡 )

𝑇
 

 

(2) Compute the cubature points (i=1,2,…,m) 

 

𝑋𝑖,𝑘|𝑘−1
𝑡 = 𝑆𝑘|𝑘−1

𝑡 𝜉𝑖 + �̂�𝑘|𝑘−1
𝑡  (19) 

 

(3) Propagate the cubature points (i=1,2,…,m) 

 

𝑍𝑖,𝑘|𝑘−1
𝑡 = ℎ𝑘(𝑋𝑖,𝑘|𝑘−1

𝑡 , 𝑢𝑘) (20) 

 

(4) Estimate the measurement prediction at time k: 

 

�̂�𝑘|𝑘−1
𝑡 =

1

𝑚
∑𝑍𝑖,𝑘|𝑘−1

𝑡

𝑚

𝑖=1

+ 𝑟𝑘 (21) 

 

(5) Estimate the measurement error covariance at time k: 

 

𝑃𝑧𝑧,𝑘|𝑘−1
𝑡 =

1

𝑚
∑𝑍𝑖,𝑘|𝑘−1

𝑡

𝑚

𝑖=1

(𝑍𝑖,𝑘|𝑘−1
𝑡 )

𝑇

− �̂�𝑘|𝑘−1
𝑡 (�̂�𝑘|𝑘−1

𝑡 )
𝑇

+ 𝑅𝑘 

(22) 

 

(6) Estimate the cross-covariance at time k: 

 

𝑃𝑥𝑧,𝑘|𝑘−1
𝑡 =

1

𝑚
∑ 𝑋𝑖,𝑘|𝑘−1

𝑡

𝑚

𝑖=1

(𝑍𝑖,𝑘|𝑘−1
𝑡 )

𝑇

− �̂�𝑘|𝑘−1
𝑡 (�̂�𝑘|𝑘−1

𝑡 )
𝑇
 

(23) 

 

(7) Estimate the gain at time k: 

 

𝐾𝑘
𝑡 = 𝑃𝑥𝑧,𝑘|𝑘−1

𝑡 (𝑃𝑧𝑧,𝑘|𝑘−1
𝑡 )

−1
 (24) 

 

(8) Compute the state estimate at time k: 

 

�̂�𝑘|𝑘
𝑡 = �̂�𝑘|𝑘−1

𝑡 + 𝐾𝑘
𝑡(𝑧𝑘 − �̂�𝑘|𝑘−1

𝑡 ) (25) 

 

(9) Compute the state error covariance estimate at time k: 

 

𝑃𝑘|𝑘
𝑡 = 𝑃𝑘|𝑘−1

𝑡 − 𝐾𝑘
𝑡𝑃𝑧𝑧,𝑘|𝑘−1

𝑡 (𝐾𝑘
𝑡)𝑇 (26) 

 

 

3. TSCKF-CN ALGORITHM 

 

3.1 System model 

 

Consider the following nonlinear Gaussian system with 

random biases: 

 
𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘) + 𝐵𝑘𝑏𝑘 + 𝜔𝑘+1,𝑘

𝑥

𝑏𝑘+1 = 𝑏𝑘 + 𝜔𝑘
𝑏

𝑧𝑘 = ℎ𝑘(𝑥𝑘) + 𝐹𝑘𝑏𝑘 + 𝜐𝑘

 (27) 

where, k is the discrete time index, 𝑥𝑘 ∈ 𝑅𝑛×1 is the state 

vector, 𝑏𝑘 ∈ 𝑅𝑝×1 is the bias vector, and 𝑧𝑘 ∈ 𝑅𝑚×1  is the 

measurement vector. The functions fk(⋅) and hk(⋅) are known 

nonlinear state transition and measurement functions that are 

continuously differentiable at 𝑥𝑘. The process noise sequence 

𝜔𝑘+1,𝑘
𝑥 , bias noise sequence 𝜔𝑘

𝑏 , and measurement noise 

sequence 𝜐𝑘 are all Gaussian white noise sequences. The bias 

noise is uncorrelated with the process and measurement noise, 

with mean values 𝐸(𝜔𝑘+1,𝑘
𝑥 ) = 𝑞𝑘

𝑥, 𝐸(𝜔𝑘
𝑏) = 0, and 𝐸(𝜐𝑘) =

𝑟𝑘, and their covariances satisfy the following conditions: 

 

𝐸 [[

𝜔𝑘+1,𝑘
𝑥

𝜔𝑘
𝑏

𝜐𝑘

] [

𝜔𝑗+1,𝑗
𝑥

𝜔𝑗
𝑏

𝜐𝑗

]

𝑇

] = [

𝑄𝑘+1,𝑘
𝑥 0 𝐷𝑘

0 𝑄𝑘
𝑏 0

𝐷𝑘
𝑇 0 𝑅𝑘

] 𝛿𝑘𝑗 (28) 

 

The initial states 𝑥0  and 𝑏0 are independent of 𝜔𝑘+1,𝑘  and 

𝜐𝑘, and satisfy: 

 

𝐸(𝑥0) = �̂�0|0, 𝐸 ([𝑥0 − �̂�0|0][𝑥0 − �̂�0|0]
𝑇
) = 𝑃0|0

𝑥  

𝐸(𝑏0) = �̂�0|0, 𝐸 ([𝑏0 − �̂�0|0][𝑏0 − �̂�0|0]
𝑇
) = 𝑃0|0

𝑏  

𝐸 ([𝑥0 − �̂�0|0][𝑏0 − �̂�0|0]
𝑇
) = 𝑃0|0

𝑥𝑏  

 

3.2 TSCKF-CN algorithm 

 

Let: 

 

𝑋𝑘+1 = [
𝑥𝑘+1

𝑏𝑘+1
] , Γ𝑘(𝑋𝑘) = [

𝑓𝑘(𝑥𝑘) + 𝐵𝑘𝑏𝑘

𝑏𝑘
] , 𝜔𝑘 = [

𝜔𝑘+1,𝑘
𝑥

𝜔𝑘
𝑏 ],  

𝐻𝑘(𝑋𝑘) = ℎ𝑘(𝑥𝑘) + 𝐹𝑘𝑏𝑘 

 

The system model given in Eq. (27) can be rewritten as 

follows: 

 
𝑋𝑘+1 = Γ𝑘(𝑋𝑘) + ω𝑘

𝑍𝑘 = 𝐻𝑘(𝑋𝑘) + 𝜐𝑘
 

 

where, 𝐸(𝜔𝑘𝜔𝑗) = [
𝑄𝑘+1,𝑘

𝑥 0

0 𝑄𝑘
𝑏] 𝛿𝑘𝑗 , 𝐸(𝜔𝑘𝜐𝑗) =

[
𝑄𝑘+1,𝑘 𝐷𝑘

𝐷𝑘
𝑇 𝑅𝑘

] 𝛿𝑘𝑗. 

Using the identity transformation described in Section 1.2, 

model (27) can be transformed into a noise-free system as 

shown in Eqs. (7) and (8), and further rewritten as: 

 
𝑋𝑘+1 = 𝐹𝑘(𝑋𝑘) + �̅�𝑘

𝑍𝑘 = 𝐻𝑘(𝑋𝑘) + 𝜐𝑘
 (29) 

 

where, 𝐹𝑘(𝑋𝑘) = Γ𝑘(𝑋𝑘) + ∆𝑘(𝑍𝑘 − 𝐻𝑘(𝑋𝑘)) , �̅�𝑘 = 𝜔𝑘 −

∆𝑘𝜐𝑘. 

Theorem 1: The TSCKF-CN algorithm for nonlinear 

discrete random systems with random biases (27) is as follows: 

(1) Noise-correlated unbiased filter based on model 

transformation: 

 

�̅�𝑘|𝑘−1
𝑡1 =

1

𝑚
∑ (Γ𝑘−1

1 (𝑆𝑘−1|𝑘−1
𝑡 𝜉𝑖 +𝑚

𝑖=1

𝑇(Ψ, �̅�𝑘−1|𝑘−1
𝑡 ), 𝑢𝑘−1) + ∆𝑘 (𝑍𝑘 − 𝐻𝑘(𝑆𝑘−1|𝑘−1

𝑡 𝜉𝑖 +

𝑇(Ψ,  �̅�𝑘−1|𝑘−1
𝑡 ), 𝑢𝑘−1))) − Φ(�̅�𝑘|𝑘−1

𝑡2 ) + 𝑚𝑘−1
𝑛  

�̅�𝑘|𝑘
𝑡1 = �̅�𝑘|𝑘−1

𝑡1 + Φ(�̅�𝑘|𝑘−1
𝑡2 ) + 𝑉𝑘(�̅�𝑘|𝑘

𝑡2 − �̅�𝑘|𝑘−1
𝑡2 ) −
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Ψ(�̅�𝑘|𝑘
𝑡2 ) + 𝐾𝑘

𝑡1 (𝑍𝑘 −
1

𝑚
∑ 𝐻𝑘(𝑆𝑘|𝑘−1

𝑡 𝜉𝑖 +𝑚
𝑖=1

𝑇(Φ, �̅�𝑘|𝑘−1
𝑡 ), 𝑢𝑘)) + 𝑚𝑘−1

𝑛 + 𝑟𝑘
𝑛  

�̅�𝑘|𝑘−1
𝑡1 = 𝑀𝑘−1

𝑡11 + 𝑄𝑘−1
𝑡11 − 𝑈𝑘(𝑀𝑘−1

𝑡22 + 𝑄𝑘−1
𝑡22 )𝑈𝑘

𝑇  

�̅�𝑘|𝑘
𝑡1 = �̅�𝑘|𝑘−1

𝑡1 + 𝑈𝑘�̅�𝑘|𝑘−1
𝑡2 𝑈𝑘

𝑇 − 𝑉𝑘�̅�𝑘|𝑘−1
𝑡2 𝑉𝑘

𝑇

− 𝐾𝑘
𝑡1𝑃𝑧𝑧,𝑘|𝑘−1

𝑡 (𝐾𝑘
𝑡1)𝑇

− 𝐾𝑘
𝑡1𝑃𝑧𝑧,𝑘|𝑘−1

𝑡 (𝐾𝑘
𝑡2)𝑇𝑉𝑘

𝑇

− (𝐾𝑘
𝑡1𝑃𝑧𝑧,𝑘|𝑘−1

𝑡 (𝐾𝑘
𝑡2)𝑇𝑉𝑘

𝑇)
𝑇
 

𝐾𝑘
𝑡1 = 𝐾𝑘

𝑡1 − 𝑉𝑘𝐾𝑘
𝑡2 

 

(2) Noise-correlated bias filter based on model 

transformation: 

 

�̅�𝑘|𝑘−1
𝑡2 =

1

𝑚
∑Γ𝑘−1

2 (𝑆𝑘−1|𝑘−1
𝑡 𝜉𝑖 + 𝑇(Ψ, �̅�𝑘−1|𝑘−1

𝑡 ), 𝑢𝑘−1)

𝑚

𝑖=1

+ ∆𝑘 (𝑍𝑘

− 𝐻𝑘(𝑆𝑘−1|𝑘−1
𝑡 𝜉𝑖

+ 𝑇(Ψ,  �̅�𝑘−1|𝑘−1
𝑡 ), 𝑢𝑘−1)) + 𝑚𝑘−1

𝑝
 

�̅�𝑘|𝑘
𝑡2 = �̅�𝑘|𝑘−1

𝑡2 + 𝐾𝑘
𝑡2 (𝑍𝑘

−
1

𝑚
∑𝐻𝑘(𝑆𝑘|𝑘−1

𝑡 𝜉𝑖

𝑚

𝑖=1

+ 𝑇(Φ,  �̅�𝑘|𝑘−1
𝑡 ), 𝑢𝑘)) + 𝑚𝑘−1

𝑝
+ 𝑟𝑘

𝑝
 

�̅�𝑘|𝑘−1
𝑡2 = 𝑀𝑘−1

𝑡22 + 𝑄𝑘−1
𝑡22  

�̅�𝑘|𝑘
𝑡2 = �̅�𝑘|𝑘−1

𝑡2 − 𝐾𝑘
𝑡2𝑃𝑧𝑧,𝑘|𝑘−1

𝑡 (𝐾𝑘
𝑡2)𝑇 

𝐾𝑘
𝑡2 = 𝐾𝑘

𝑡2 

 

Coupling Relationship Between the Two Filters: 

 

𝑈𝑘 = (𝑀𝑘−1
𝑡12 + 𝑄𝑘−1

𝑡12 )(𝑀𝑘−1
𝑡22 + 𝑄𝑘−1

𝑡22 )−1 

𝑉𝑘 = 𝑈𝑘 − 𝐾𝑘
𝑡1𝑃𝑧𝑧,𝑘|𝑘−1

𝑡 (𝐾𝑘
𝑡2)𝑇(�̅�𝑘|𝑘−1

𝑡2 )−1 

 

Proof: 

Let 𝑚𝑘−1 = 𝑞𝑘−1 − ∆𝑘𝑟𝑘 , and partition 𝑚𝑘  according to 

the dimensions of the state and bias vectors: 

 

𝑚𝑘−1 = [
𝑚𝑘−1

𝑛

𝑚𝑘−1
𝑝 ] (30) 

 

where, 𝑚𝑘−1
𝑛  represents the first n dimensions of the vector 

𝑚𝑘−1, and 𝑚𝑘−1
𝑝

 represents the last p dimensions.  

Similarly, partition 𝑟𝑘 as: 

 

𝑟𝑘 = [
𝑟𝑘

𝑛

𝑟𝑘
𝑝] (31) 

 

where, 𝑟𝑘
𝑛  represents the first n dimensions of the vector 𝑟𝑘 , 

and 𝑟𝑘
𝑝

 represents the last p dimensions.  

The T-transformation for nonlinear systems, as mentioned 

in Sun et al. [9], can be extended to nonlinear systems as 

described in Al-Ghattas et al. [10] and Dong et al. [11]. This 

results in the following nonlinear T-transformation: 

 

𝑇(𝐹, 𝑋) = [
𝑋1 + 𝐹(𝑋2)

𝑋2
] (32) 

 

where, 𝑋 = {(𝑋1)𝑇 , (𝑋2)𝑇}𝑇 , 𝑋1 ∈ 𝑅𝑛−𝑝, 𝑋2 ∈ 𝑅𝑝 , (𝑋2) is a 

nonlinear function of the sub-state 𝑋2. 

Based on the properties of this nonlinear T-transformation, 

the nonlinear two-stage transformation formulas can be 

derived. 

 

�̂�𝑘|𝑘−1 = 𝑇(𝛷, �̅�𝑘|𝑘−1) (33) 

 

�̂�𝑘|𝑘 = 𝑇(𝛹, �̅�𝑘|𝑘) (34) 

 

𝑃𝑘|𝑘−1 =
𝜕𝑇(𝛷, �̅�𝑘|𝑘−1)

𝜕�̅�𝑘|𝑘−1

�̅�𝑘|𝑘−1 (
𝜕𝑇(𝛷, �̅�𝑘|𝑘−1)

𝜕�̅�𝑘|𝑘−1

)

𝑇

 (35) 

 

𝑃𝑘|𝑘 =
𝜕𝑇(𝛹, �̅�𝑘|𝑘)

𝜕�̅�𝑘|𝑘

�̅�𝑘|𝑘 (
𝜕𝑇(𝛹, �̅�𝑘|𝑘)

𝜕�̅�𝑘|𝑘

)

𝑇

 (36) 

 

𝐾𝑘 =
𝜕𝑇(𝛹, �̅�𝑘|𝑘)

𝜕�̅�𝑘|𝑘

𝐾𝑘 (37) 

 

where, Φ and Ψ are two defined nonlinear functions.  

Formulas (33)-(37) have the following properties: 

 

𝜕𝑇(𝛷, �̅�𝑘|𝑘−1)

𝜕�̅�𝑘|𝑘−1

= [
𝐼𝑛−𝑝 𝑈𝑘

0 𝐼𝑝
] ≡ 𝑇(𝑈𝑘) (38) 

 

𝜕𝑇(𝛹, �̅�𝑘|𝑘)

𝜕�̅�𝑘|𝑘

= [
𝐼𝑛−𝑝 𝑉𝑘

0 𝐼𝑝
] ≡ 𝑇(𝑉𝑘) (39) 

 

In summary, 𝑈𝑘 and 𝑉𝑘 are given as in formula (40): 

 

𝑈𝑘 =
𝜕𝛷(�̅�𝑘|𝑘−1

2 )

𝜕�̅�𝑘|𝑘−1
2 , 𝑉𝑘 =

𝜕𝛹(�̅�𝑘|𝑘
2 )

𝜕�̅�𝑘|𝑘
2  (40) 

 

Substituting formulas (17) and (25) into the left-hand side 

of formulas (36) and (37), and formula (32) into the right-hand 

side, yields: 

 

[
�̅�𝑘|𝑘−1

𝑡1 + Φ(�̅�𝑘|𝑘−1
𝑡2 )

�̅�𝑘|𝑘−1
𝑡2 ]

=
1

𝑚
∑𝐹𝑘−1(𝑆𝑘−1|𝑘−1

𝑡 𝜉𝑖

𝑚

𝑖=1

+ 𝑇(Ψ, �̅�𝑘−1|𝑘−1
𝑡 ), 𝑢𝑘−1)

+ 𝑚𝑘−1 

(41) 

 

where, 𝐹𝑘−1(𝑋𝑘−1) = Γ𝑘(𝑋𝑘−1) + ∆𝑘(𝑍𝑘 − 𝐻𝑘(𝑋𝑘−1)). 

 

[
�̅�𝑘|𝑘

𝑡1 + Ψ(�̅�𝑘|𝑘
𝑡2 )

�̅�𝑘|𝑘
𝑡2 ] = [

�̅�𝑘|𝑘−1
𝑡1 + Φ(�̅�𝑘|𝑘−1

𝑡2 )

�̅�𝑘|𝑘−1
𝑡2 ]

+ 𝐾𝑘
𝑡 (𝑍𝑘

−
1

𝑚
∑𝐻𝑘(𝑆𝑘|𝑘−1

𝑡 𝜉𝑖

𝑚

𝑖=1

+ 𝑇(Φ, �̅�𝑘|𝑘−1
𝑡 ), 𝑢𝑘)) + 𝑚𝑘−1

+ 𝑟𝑘 

(42) 
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Substituting formulas (35) and (37) into Eqs. (41) and (42) 

and expanding and organizing yields: 

 

�̅�𝑘|𝑘−1
𝑡1 =

1

𝑚
∑(Γ𝑘−1

1 (𝑆𝑘−1|𝑘−1
𝑡 𝜉𝑖

𝑚

𝑖=1

+ 𝑇(Ψ,  �̅�𝑘−1|𝑘−1
𝑡 ), 𝑢𝑘−1)

+ ∆𝑘 (𝑍𝑘

− 𝐻𝑘(𝑆𝑘−1|𝑘−1
𝑡 𝜉𝑖

+ 𝑇(Ψ,  �̅�𝑘−1|𝑘−1
𝑡 ), 𝑢𝑘−1)))

− Φ(�̅�𝑘|𝑘−1
𝑡2 ) + 𝑚𝑘−1

𝑛  

(43) 

 

�̅�𝑘|𝑘
𝑡1 = �̅�𝑘|𝑘−1

𝑡1 + Φ(�̅�𝑘|𝑘−1
𝑡2 ) + 𝑉𝑘(�̅�𝑘|𝑘

𝑡2 − �̅�𝑘|𝑘−1
𝑡2 )

− Ψ(�̅�𝑘|𝑘
𝑡2 )

+ �̅�𝑘
𝑡1 (𝑍𝑘

−
1

𝑚
∑𝐻𝑘(𝑆𝑘|𝑘−1

𝑡 𝜉𝑖

𝑚

𝑖=1

+ 𝑇(Φ,  �̅�𝑘|𝑘−1
𝑡 ), 𝑢𝑘)) + 𝑚𝑘−1

𝑛

+ 𝑟𝑘
𝑛 

(44) 

 

�̅�𝑘|𝑘−1
𝑡2 =

1

𝑚
∑Γ𝑘−1

2 (𝑆𝑘−1|𝑘−1
𝑡 𝜉𝑖

𝑚

𝑖=1

+ 𝑇(Ψ,  �̅�𝑘−1|𝑘−1
𝑡 ), 𝑢𝑘−1)

+ ∆𝑘 (𝑍𝑘

− 𝐻𝑘(𝑆𝑘−1|𝑘−1
𝑡 𝜉𝑖

+ 𝑇(Ψ,  �̅�𝑘−1|𝑘−1
𝑡 ), 𝑢𝑘−1))

+ 𝑚𝑘−1
𝑝

 

(45) 

 

�̅�𝑘|𝑘
𝑡2 = �̅�𝑘|𝑘−1

𝑡2 + �̅�𝑘
𝑡2 (𝑍𝑘

−
1

𝑚
∑𝐻𝑘(𝑆𝑘|𝑘−1

𝑡 𝜉𝑖

𝑚

𝑖=1

+ 𝑇(Φ,  �̅�𝑘|𝑘−1
𝑡 ), 𝑢𝑘)) + 𝑚𝑘−1

𝑝

+ 𝑟𝑘
𝑝

 

(46) 

 

where, Γ𝑘−1(∙) = [(Γ𝑘−1
1 (∙))𝑇 (Γ𝑘−1

2 (∙))𝑇]𝑇 , 𝐾𝑘
𝑡 =

[(𝐾𝑘
𝑡1)𝑇 (𝐾𝑘

𝑡2)𝑇]𝑇. 

For Eq. (18), let: 

 

𝑀𝑘−1
𝑡 =

1

𝑚
∑(𝑋𝑖,𝑘−1|𝑘−1

𝑡 )
∗

𝑚

𝑖=1

(𝑋𝑖,𝑘−1|𝑘−1
𝑡 )

∗𝑇

− �̂�𝑘|𝑘−1
𝑡 (�̂�𝑘|𝑘−1

𝑡 )
𝑇
 

 

Based on the dimensions of the block matrices in the two-

stage transformation formula, 𝑀𝑘−1
𝑡  is partitioned: 

 

𝑀𝑘−1
𝑡 = [

𝑀𝑘−1
𝑡11 𝑀𝑘−1

𝑡12

(𝑀𝑘−1
𝑡12 )

𝑇
𝑀𝑘−1

𝑡22
] 

 
Similarly, let 𝑄𝑘−1

𝑡 = 𝑄𝑘,𝑘−1 − ∆𝑘𝑅𝑘∆𝑘
𝑇 , and partition the 

state noise variance matrix: 

 

𝑄𝑘−1
𝑡 = [

𝑄𝑘−1
𝑡11 𝑄𝑘−1

𝑡12

(𝑄𝑘−1
𝑡12 )𝑇 𝑄𝑘−1

𝑡22 ] 

 

Substituting the two block matrices into formula (18) yields: 

 

𝑃𝑘|𝑘−1
𝑡 = [

𝑀𝑘−1
𝑡11 + 𝑄𝑘−1

𝑡11 𝑀𝑘−1
𝑡12 + 𝑄𝑘−1

𝑡12

(𝑀𝑘−1
𝑡12 + 𝑄𝑘−1

𝑡12 )𝑇 𝑀𝑘−1
𝑡22 + 𝑄𝑘−1

𝑡22 ] (47) 

 

Substituting formula (47) into the left-hand side of formula 

(38), and formula (33) into the right-hand side, and expanding 

yields: 

 

�̅�𝑘|𝑘−1
𝑡1 = 𝑀𝑘−1

𝑡11 + 𝑄𝑘−1
𝑡11 − 𝑈𝑘(𝑀𝑘−1

𝑡22 + 𝑄𝑘−1
𝑡22 )𝑈𝑘

𝑇 (48) 

 

�̅�𝑘|𝑘−1
𝑡2 = 𝑀𝑘−1

𝑡22 + 𝑄𝑘−1
𝑡22  (49) 

 

𝑈𝑘 = (𝑀𝑘−1
𝑡12 + 𝑄𝑘−1

𝑡12 )(𝑀𝑘−1
𝑡22 + 𝑄𝑘−1

𝑡22 )−1 (50) 

 

Expanding formula (39) and substituting formulas (38) and 

(37) yields: 

 

�̅�𝑘|𝑘
𝑡1 = �̅�𝑘|𝑘−1

𝑡1 + 𝑈𝑘�̅�𝑘|𝑘−1
𝑡2 𝑈𝑘

𝑇 − 𝑉𝑘�̅�𝑘|𝑘−1
𝑡2 𝑉𝑘

𝑇

− 𝐾𝑘
𝑡1𝑃𝑧𝑧,𝑘|𝑘−1

𝑡 (𝐾𝑘
𝑡1)𝑇

− 𝐾𝑘
𝑡1𝑃𝑧𝑧,𝑘|𝑘−1

𝑡 (𝐾𝑘
𝑡2)𝑇𝑉𝑘

𝑇

− (𝐾𝑘
𝑡1𝑃𝑧𝑧,𝑘|𝑘−1

𝑡 (𝐾𝑘
𝑡2)𝑇𝑉𝑘

𝑇)
𝑇
 

(51) 

 

�̅�𝑘|𝑘
𝑡2 = �̅�𝑘|𝑘−1

𝑡2 − 𝐾𝑘
𝑡2𝑃𝑧𝑧,𝑘|𝑘−1

𝑡 (𝐾𝑘
𝑡2)𝑇 (52) 

 

𝑉𝑘 = 𝑈𝑘 − 𝐾𝑘
𝑡1𝑃𝑧𝑧,𝑘|𝑘−1

𝑡 (𝐾𝑘
𝑡2)𝑇(�̅�𝑘|𝑘−1

𝑡2 )−1 (53) 

 

The block gain matrix obtained by partitioning formula (24) 

according to the corresponding dimensions is shown as 

formula (54): 

 

𝐾𝑘
𝑡 = [

𝐾𝑘
𝑡1

𝐾𝑘
𝑡2] (54) 

 

Substituting formula (54) into formula (37) and expanding 

yields: 

 

𝐾𝑘
𝑡1 = 𝐾𝑘

𝑡1 − 𝑉𝑘𝐾𝑘
𝑡2 (55) 

 

𝐾𝑘
𝑡2 = 𝐾𝑘

𝑡2 (56) 

 

The proof is complete.  

The flowchart of the TSCKF-CN algorithm based on model 

transformation is shown in Figure 1. 
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Figure 1. Flowchart of the TSCKF-CN algorithm based on model transformation 

 

The TSCKF-CN algorithm is described as follows: 

 

Algorithm 1: The TSCKF-CN algorithm based on model 

transformation 

Initialization of State Conditions: 

    �̂�0 = 𝐸[𝑋0], 𝑃0 = 𝐸[(𝑋0 − �̂�0)(𝑋0 − �̂�0)
𝑇] 

    𝐸(�̅�0) = 𝑞0 − ∆𝑘𝑟0, 𝐸(𝜐0) = 𝑟0, �̂�0 = 𝑄0, �̂�0 = 𝑅0 

for 𝑘 = 1,2,⋯ ,𝑁 do 

Step 1: Time Update: 

(1) Decompose 𝑃𝑘−1|𝑘−1
𝑡  to obtain 𝑆𝑘−1|𝑘−1

𝑡 . 

(2) Calculate the cubature points 𝑋𝑖,𝑘−1|𝑘−1
𝑡  (4-15) and 

propagate the cubature points (𝑋𝑖,𝑘−1|𝑘−1
𝑡 )

∗
 (4-16). 

(3) Estimate the noise-correlated unbiased filter state 

prediction �̅�𝑘|𝑘−1
𝑡1  (4-34) and biased filter state prediction 

�̅�𝑘|𝑘−1
𝑡2  (4-36) using 𝑚𝑘−1(4-30). 
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(4) Estimate the noise-correlated unbiased filter state error 

covariance �̅�𝑘|𝑘−1
𝑡1  (4-39) and biased filter state error 

covariance �̅�𝑘|𝑘−1
𝑡2  (4-40) using the coupling relationship 𝑈𝑘 

(4-41). 

Step 2: Measurement Update: 

(1) Decompose 𝑃𝑘|𝑘−1
𝑡  to obtain 𝑆𝑘|𝑘−1

𝑡 . 

(2) Calculate the cubature points 𝑋𝑖,𝑘|𝑘−1
𝑡 (4-19) and the 

propagated cubature points from the measurement equation 

𝑍𝑖,𝑘|𝑘−1
𝑡  (4-20). 

(3) Estimate the noise-correlated measurement prediction 

�̂�𝑘|𝑘−1
𝑡 (4-21). 

(4) Estimate the noise-correlated measurement error 

covariance 𝑃𝑧𝑧,𝑘|𝑘−1
𝑡 (4-22) and the noise-correlated cross-

covariance 𝑃𝑥𝑧,𝑘|𝑘−1
𝑡 (4-23). 

(5) Estimate the noise-correlated unbiased filter Kalman 

gain 𝐾𝑘
𝑡1 (4-45) and the noise-correlated biased filter 

Kalman gain 𝐾𝑘
𝑡2(4-47). 

(6) Calculate the noise-correlated unbiased filter state 

estimates �̅�𝑘|𝑘
𝑡1 (4-35) and the noise-correlated biased filter 

state estimates �̅�𝑘|𝑘
𝑡2 (4-37) using 𝑚𝑘−1(4-30) and 𝑟𝑘(4-31). 

(7) Calculate the noise-correlated unbiased filter estimate 

error covariance �̅�𝑘|𝑘
𝑡1 (4-42) and the noise-correlated biased 

filter estimate error covariance �̅�𝑘|𝑘
𝑡2 (4-43) using 𝑉𝑘(4-44). 

End for 

 

 

4. EXPERIMENT AND ANALYSIS 

 

 
 

Figure 2. Pure azimuth tracking system diagram 

 

The pure azimuth tracking system tracks the state of moving 

targets through two sensors [12], obtaining nonlinear 

measurements. Each sensor can only obtain angular 

observations of the target state, denoted as 𝛼𝑖,𝑘  and 𝛽𝑖,𝑘 , as 

shown in Figure 2. The two angle observations form the 

intersection point in a plane coordinate system. In the 

rectangular coordinate system shown in Figure 2, two sensors 

𝑆𝑖1  and 𝑆𝑖2(𝑖 = 1,2,⋯ ,𝑁) are fixed on platforms 𝑃1  and 𝑃2 , 

respectively, with a distance of d between them. Many sensors 

are fixed on platforms 𝑃𝑗(j = 1,2) , denoted as 

{(𝑆1,j, 𝑃𝑗), (𝑆2,j, 𝑃𝑗),⋯ , (𝑆𝑁,j, 𝑃𝑗)} , corresponding to the 

nonlinear measurements 

{(𝛼1,𝑘, 𝛽1,𝑘), (𝛼2,𝑘, 𝛽2,𝑘),⋯ , (𝛼𝑁,𝑘 , 𝛽𝑁,𝑘)}. 

The dynamic model is a four-dimensional nonlinear system 

defined as 𝑥𝑘 = [𝑥1,𝑘 𝑥2,𝑘 𝑦1,𝑘  𝑦2,𝑘]
𝑇
, where 𝑥1,𝑘 and 𝑥2,𝑘  are 

the displacement components in the east and north directions, 

respectively, and 𝑦1,𝑘  and 𝑦2,𝑘  are the velocity components 

corresponding to the displacement components. The 

movement of the target is treated as a constant velocity (CV) 

model. The state equations and deviation variance are as 

follows: 

 

𝑥𝑘+1 = 𝐹𝑘𝑥𝑘 + 𝑏𝑘 + 𝜔𝑘
𝑥 

𝑏𝑘+1 = 𝑏𝑘 + 𝜔𝑘
𝑏 

 

where, 𝐹𝑘 = [

1 𝑇 0 0
0 1
0 0
0 0

0
1
0

0
𝑇
1

], the process noise variance is: 

 

𝑄𝑘 =

[
 
 
 
 
 
 
𝑇3

3

𝑇2

2
0 0

𝑇2

2
𝑇  0 0

0  0
𝑇3

3

𝑇2

2

0  0
𝑇2

2
𝑇]

 
 
 
 
 
 

× 0.5, 

 

with a tracking period 𝑇 = 1𝑠. 

According to the cross-principle, the observation function 

is:  

 

ℎ𝑘(𝑥𝑘) = [
𝛼1

𝛽1
] =

[
 
 
 
 
 
 

𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑥1,𝑘

√𝑥1,𝑘
2 +𝑦1,𝑘

2
)

𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑥1,𝑘−𝑑

√(𝑥1,𝑘−𝑑)
2
+𝑦1,𝑘

2
)

]
 
 
 
 
 
 

. 

 

In a multi-sensor system, the measurement equation is: 

 

𝑧𝑖,𝑘 =

[
 
 
 
 
 
 
 
 

𝑎𝑟𝑐𝑐𝑜𝑠

(

 
𝑥1,𝑘

√𝑥1,𝑘
2 + 𝑦1,𝑘

2

)

 

𝑎𝑟𝑐𝑐𝑜𝑠

(

 
𝑥1,𝑘 − 𝑑

√(𝑥1,𝑘 − 𝑑)
2
+ 𝑦1,𝑘

2
)

 

]
 
 
 
 
 
 
 
 

+ 𝑏𝑘 + 𝜐𝑖,𝑘  (𝑖

= 1,2,⋯ ,𝑁) 

 

where, ℎ1,𝑘(𝑥𝑘) = ℎ2,𝑘(𝑥𝑘) = ⋯ = ℎ𝑁,𝑘(𝑥𝑘) = ℎ𝑘(𝑥𝑘). 

The simulation experiment was conducted on a computer 

with hardware configuration: a quad-core Intel Core i5 4258U 

2.4 GHz processor, 4 GB of memory, running Windows 7 64-

bit Professional, and using MATLAB version 2013a for 

simulation. 

Assume: 𝜐𝑖,𝑘 = 𝑐𝑖𝜔𝑘,𝑘−1 , then there are 𝐷𝑖,𝑘 =

𝐸(𝜔𝑘,𝑘−1, 𝜐𝑖,𝑘
𝑇 ) = 𝑄𝑘,𝑘−1𝑐𝑖

𝑇 , 𝑅𝑖𝑗,𝑘 = 𝐸(𝜐𝑖,𝑘 , 𝜐𝑖,𝑘
𝑇 ) =

𝑐𝑖𝑄𝑘,𝑘−1𝑐𝑖
𝑇. 

The initial state estimate and covariance matrix are: �̂�0|0 =

[0 10 3 10]𝑇 , �̂�0|0 = [0.1] , 𝑃0|0
𝑥 = 𝑑𝑖𝑎𝑔{1 1 1 1} , 𝑃0|0

𝑏 =

[0 0 0 0 0.5] , 𝑅𝑘
𝑥 = [

0.15 0.01
0.01 0.01

] , 𝑅𝑘
𝑏 = 0.5 × 𝑇2 , 

𝑑=500, 𝑐1 = [
0.01 0.01  0.001 0.001
0.001 0.001 0.001 0.001

]. 

The simulation time is set to 200 seconds, with 1000 Monte 

Carlo simulations performed for both algorithms. The Root 
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Mean Square Error (RMSE) is defined as in Eq. (57) to 

compare the performance of various filtering algorithms: 

 

𝑅𝑀𝑆𝐸(𝑘) = √
1

𝑀
∑(𝑥∗,𝑘

(𝑖)
− �̂�

∗,𝑘|𝑘

(𝑖)
)

2
𝑀

𝑖=1

 (57) 

 

where, M is the number of Monte Carlo trials, and 𝑥∗,𝑘
(𝑖)

 and 

�̂�∗,𝑘|𝑘
(𝑖)

 represent the state value and estimated value of 𝑥∗ in the 

n-th Monte Carlo simulation, respectively. 

Figures 2 to 6 compare the RMSE of the CKF algorithm and 

the TSCKF-CN algorithm. From this set of figures, it can be 

observed that the RMSE curves of the two algorithms are 

approximately similar, with little difference, indicating that the 

estimation accuracy of both algorithms is comparable. 

 

 
 

Figure 3. RMSE comparison of 𝑥1,𝑘 for two algorithms 

 

 
 

Figure 4. RMSE comparison of 𝑥2,𝑘 for two algorithms 

 

Figures 7 and 8 show the comparison of the estimated 

values of the bias terms and their RMSE. From the figures, it 

can be seen that the curves of both algorithms are basically 

consistent, with errors within an acceptable range. In fact, this 

precision error is attributed to computational errors during the 

calculation process on the computer. 

The state estimation RMSE is calculated using Eq. (57), and 

the results are shown in Table 1. The RMSE of the TSCIF-CN 

algorithm is slightly lower than that of the TSCKF-CN 

algorithm, but they are very close. This similarity arises 

because both algorithms consider the impact of correlated 

noise in the recursive estimation process and appropriately 

handle the correlated noise, resulting in similar accuracy for 

both noise-correlated algorithms and comparable tracking 

performance. 

 

 
 

Figure 5. RMSE comparison of 𝑦1,𝑘 for two algorithms 

 

 
 

Figure 6. RMSE comparison of 𝑦2,𝑘 for two algorithms 

 

 
 

Figure 7. Comparison of estimated values of 𝑏𝑘 for two 

algorithms 

 

 
 

Figure 8. Comparison of RMSE of 𝑏𝑘 for two algorithms 
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Table 1. State estimation RMSE 

 
 TSCKF-CN TSCIF-CN 

𝑥1,𝑘 (m) 1.6689 1.5312 

𝑥2,𝑘 (m) 0.2056 0.1980 

𝑦1,𝑘 (m/s) 0.5545 0.5420 

𝑦2,𝑘 (m/s) 0.0564 0.0550 

𝑏𝑘 (m) 0.2479 0.2280 

 

 

5. CONCLUSION 

 

In practical applications, noise-correlated nonlinear systems 

are very common. If correlated noise is not considered and 

conventional two-stage filtering algorithms are applied, the 

estimation accuracy is bound to decrease. This paper first 

proposes a transformation model of the TSCKF algorithm 

based on the minimum variance estimation criterion. By 

introducing a transformation coefficient matrix, the correlated 

noise system is transformed into an uncorrelated system, 

establishing a conversion relationship between the two. 

Finally, simulation experiments demonstrate that the proposed 

method effectively addresses the correlated noise issue, 

resulting in superior tracking accuracy compared to scenarios 

that ignore correlated noise, thus yielding better tracking 

results. 
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