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 By 2021, WHO projects over a billion incapacitated people, with 20% facing daily 

functional impairments. Brain-Computer Interface (BCI) offers effortless machine control 

via direct brain-computer interaction, with Motor Imagery (MI) Electroencephalogram 

(EEG) as the key BCI foundation. The MI EEG signals were collected from the BNCI 

horizon2020 database for nine participants. The MI EEG data includes four tasks: 

imaginative movement of the left hand, right hand, feet, and tongue. There are 22 EEG 

channels with a sampling rate of 250Hz in the data. The MI EEG signals were band-pass 

filtered with a lower cut-off frequency of 0.5 Hz and an upper cut-off frequency of 100 Hz. 

Based on the energy count threshold approach (ECTA) nine channels were identified as 

dominating channels from the filtered MI EEG signals. Energy values for each channel were 

extracted in the ECTA method for the 3-sec window. And if the energy value of a channel 

for a particular window is greater than 60% of the maximum channel's energy, then the 

energy count value will be incremented by one. Finally whichever channels had larger 

energy counts were identified as a dominant channel. On these nine dominant MI EEG 

signals discrete wavelet transform using Daubechies 4 mother wavelet a four-level 

decomposition is applied, and Mu and beta rhythms were extracted. For a 3-sec window 

from the nine dominant channels, the energy and entropy feature values from the Mu and 

Beta rhythms were extracted. From the extracted features, 80% of the data is used for 

training Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) and 20% 

for testing classifier models. Both the models performed well on the test data and the results 

obtained had a highest accuracy 91.7±2.7 for subject-9 and these results were compared with 

the existing methods. The obtained results of MI EEG signals classification using BCI holds 

potential for revolutionizing assistive technology, stroke rehabilitation, virtual reality 

gaming, mental health management, human-computer interaction, biometric authentication, 

sports performance enhancement, and education.  
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1. INTRODUCTION 

 

As a result of accidents, diseases, or aging, an increasing 

number of people are experiencing motor limitations or 

restricted mobility. According to the first-ever global 

assessment published by WHO and the World Bank, more 

than one billion people worldwide are disabled today. To help 

these individuals, BCIs offer a world of possibilities by 

allowing direct brain-to-computer communication, enabling 

them to control devices with minimal effort. The EEG patterns 

vary depending on the activity and mental state, making these 

signals valuable for BCI applications. 

Invasive EEG methods require surgery and have high 

associated risks. In contrast, non-invasive methods are more 

practical and do not require any surgical procedures. Among 

non-invasive BCIs, the EEG-based BCI systems are widely 

used due to their high time resolution, relatively low cost, and 

patient convenience [1].  

For MI EEG signals, feature extraction often employs 

Common Spatial Pattern (CSP) [2]. While CSP performs well 

in two-class classification tasks, it requires many electrodes 

[3]. Researchers proposed a subject-specific multivariate 

empirical mode decomposition (MEMD)-based filtering 

method, SS-MEMDBF, to classify MI-based EEG signals into 

multiple classes. This method extracts cross-channel and 

frequency-specific information, using the sample covariance 

matrix as a feature set, achieving 79.3±14.13% accuracy with 

22 EEG channels [4]. 

In another study, power spectral density was used for two-

class MI EEG classification (imagination of left and right 

movements) with data from the BCI Competition III dataset 

V, resulting in average accuracies of 61.16% with SVM and 

54.06% with Naïve Bayes classifiers [5]. Guan et al. [6] 

proposed a method utilizing the manifold of covariance 

matrices from a Riemannian perspective, incorporating a 

subject-specific decision tree framework (SSDT) and filter 

geodesic minimum distance to Riemannian mean (FGMDRM) 

to reduce classification errors. They also developed a feature 
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extraction and classification algorithm combining semi-

supervised joint mutual information with general discriminant 

analysis (SJGDA) and K-Nearest Neighbor (KNN), achieving 

around 80% accuracy on BCI Competition IV dataset 2a [6]. 

Another study recorded multichannel EEG with 24 

electrodes for left and right leg motor imagery tasks, extracting 

energy values from delta (1-5 Hz) and Mu (8-13 Hz) bands to 

train and test SVM and RBF, achieving 76.5% and 77.9% 

accuracy, respectively [7]. Additionally, 59 EEG channels 

were used to extract Mu/Beta rhythms, and LDA with CSP 

projection was employed, yielding results ranging from 57% 

to 90% accuracy [8]. 

From the literature survey, it is evident that multiclass MI 

EEG signal classification accuracy is not highly satisfactory 

[6, 9-11]. Most studies focus on left- and right-hand 

movements or hand versus leg movements for classification 

[5, 7, 12]. In the proposed work, we classify the imagination 

of left-hand movement and tongue movement, which show 

significant EEG pattern variation, resulting in better 

classification accuracy compared to existing methods [4, 5, 7-

9]. 

MI EEG signals exhibit large variations in Mu and Beta 

rhythms, with LDA and SVM classifiers performing well in 

this context [13, 14]. The development of real-time, compact 

BCIs and consumer headsets necessitates optimizing EEG 

channel selection to reduce channel numbers while retaining 

essential information about brain processes [11, 15]. Several 

studies highlight that irrelevant EEG channels can introduce 

noise and redundant information, potentially reducing signal 

processing accuracy [15]. Therefore, minimizing EEG 

channels can improve classification accuracy. However, 

achieving low computational complexity and high 

classification accuracy with a minimal number of EEG 

channels remains a significant challenge in BCIs. 

In reviewing current methods for acquiring MI EEG signals, 

it is apparent that there is a prevalent use of a high number of 

EEG channels. However, this approach has not introduced 

innovative channel reduction techniques and still encounters 

significant limitations in classification accuracy. To address 

these research gaps, our proposed method aims to optimize 

EEG channel selection through cutting-edge signal processing 

algorithms and machine learning techniques. By balancing the 

trade-off between the number of EEG channels and 

classification accuracy, our approach is designed to enhance 

the effectiveness of MI-based BCIs and contribute to a deeper 

understanding of the underlying neural mechanisms. 

In our study, MI EEG signals were collected for nine 

subjects from the BNCI horizon2020 website. Analysis of the 

22 MI EEG signals revealed that nine channels, primarily from 

the frontal, central, and parietal lobes, were dominant. These 

nine-channel MI EEG signals were processed using discrete 

wavelet transform, and Mu and Beta rhythms were extracted 

using a four-level wavelet decomposition technique. Energy 

and entropy feature values of the Mu and Beta rhythms were 

extracted from these dominant channels over a 3-second 

window. These extracted features were then utilized for 

training and testing the LDA and SVM classifiers. The 

performance results obtained with these classifiers were 

compared with those from existing methods. Furthermore, the 

classifier outputs can be converted into control commands for 

external devices such as wheelchairs, exoskeletons, robotic 

arms, and home appliances, enhancing the applicability of this 

technology in real-world scenarios. 

 

2. METHOD AND MATERIALS 

 

The strategy and materials used in the proposed work are 

illustrated in Figure 1. The data were collected from the BNCI 

Horizon 2020 website, specifically from BCI Competition IV 

dataset 2a [16]. Each subject's data includes 22 EEG channels 

and 3 EOG channels, with the left mastoid serving as the 

reference. Only the EEG channels were used for processing in 

the proposed work. The collected MI EEG information is 

shipped off channel determination block where the prevailing 

channels were recognized from 22 MI EEG channels. The 

dominant channels were identified using ECTA. In ECTA 

method the energy of each channel for the 3-seconds window 

is estimated and which is compared with the 60% of the 

maximum energy of that particular channel. If the energy 

value for the 3-seconds window is greater than the threshold 

value then the count value for that particular channel will be 

incremented by one. This procedure is repeated for the all the 

22 channels and as a result 9-channels were identified as the 

dominate. These dominant channels are handled utilizing 

wavelet decomposition method and decomposed into four 

levels in the signal processing stage as mentioned in the Figure 

1. From the extracted rhythms Mu and Beta band is separated. 

From these two bands Energy and Entropy feature values were 

extracted from every dominant channel. From the extracted 

features, 80% of the data was used for training, while the 

remaining 20% was used for testing classifier models. The 

results obtained were analyzed and compared with existing 

methods. 

 

 
 

Figure 1. Block diagram of proposed work 

 

2.1 Data collection 

 

The data used in this study was collected from the BNCI 

Horizon 2020 website, specifically from the BCI Competition 

IV dataset 2a [16]. This dataset comprises MI EEG signals 

from nine healthy subjects, each participating in two sessions: 

a training session and a test session. The recorded tasks include 

the imagination of movements of the left hand (Class 1), right 

hand (Class 2), both feet (Class 3), and tongue (Class 4). Each 

subject's data includes 22 EEG channels and 3 EOG channels, 

with the left mastoid serving as the reference. Each subject 

participated in two recording sessions, each consisting of six 

runs separated by short breaks. Each run included 48 trials (12 

trials per each of the four classes), resulting in a total of 288 

trials per session. 

During the experiment, subjects were seated comfortably in 

an armchair facing a computer screen. At the beginning of 

each trial (t = 0 s), a fixation cross appeared on the black 

screen, accompanied by a brief acoustic warning tone. After 

two seconds (t = 2 s), a visual cue in the form of an arrow 

pointing left, right, down, or up appeared on the screen for 1.25 
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seconds. Subjects were instructed to perform the motor 

imagery task corresponding to the cue until the fixation cross 

disappeared. 

 

2.2 Dominant channel selection 

 

One of the major concerns with BCI applications is that 

when they are implemented in real-time, the number of 

electrodes used to acquire MI EEG signals must be kept as low 

as possible so that the subject feels comfortable and can 

perform well in the activities. Therefore, this in turn helps in 

getting better MI EEG signals so that these signals can be 

classified easily and converted into action commands for 

different applications. So, in the proposed work, we 

implemented a methodology named ECTA that aids in 

reducing the number of MI EEG channels. The 

implementation of this proposed method uses the following 

steps: 

Step 1: Find the maximum energy of each dominant channel 

for the total duration of the MI EEG signal. 

Step2: For every 3-sec window, energy values for each 

channel were extracted. 

Step 3: If the extracted energy value is greater than 60% of 

the maximum energy of that channel, then increase the energy 

count value by one (The initial energy count value is zero). 

The mathematical condition for the above step is 

represented as follows: 

If ∑ 𝐸𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑛 > (0.6 ∗ 𝐸max _𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑛)
22
𝑛=1  - then increase 

the energy count value for the channel number ‘n’. Where, 

𝐸𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑛– Energy of the channel number ranging from 1 to 

22 for three seconds window. 𝐸max _𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑛  – Maximum 

Energy of the channel number ranging from 1 to 22 for total 

duration of the MI EEG signal. 

Table 1 shows the computed energy count for each channel 

of subject-1, and it can be seen that the energy count ranges 

from 0 to 46. Based on the energy count value, nine dominant 

channels were identified. The channels with energy count 

ranging from 30 to 46 were identified as dominant channels. 

The remaining eight subjects were analyzed in a similar 

manner. Based on the ECT approach from the Frontal, Central, 

and Parietal lobes, nine channels (Fc1, Fcz, Fc2, C3, Cz, C4, 

P1, Pz, and P2) were identified as the dominating channels for 

each subject. In the Figure 2 the number (3, 4, 5, 8, 10, 12, 19, 

20, and 21) in bold circle represents the dominant channel and 

other numbers (1, 2, 6, 7, 9, 11, 13, 14, 15, 16, 17, 18, and 22) 

are rejected channels. Although several of the Centro parietal 

channels (CP3, CP1, CPz, and CP2) are dominant, they are not 

employed for further study because channels from the Central 

and Parietal lobes have already been picked for the feature 

extraction. In addition, channel 22 is discarded because the 

signal level of the Occipital region can be altered by visual 

impacts. As described in the Data Collection section, the MI 

EEG recordings were conducted with subjects seated 

comfortably in an armchair in front of a computer screen. The 

motor imagery task was prompted by visual cues in the form 

of arrows pointing left, right, down, or up, which appeared on 

the screen and remained for 1.25 seconds [16]. Therefore, as 

this visual effect can affect signal intensity in channels from 

the occipital lobes, channels from this lobe are not examined 

for feature extraction. The proposed method of selecting 

dominating channels reduces computational complexity while 

simultaneously could provide significantly more comfort to 

the subject during real-time recording and implantation of 

proposed work. 

 
 

Figure 2. 10-20 Electrode system 

 

Table 1. Energy count of each channel 

 
Channel Number - 

Name 

Energy Count Value (Energy > 60% of 

Maximum Energy) 

1-Fz 13 

2-Fc3 19 

3-FC1 35 

4-FCz 46 

5-FC2 39 

6-Fc4 26 

7-C5 0 

8-C3 37 

9-C1 25 

10-Cz 39 

11-C2 29 

12-C4 30 

13-C6 4 

14-CP3 35 

15-CP1 33 

16-CPz 36 

17-CP2 35 

18-CP4 20 

19-P1 46 

20-Pz 43 

21-P2 44 

22-POz 45 

 

2.3 Discrete wavelet transform 

 

MI EEG signals are non-stationary signals in the traditional 

sense. Short-time Fourier transforms (STFTs) were used to 

analyze EEG data as a time-frequency analysis method, 

although it was found that the window selection is crucial for 

the short-time Fourier transform. The wavelet transform, 

which is a multi-resolution analysis approach, provides a 

solution to this problem and could provide a more precise 

temporal localization. For non-stationary signals, the Wavelet 

transform is a new two-dimensional time-scale processing 

approach [17]. Its primary benefit is that it provides 

simultaneous information on the frequency and temporal 

location of signal characteristics in terms of signal 

representation at several resolutions corresponding to various 

time scales. The Discrete Wavelet Transform (DWT) produces 

two coefficients, Di and Ai, which are the down sampled 
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outputs of the high-pass and low-pass filters at each 

decomposition level [18]. A four-level decomposition 

employing a Daubechies wavelet of order 4 (db4) is applied to 

the nine dominating MI-EEG signals. Because db4 wavelet 

stands as a widely employed choice for EEG signal 

decomposition due to its advantageous properties such as 

compact support, orthogonality, and vanishing moments, 

facilitating effective analysis and feature extraction of both 

transient and oscillatory components in EEG signals. Higher-

order mother wavelets, possessing more vanishing moments, 

offer increased localization in both time and frequency 

domains, potentially improving resolution in signal 

decomposition and enabling finer detail capture in MI-EEG 

signal dynamics. Two rhythms, the Mu band and the Beta 

band, were extracted from MI-EEG data using the wavelet 

decomposition approach. 

In the flow diagram of Figure 3, the approximated and 

detailed coefficients of the MI-EEG signals utilizing four-level 

wavelet decomposition are shown. The Energy and Entropy 

features were derived from the wavelet coefficients (Cad3 and 

Cad4), which had a frequency range of 15.6Hz to 31.2Hz for 

Cad3 and 7.81Hz to 15.6Hz for Cad4, as shown in the Figure 

3.  

 

 
 

Figure 3. Frequency representation of approximated and 

detailed coefficients of MI-EEG signals 

 

2.4 Feature extraction 

 

In BCI literature, the most commonly used features in MI-

based BCI applications for the classification of multiple MI 

tasks are power spectral density and energy of Mu and delta 

band. In the proposed work for all the 9-subjects two different 

features namely, energy and entropy from Mu and Beta bands 

were extracted for 288 trials per session from a 3-seconds 

window. The features were extracted only from 9-dominant 

channels (Fc1, Fcz, Fc2, C3, Cz, C4, P1, Pz, and P2) using the 

following mathematical expressions: 

 

Energy = ∑ 𝑆𝑖
2𝑛

𝑖=1  (1) 

 

where, S is the MI-EEG signal. 

Entropy = -∑ 𝑃𝑘 ∗ 𝑙𝑜𝑔2(𝑝𝑘)
𝑛
𝑘=1  (2) 

 

where, Pk is the probability of occurrence of kth EEG sample. 

The extracted features from all the nine subjects were used 

for testing and training both LDA and SVM classifiers. Eighty 

percent of the features were used to train the classifiers, while 

twenty percent of the data was utilized to test them. The 

resulting results were compared to existing approaches. The 

performance of each subject with both the classifiers is 

explained in the next section. In the following section, we will 

look at how each subject performed with both classifiers. 

 

2.5 Classification 

 

In BCI literature, LDA and SVM are frequently used for 

categorizing MI EEG tasks, often achieving better 

classification accuracy compared to other models. SVM, in 

particular, is regarded as a highly promising tool for 

classifying single EEG trials [13, 14]. Ma et al. [14] 

highlighted that SVM effectively addresses issues related to 

small sample sizes and high-dimensional data, resulting in 

improved classification accuracy. 

LDA and SVM are also used in the proposed method to 

classify two classes of MI EEG data. The extracted features 

from the data set are loaded into excel sheet. The excel sheet 

file with the energy and entropy features were fed as input to 

the different classifiers using Classification Learner App in 

MATLAB software. This App in MATLAB offers the 

advantage of intuitive and interactive model building for 

classification tasks, simplifying the process for users without 

extensive programming or machine learning expertise. 

LDA is a popular supervised learning method that is widely 

used for dimensionality reduction as well as classification 

tasks, particularly in the context of two-class classification 

situations (Class1, Class4). Through statistical modeling of 

feature distributions and subsequent computation of an 

optimal decision boundary that maximized between-class 

distance while minimizing within-class variance, LDA 

worked by identifying the best linear combination of proposed 

features that effectively separated the classes (Class1 and 

Class 4). This illustrated a linear border in the feature space 

and is the quintessential LDA. Specifically, LDA is a strong 

technique that works well for binary classification problems 

where classes can be clearly defined by a linear border. When 

faced with new data, LDA allocated class membership based 

on the highest posterior probability relative to this decision 

boundary. 

In the proposed work, an SVM model with a linear kernel 

function is utilized. Using a linear kernel in SVM is a powerful 

method for binary classification tasks. SVM maximizes the 

margin, which is the distance between the hyperplane and the 

closest data points, or support vectors, by identifying the 

optimal hyperplane in the feature space. By calculating dot 

products between feature vectors, the linear kernel function in 

SVM effectively transforms the data into a higher-dimensional 

space where class separation is feasible. The objective is to 

identify a hyperplane that minimizes the risk of overfitting 

while effectively classifying data and generalizing well to 

unseen data. New data points are classified based on their 

position relative to the hyperplane. In summary, SVM with a 

linear kernel provided a reliable and effective solution by 

determining the best decision boundary. 

 

 

2746



3. RESULTS AND DISCUSSION 

 

In this study, LDA and SVM classifiers are trained and 

tested using distinct features extracted from the Mu and Beta 

bands. Both networks are trained with 80% of the data, with 

the remaining 20% of the data being utilized to test the 

classifiers. For each subject, the findings achieved using both 

networks are listed below. Two methods were used to classify 

MI EEG tasks in the proposed research work. Only the energy 

of Mu and Beta bands from 9 separate dominant channels was 

collected and utilized to train and evaluate both classifiers in 

method-1. Similarly in method-2 the Energy and Entropy of 

Mu and Beta rhythms were extracted and also tested both the 

classifiers (LDA and SVM). The results obtained with both 

methods were analyzed, compared, and tabulated below. 

 

 

Table 2. LDA and SVM classifier accuracy 

 

Subject 

LDA SVM 

Avg. Accuracy±SD with 

Energy Feature 

Avg. Accuracy±SD with 

Energy and Entropy Feature 

Avg. Accuracy±SD with 

Energy Feature 

Avg. Accuracy±SD with 

Energy and Entropy Features 

1 86.6±2.36 89.1±3.7 81.4±5.36 83.8±0.7 

2 61.3±4.31 66.8±4.6 65.35±0.9 68.4±8.5 

3 88.78±3.2 89.8±1.4 89.92±1.45 91.2±2.16 

4 78.94±5.13 74.62±2.4 77.56±6.01 79.6±1.5 

5 57.2±4.41 65.9±3.4 67.72.18±2 68.4±3.01 

6 62.46.18±4.75 68±3.7 66.68±4.48 69.5±5.3 

7 84.22±4.48 85.6±7.3 84.92±1.98 86.6±3.1 

8 79.3±6.86 80.6±3.3 81.04±3.99 82.8±1.9 

9 87.38.3±1.45 89.6±2.7 89.92±1.45 91.7±2.7 

 

Table 3. The average energy and entropy of mu and beta bands for subject 2 

 

Channel 

Number - 

Name 

Subject 2 – Class 1 Subject 2 –Class 2 

Avg. 

Energy of 

Mu Band 

Avg. 

Energy of 

Beta Band 

Avg. 

Entropy of 

Mu Band 

Avg. 

Entropy of 

Beta Band 

Avg. 

Energy of 

Mu Band 

Avg. 

Energy of 

Beta Band 

Avg. 

Entropy of 

Mu Band 

Avg. 

Entropy of 

Beta Band 

3-fc1 19.06 20.20 1.93 2.12 18.26 15.62 1.96 2.15 

4-fcz 21.37 20.76 1.89 2.09 20.50 16.32 1.90 2.12 

5-fc2 20.80 20.66 1.89 2.09 19.69 16.14 1.91 2.13 

8-c3 14.05 19.13 2.08 2.22 13.37 14.49 2.09 2.24 

10-cz 20.43 20.96 1.88 2.10 19.69 16.47 1.89 2.13 

12-c4 19.62 20.65 1.92 2.11 17.98 15.94 1.95 2.16 

19-p1 14.00 18.55 2.06 2.24 14.27 14.56 2.05 2.25 

20-pz 16.11 19.08 1.98 2.20 15.91 15.06 2.00 2.21 

21-p2 16.23 18.90 1.97 2.19 15.93 14.90 2.01 2.21 

 

Table 4. The average energy and entropy of mu and beta bands for subject 9 

 

Channel 

Number - 

Name 

Subject 9 – Class 1 Subject 9 – Class 2 

Avg. 

Energy of 

Mu Band 

Avg. 

Energy of 

Beta Band 

Avg. 

Entropy of 

Mu Band 

Avg. 

Entropy of 

Beta Band 

Avg. 

Energy of 

Mu Band 

Avg. 

Energy of 

Beta Band 

Avg. 

Entropy 

ofMu Band 

Avg. 

Entropy of 

Beta Band 

3-fc1 27.61 9.37 1.83 2.30 43.93 11.79 1.65 2.10 

4-fcz 31.21 9.97 1.77 2.25 48.20 12.42 1.60 2.09 

5-fc2 31.39 9.68 1.75 2.29 47.39 11.95 1.59 2.13 

8-c3 31.68 9.71 1.81 2.35 69.02 16.64 1.47 1.98 

10-cz 36.50 10.08 1.70 2.26 62.24 13.62 1.54 2.03 

12-c4 42.53 11.64 1.66 2.21 83.23 18.78 1.42 1.91 

19-p1 53.19 9.72 1.60 2.28 106.27 15.70 1.40 2.02 

20-pz 63.33 11.17 1.54 2.20 111.93 16.24 1.41 2.00 

21-p2 65.17 11.39 1.53 2.20 108.78 16.06 1.41 1.98 

 

In the proposed Method 2, classification results using 

extracted features of energy and entropy from Mu and Beta 

rhythms show improvement compared to the first method. 

From the result in Table 2, it is noticed that the LDA and SVM 

accuracy is around 90% for some of the subjects (Subject 1, 3, 

and 9), for some subjects (Subject 4, 7, and 8) the classification 

accuracy is around 80% but for the few subjects (subject 2, 5 

and 6) the classification accuracy is around 65% only. The 

extracted features Energy and Entropy of Mu and Beta bands 

were shown significant variation for the two-class MI tasks. 

So, the classification accuracy of some subjects (Subject 1, 3, 

4, 7, 8 and 9) is far better than that of subjects 2, 5 and 6.  

The Extracted feature values from Mu and Beta band for 

subject-2 and subject-9 are projected in Table 3 and Table 4. 

For subject-2 most of the feature values of Mu and Beta band 

of Class-1 and Class-2 were similar. As the some of the feature 

values were similar between class-1 and class-2, Therefore, 

both proposed classifier models misclassified Class 1 as Class 

2 and Class 2 as Class 1 for some inputs. Because of the 

misclassification of the classifier models, the average 

classifier accuracy obtained for subject-2 is 66.8±4.6 with 

LDA and 68.4±8.5 using SVM. Whereas the same feature 

values of Mu and Beta band for Class-1 and Class-2 of subject-

9 were shown much difference in Table 4, as a result, the 
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classifier accuracy of this particular subject is 89.6±2.7 using 

LDA and 91.7±2.7 with SVM. From these two cases it is clear 

that the subjects (Subject 1, 3, 4, 7, 8 and 9) who had much 

variation in feature values for both the classes could able to 

produce better accuracy and others (subject 2, 5 and 6) were 

not able to give better performance. And also, it is clear that 

the subjects were required enough training to produce better 

MI EEG signals. If the subjects could able to produce better 

MI EEG signals for different tasks, the classifier models can 

produce better accuracy. 

The study of each subject using LDA and SVM classifiers 

is shown in Figure 4. Subjects 1, 3, 7, 8, and 9 did better than 

the other subjects, according to this proposed method-1. 

Another feature entropy is extracted to improve classification 

accuracy, and the results achieved with the approach are 

presented in Figure 4. In comparison to proposed method-1, 

the classification accuracy improves after adding another new 

feature Entropy, as seen in Figure 5. 

 

 
 

Figure 4. Performance evaluation of proposed system based 

on energy 

 

 
 

Figure 5. Performance evaluation of proposed system based 

on energy and entropy 

 

The proposed method achieved better results for two-class 

MI EEG task classification using the BCI Competition IV data 

compared to previous research [4, 5, 7, 19, 20]. In study [21], 

sparse Common Spatial Pattern (SCSP) features and 

regularized discriminant analysis (RDA) were utilized for 

motor imagery EEG classification, which improved feature 

selection and the robustness of classification. However, the 

model's reliance on extensive parameter tuning and its lower 

performance on synthetic data may restrict its generalizability. 

For MI EEG tasks, classification accuracy can be enhanced if 

subjects remain focused on the tasks, leading to more distinct 

EEG data for different MI tasks. Consequently, further 

improvements in accuracy can enable the classification results 

to effectively control external devices such as wheelchairs, 

exoskeletons, and robotic arms. 

 

 

4. CONCLUSION 

 

In this study, MI EEG data was acquired from the BNCI 

Horizon 2020 website. The dataset comprises 22 EEG 

channels. The primary innovation of our approach lies in the 

reduction of EEG channels from 22 to 9 using the energy count 

thresholding technique. This reduction significantly decreases 

computational complexity while enhancing the classification 

accuracy of proposed models. Subsequently, the nine 

dominant MI EEG channels were employed for extracting MU 

and Beta rhythms, which served as the basis for deriving 

feature values pertaining to energy and entropy. These 

extracted feature values were used to train and test LDA and 

SVM classifiers. The obtained results were benchmarked 

against analogous existing models. Notably, our study reveals 

that employing merely two minimal features, namely energy 

and entropy, is adequate to achieve over 90% accuracy with 

our proposed classifier models, outperforming conventional 

methods. Moreover, the utilization of only two features for 

LDA and SVM testing indicates a reduction in classification 

time. Consequently, our proposed methodology excels over 

existing approaches in terms of the reduced number of 

channels and features utilized, as well as superior 

classification accuracy. 

In the proposed methodology, it is evident from Table 2 

showcasing classifier performance that there remains room for 

improvement in the classification accuracy for certain subjects 

(subject 2, 5 and 6). Additionally, although the current 

approach focuses solely on a two-class MI EEG classification, 

there exists potential to expand the number of classes in future 

investigations. Moreover, there is a crucial objective to 

implement this method in real-time for various BCI 

applications, enabling control over external devices such as 

wheelchairs, exoskeletons, robotic arms, home appliances, and 

more. 
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