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Alzheimer’s disease (AD) is a degenerative and ultimately fatal brain disorder for which 

there is no cure. This neurological condition, with a complex etiology, causes dementia and 

cognitive decline, making its identification challenging due to the variation in brain MRIs, 

including differences in size, shape, and CSF flow. While there is no treatment for AD, its 

progression can be slowed with early diagnosis. Many researchers have employed image 

processing-based techniques to differentiate between normal and AD-affected patients 

based on brain images. However, the brain's regions often look super similar, making it 

tricky to pinpoint specific areas, plus there's always some uncertainty when it comes to 

extracting the exact regions. There have been various proposals in the literature for fuzzy c-

means and intuitionistic fuzzy c-means (IFCM) approaches to deal with this ambiguity and 

uncertainty. In contrast, Pythagorean fuzzy sets (PFS) provide a more precise means of 

verifying membership, making them an effective tool for managing uncertainty. The author 

analyzed PFS and applied fuzzy c-means to propose Pythagorean fuzzy c-means (PFCM). 

Additionally, histogram-based initial centroids were used to avoid the local minima 

problem, which is common in many clustering algorithms. The proposed clustering 

algorithm demonstrated improved performance, completing execution in less than 1.5 

seconds, owing to the incorporation of initial centroids and PFS-based clustering. The 

proposed method achieved high accuracy rates: 98.64% for white matter (WM), 97.4% for 

gray matter (GM), and 98.14% for cerebrospinal fluid (CSF) in detecting brain tissues. 
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1. INTRODUCTION

AD is a classic degenerative age-related disorder. Memory 

loss, mood swings, cognitive decline, and difficulties in 

speaking, writing, and walking are all symptoms observed in 

clinical practice. It is a major disease that threatens the health 

of elderly people [1]. More than 50 million individuals 

worldwide are currently affected and is expected to rise to 150 

million by 2050. Currently, there is no therapy for AD in 

humans because the pathogenic mechanism has not been fully 

explained. One major reason is that dementia is difficult to 

diagnose because, by the time noticeable memory loss and 

neurological impairment have set in, the disease is in an 

irreversibly advanced stage [2]. First, there is an asymptomatic 

period, followed by moderate cognitive impairment (MCI), 

which eventually progresses into full-blown Alzheimer's 

disease. Mild cognitive impairment is frequently 

misdiagnosed as a natural part of aging and the treatment is 

delayed. Delaying the onset of AD, altering the course of the 

disease, and avoiding early intervention measures depend on a 

correct diagnosis. Hence, the development of novel and 

effective treatments for Alzheimer's disease depends on its 

early identification. 

Neuronal damage in dementia is permanent, and the 

resulting structural alterations in the brain can be studied using 

multifractal frameworks [3]. Many in-depth studies on this 

condition have been conducted in recent years using 

computer-aided diagnostics. Early diagnosis of AD has shown 

better detection results by combining the dimensionality 

reduction of features method with an efficient classifier, and 

most studies have followed this trend. There is some indication 

that Ada-SVM outperforms AdaBoost and Free Surfer in 

extracting the hippocampus border from the brain image, as 

demonstrated by Morra et al. [4]. Farhana's research focused 

on early-stage AD and how to back up the disease's multistage 

categorization. MRI images were preprocessed (using 

watershed segmentation and median filtering), and automatic 

feature extraction was performed using models of 

convolutional neural networks (CNNs) that were pre-trained 

with benchmarks, including Alex Net, VGG16, VGG19, 

ResNet18, and ResNet50. The healthcare business generates 

massive volumes of data, and algorithm-based systems are 

essential for making sense of it and improving prediction and 

diagnosis [5]. In AD, most brain MRI scans are segmented 

using deep network models trained on CNN data. However, 

identifying Alzheimer's from the brain structure is complex 

because of the tissue's penetration; hence, the segmentation of 

tissues from the brain and then applying classification on the 

extracted tissues to enhance the prediction of Alzheimer’s. 

Fuzzy sets address the problem of vagueness by providing 

a degree of belongingness and non-belongingness [6, 7]. Many 

algorithms, namely bias-corrected FCM, enhanced FCM, 
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Kerneled FCM, spatially contained FCM, possibilistic FCM, 

FCM with spatial information, fuzzy local information C-

means, robust kernelized FCM, automatic FCM, meta-

heuristic based FCM, and fast generalized FCM based on the 

fuzzy sets for brain image segmentation were available in the 

literature [8]. These algorithms effectively handle the 

vagueness of the images. Rough sets have been suggested to 

deal with the uncertainty in tissue borders [9, 10]. The 

algorithms yielded enhanced outcomes in comparison to fuzzy 

sets and demonstrated the ability to tackle the noise found in 

the regions [11]. 

A powerful tool, namely, soft sets (SS) with a mathematical 

foundation, was proposed by Molodstov to address uncertainty. 

The parameterization tool in soft sets aids decision-making 

and has been applied in the medical field. Maji et al. [12] 

defined and investigated many foundational concepts of soft 

set theory. They also generalized fuzzy soft sets (FSSs) from 

crisp soft sets. Soft sets have been applied to brain image 

segmentation using soft fuzzy c-means [13]. However, the 

proposed model was ineffective at reducing noise in the 

images. Intuitionistic fuzzy sets (IFS) with three-degree 

memberships were proposed as a solution to noise and 

uncertainty. These degrees include deterministic, non-

deterministic, and hesitancy, which were used for clustering 

[14]. To incorporate local spatial information in an intuitive 

fuzzy manner, Atanassov [15] suggested that an enhanced 

intuitionistic fuzzy set is a novel approach. Dubey et al. [16] 

proposed a rough set based on IFS for segmenting brain MRI 

images. Verma et al. [17] suggested an enhanced intuitionistic 

fuzzy c-means (IIFCM) to consider the local spatial 

information in an intuitively fuzzy manner. To address the 

limitations of the IFS approach, Yager [18] created a 

Pythagorean fuzzy set (PFS). PFS developed upon IFS. The 

PFS add-on expands IFS's use and adaptability of the IFS. 

With PFS, it can be seen not just how much consensus exists 

among regions but also how vague that consensus is. 

Segmenting brain images suggests using an intuitive fuzzy c-

means (IFCM) method. Verma suggested enhanced 

intuitionistic fuzzy c-means (IIFCM) as a novel approach. The 

authors used IFCM to manage ambiguity. However, the 

findings indicate that the technique is extremely susceptible to 

ambiance and makes little use of local spatial data. Improved 

intuitionistic fuzzy c-means were created to address the 

insensitivity noise and parameter flexibility selection during 

tuning. Compared to other existing approaches, the IIFCM 

approach significantly improves performance. To take this 

into account, local spatial information is intuitively fuzzy.  

Peng et al. [19] investigated the properties of PF 

aggregation operators, including rigidity, inertia, and 

predictability. Furthermore, the researchers suggested a PF 

ranking system based on a scale of excellence and 

incompetence for addressing MAGDM issues, such as 

ambiguity and an abundance of attributes. Careful analysis of 

the PFSMs also led to the recommendation of a novel 

algorithm for decision-making (DM) based on a ‘choice 

matrix’ (CHMX) and a weighted CHMX. Operations 

including complement, union, intersection, addition, 

multiplication, necessity, and possibility are delineated in PFS. 

Group decision-making, a crucial tool for facilitating 

medical diagnosis, has been proposed for application to 

PFSMs. Due to its computational simplicity, PFSMs will be 

integrated into hospital information systems to help doctors 

make well-informed decisions based on symptom values. 

Guleria and Bajaj [20], Ejegwa and Onasanya [21], Hashim et 

al. [22], and Srivastava [23] proposed various methods based 

on soft sets. The standardized Rough Intuitive sets were 

applied to MRI brain images using the Fuzzy C-Means method. 

Some recent advancements in SSs and FSSs, as well as their 

applications in decision-making, are discussed by Ali et al. 

[24], Feng et al. [25], and Kirisci [26]. 

The Pythagorean fuzzy c-means method was recently 

proposed for image segmentation [27, 28]. It used min-max 

parameters to fuzzify and de-fuzzify the image data and used 

distance measures for clustering. However, the dependency 

with min-max is not suitable for all types of image data; 

therefore, a generalized Pythagorean fuzzy c-mean is proposed 

to extract the tissues of brain AD images. The method uses 

histogram peaks as initial centroids that help determine the 

initial degrees of PFS. Using these initial degrees, constrained 

fuzzy c-means are applied with the Pythagorean objective 

function, which reduces clustering errors and provides higher 

data inclusion than intuitionistic fuzzy sets. Kirisci and Simsek 

[29] proposed advancements in techniques for addressing 

group decision-making challenges. 

The important contributions of this study are as follows:  

• The use of PFS was explored in this study for 

extracting tissues from Alzheimer’s disease images. 

• An initial centroid is required for each fuzzy-based 

clustering technique. In this study, centroids are calculated 

based on the peaks and valleys of the input image histogram. 

• PFS aids in identifying the starting cluster regions, 

reducing the number of segmentation iterations. 

• The rapid convergence of PFS is achieved as the 

starting centroids are calculated based on the image data itself, 

and the segmentation accuracy is improved with PFS. 

The paper is divided into several sections, starting with the 

background in Section II, the proposed methodology on PFS 

in Section III, Experimental procedures and outcomes in 

Section IV, and a summary and future directions in Section V. 

 
 

2. BACKGROUND 
 

2.1 Intuitionistic fuzzy sets 
 

Membership, non-membership, and hesitancy values are 

essential in intuitionistic fuzzy sets [8]. Elements are 

considered members of a cluster or not based on the extent to 

which they fit within that cluster. A pixel's hesitancy indicates 

the difficulty of its membership in a certain cluster. Combined 

with doubt, the fuzzy sets' imprecise knowledge becomes 

more precise. 

 

I={(f, 𝜇β(f), 𝜗β(f)) | f∈S} (1) 
 

With πα(f)=1−(𝜇𝛽 (f), +𝜗β (f)) where the functions 𝜇β (f), 

𝜗β(f) indicates the degree of belonging and non-belonging an 

ingredient in the realm of finite sets S. πβ(f ) is the determinant 

of the intuitionistic fuzzy index, which represents an element’s 

degree of uncertainty. The necessary conditions to be satisfied 

for element, the formula for an IFS-defining f ∈ S is: 

0≤𝜇β(f), 𝜗𝛽(f), π(f) ≤1. These three functions accurately depict 

the bias, noise, and cluster to which each element is assigned. 

 

2.2 PFS 

 

One type of fuzzy set is the Pythagorean fuzzy set, a cutting-

edge version of the intuitive fuzzy set, and it is used to model 
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the ambiguity that arises in the actual world when Membership 

plus non-membership adds up to more than 1. Membership 

satisfying condition alpha and non-membership satisfying 

condition beta as α2+β2≤1. Figure 1 shows the determinant of 

PFS.  

 

 
 

Figure 1. Comparison of IFS and PFS [29] 

 

Definition 1: ADNI dataset [30] considered the universe of 

conversation as X. The formula for a PFS in X is: 

 

I={(f, 𝜇α(f), 𝜗α(f)) | f∈S} (2) 

 

where, 𝜇α(f): X→[0, 1] designation of membership status xεX 

and 𝜗α (f): X→[0, 1] symbolizing the extent to which the 

element is not a member of the set P, depending on the fact 

that 0 ≤(𝜇α(f))2+(𝜗α(f))2≤1. The level of uncertainty is given 

by: 

 

πα(x)=√(1−(𝝁𝛂(f)2+𝝑𝛂(f)2) (3) 

 

The main advantages of the PFS over the IFS are described 

in Table 1. The PFS is more effective in handling vagueness, 

imprecision, ambiguity, and inconsistency in the data. Hence, 

the PFS effectively manages noise, bias, and inconsistency in 

clustering. 

 

Table 1. Comparison of fuzzy, IFS, and PFS 

 

Models Vagueness Imprecision Ambiguity Inconsistency 

Fuzzy Yes    

IFS Yes Yes   

PFS Yes Yes Yes Yes 

 

2.3 Data sets 

 

There are different data sets available in ADNI [30] based 

on the stages of Alzheimer’s. 

Mild dementia: In this stage memory loss of recent events 

and difficulty with problem-solving are the problems 

experienced. 

Moderate dementia: In this stage, patients experience even 

greater memory loss and need help from others for their daily 

activities. 

Severe dementia: In this stage, AD affects people who lose 

the ability to communicate coherently. 

For this proposed work, we use the ADNI dataset, which 

includes three AD images from various categories for 

experimentation and evaluation. The dataset comprises 200 

AD images representing mild, moderate, and severe dementia. 

The sample images are shown in Figure 2. 

 

 
 

Figure 2. The Alzheimer’s dataset images (a, e) Non-

dementia (b, f) moderate (c, g) very mild (d, h) mild 

 

 

3. PROPOSED METHODOLOGY 

 

This chapter focuses mostly on the process of segmenting 

brain MRI images utilizing PFS. Clustering always depends 

on the membership function and no single membership 

function suits all datasets. Hence, to avoid the dependency 

with the membership we used an approach to calculate initial 

regions with the image data itself using the thresholds 

computations [9] and initial centroids using histogram. By 

identifying the key areas independently of the membership 

functions used as data for the Pythagorean fuzzy c-means, the 

proposed method offers a fresh perspective. Further, the 

approach used the histogram peaks and valleys to determine 

the initial centroids for the clusters which assists in avoiding 

the cluster mistakes that occur with random selection. With the 

proposed method the clustering mistakes are reduced and the 

dependency on the membership functions is eliminated. Also, 

the Pythagorean fuzzy c-means has the advantage of 

addressing ambiguity and uncertainty in the data compared to 

IFS and offers broader data representation. The detailed 

process of the proposed method is explained in Figure 3.
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Figure 3. The flow of the proposed method of work 

 

With the histogram peaks calculation, the peaks of brain 

images are computed and these are used as initial centroids for 

clustering mentioned in section 3.1. Also, three initial regions 

are determined by calculating the thresholds obtained from the 

brain image as presented in section 3.2 continued by the 

updated constrained partition fuzzy Pythagorean fuzzy c-

means for performing the clustering. The primary difference 

between IFS and PFS lies in the degree of uncertainty 

measurement given in Eq. (3). The intuitionistic fuzzy c-

means clustering is modified to apply the uncertainty equation 

of PFS. 

 

3.1 Histogram-based initial centroid selection 

 

   
 

(a)                                             (b) 
 

  
 

(c)                                             (d) 
 

Figure 4. (a, c) ADNI sample Image (b, d) image valleys and 

peaks 

 

The clustering algorithms are significantly sensitive to the 

initial cluster. To identify the regions based on distance, the 

initial centroids are calculated from the histogram peaks. The 

calculation of histogram peaks is given in previous study [25]. 

The sample Figure 4 displays the brain images and 

corresponding prominent peaks and valleys labelled. The 

author proposed to use the peaks of each histogram as the 

initial centroids as the peak represents the most repeated value 

and the bin around it represents the proximity of values near 

the cluster. Choosing the peaks as initial centroids will give 

stable regions initially that avoid the problem of local minima 

(usually occurs when wrong centroids are used). 

 

3.2 Determination of Pythagorean fuzzy regions 

 

Since Fuzzy membership functions are crucial for making 

clusters, they have a large effect on segmentation efficiency. 

The initial cluster regions are determined by pixel thresholds 

calculated with the distances. Let the image of size m×n, is 

represented as E={P(x)/P(x) indicates pixel value of the ith 

image element}. 

First, the distance between each pixel P(x) to unique 

intensity values of the image Lk is calculated using Eq. (4) 

given below: 

 

𝑑𝑖(𝑘) =
√∑

(𝑥𝑖 − 𝐿𝑘)
|𝑁 𝐻𝑖|

⁄𝑘𝜖𝑁 𝐻𝑖

𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛

 
(4) 

 

where, N Hi is the area surrounding the pixel xi and | N Hi | is 

the number of distinct pixels in the image. Lmax reaches the 

maximum intensity and Lmin is the least intensity value. A 

distance vector can be calculated using this formula 

di(k)={di(L1), di(L2) ..., di(Lk)} each xi
th pixel. To estimate two 

thresholds, we employ the maximum and minimum distances, 

respectively denoted by dimax and dimin.  
 

𝑡1 =
1

𝑀 ∗ 𝑁
∑ 𝑑𝑖𝑚𝑖𝑛

𝑀∗𝑁

𝑖=1

 (5) 

 

𝑡2 =
1

𝑀 ∗ 𝑁
∑ 𝑑𝑖𝑚𝑎𝑥

𝑀∗𝑁

𝑖=1

 (6) 

 

The t1 values show how far apart on average the pixels are 

from the center of each cluster, whereas the t2 values show 

how far apart on average the pixels are from the furthest edges 

of the clusters. These thresholds serve to estimate three 

membership functions of the PFS. The belonging region B(Px), 

non-belonging NB(Px), and in-deterministic I(Px). 

If a pixel’s distance to a cluster obtained in the histogram, 

denoted by the symbol di(Cj), is smaller than the threshold 

value t1, then the pixel most likely belongs to the cluster and 

hence, is located in the determined region B(Cj). Pixels in the 

NB(Cj) hesitancy region have distances between t1 and t2, 

indicating that they might either be part of the cluster or not. 

A pixel is considered to be outside of the cluster and outside 

of the deterministic region I(Cj) if its distance from the cluster 

center is larger than the threshold value t2. As a result, the 

pixels can be roughly divided into three regions using these 

thresholds. 

 

𝑥𝑖 = {

𝐵(𝐶𝑗); 𝑖𝑓𝑑𝑖(𝐶𝑗) ≤ 𝑡1

𝑁(𝐶𝑗); 𝑖𝑓 𝑡1 ≤ 𝑑𝑖(𝐶𝑗) ≤ 𝑡2

𝐼(𝐶𝑗); 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

 

The computation of membership value 𝛼𝑃(𝑥) of the PFS is 

calculated using the pixels in the B(Cj) using Eq. (8). 
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𝛼𝑃(𝑥) =
1

∑ (
‖𝐵𝑝(𝑥) − 𝐶𝑗‖

∑ ‖𝐵𝑝(𝑥) − 𝐶𝑐‖
𝑛,𝑐!=𝑗
𝑐=1

)

2
𝑚−1⁄

𝑛
𝑗=1

 
(8) 

 

where, Cj represents the center of the jth cluster. Here, N BP (x), 

and πP (x) are derived from the triangular membership function, 

and Cc is the arithmetic mean of BP (x) and Cc, representing the 

values of the centroid of areas that do not cluster into jth. Eqs. 

(8)-(10) may be used to calculate πP (x) and γP (x) from πP (x) 

and NBP (x), respectively. 

 

𝛽𝑃(𝑥) =
1

∑ (
‖𝐻(𝑒𝑖) − 𝐶𝑗‖

∑ ‖𝐻(𝑒𝑖) − 𝐶𝑐‖𝑛,𝑐!=𝑗
𝑐=1

)

2
𝑚−1⁄

𝑛
𝑗=1

 
(9) 

 

𝜋𝑝(𝑥) = √1 − (𝛼𝑝(𝑥))
2

 +  (𝛽𝑝(𝑥))
2

 (10) 

 

The following equations are used to revise the PFS partition 

matrix μP F S P (x) and the cluster centroid C(μP (x)). 

 

μP F S P(x)=α2
P(x)+β2

P(x)+π2
P(x) (11) 

 

With the PFS partitioning matrix, the uncertainty of the 

pixels is modelled and this allows the pixels to more accurately 

participate in clustering. 

 

𝐶 (𝜇(𝑝(𝑥))) =
∑ (𝜇(𝑝(𝑥)))

𝑚

(𝑝(𝑥))𝑝(𝑥)𝜖𝐸

∑ (𝜇(𝑝(𝑥)))
𝑚

𝑝(𝑥)𝜖𝐸

 (12) 

 

Use Eq. (12) to locate the missing centroids for π(p(x)) and 

γ(p(x)). The user-specified fuzzification constant is denoted 

here by m. A sharp and binary membership function is 

obtained if m is near 1; otherwise, it becomes fuzzy and blurry 

as m increases [22]. With, large datasets that can be 

successfully segmented 1.5<m<3 plus 2 is typically thought of 

[23, 24]. Like many other clustering techniques, Pythagorean 

fuzzy c-means relies on iterative refinement. Repeatedly 

applying Eqs. (4)-(6) to identify the three regions and Eq. (8) 

to obtain the new centroids, the process concludes once the 

clusters reach stability. Stability in a cluster is determined by 

a Hamming distance between the first set of clusters and a 

similarity coefficient 𝜇𝑃𝐹𝑆 𝑃(𝑥)𝑙  and  𝜇𝑃𝐹𝑆𝑃(𝑥)𝑙+1 . The 

formula for the hammering distance is: 

 

𝑆𝐶 = ∑ |𝜇𝑃𝐹𝑆 𝑃(𝑥)𝑙 − 𝜇𝑃𝐹𝑆𝑃(𝑥)𝑙+1

𝑀∗𝑁

𝑖=1

| (13) 

 

3.3 PFCM algorithm for tissue segmentation 

 

In this section, the steps of the PFCM clustering are 

proposed. The following Algorithm 1 describes the steps for 

the segmentation of brain tissues. 

 

Algorithm1 

_________________________________________________ 

    I/P: Input image P and ϵ Cutoffs at 0.01. 

O/P: The Values of x, y, and z for the region of the brain 

image are used to build the n clusters that will represent those 

regions. 

1. Compute the initial cluster of centroids 

            Cj = FINDPEAKS(X, n) 

2. Put 0 in the 𝜇𝐼𝐹𝑆(𝑥𝑖)𝑙 as a starting point  

       for all xi of NH varying intensities. do 

               using Eq. (4), determine the distance in 𝑑𝑖 (𝑘) 

             end for  

       end for 

3. Find the two thresholds t1 and t2 using Eq. (5). 

4. Determine the regions using Eq. (7). 

5. While 1 do 

5.1  Using Eqs. (8)-(10), we can derive three intuitive 

estimates for the membership function. 

    5.2  Alter the partition matrix 𝜇𝑃𝐹𝑆(P(x)) and the centroid        

          of the cluster, Cj, via Eq. (11) and Eq. (12). 

5.3 For a rough estimation of the similarity coefficient 

(sc),  

use the formula: Eq. (13). 

     5.4  if sc ≤ ϵ then then 

               break 

         else 

             𝜇𝑃𝐹𝑆(𝑃(𝑥))𝑙 = 𝜇𝑃𝐹𝑆(𝑝(𝑥))𝑙+1  

         end if 

     5.5 end while  

6. With stable α(P(x)), β(P(x)) and π(P(x)) obtain n clusters. 

____________________________________________ 

 

 

4. EXPERIMENTAL PROCEDURES AND OUTCOMES 

 

4.1 Context for experiment 

 

The ADNI dataset was used to evaluate the proposed PFCM 

method. Brain images, including diagnostic, clinical, technical, 

and database attribute images, were included in the data 

collection. The PFCM algorithm presented in this study was 

developed in MATLAB, using an i5 CPU. The proposed 

approach for identifying the three zones assigns a value of 3 to 

the total number of clusters, n. The generalization process 

served as the initializer for the centroid values. The exit 

criterion is a constant of 0.01 standard deviations from the next 

cluster. Since the ADNI dataset contains brain images in 

different formats—MPRAGE, FLAIR, and DTI, which are 

available in various sizes—the images were converted to a 

MATLAB-readable format using the MIPAV tool. The skull 

portion of the brain was removed using MIPAV's brain 

extraction tool. Additionally, as part of the pre-processing 

phase, the images were resized to a standard 512×640 pixels. 

Post-processing in the proposed algorithm involves 

converting the final segmented regions into black and white to 

compare them with the ground truth. For visualization 

purposes, colors are applied to the grayscale images to analyze 

the CSF fluid region, which is relevant in Alzheimer's disease 

analysis. 

Figure 5 shows the results of the PFCM algorithm applied 

to segment several brain images. Column 1 presents the 

original ADNI dataset images, Column 2 shows the extracted 

CSF regions, Column 3 shows gray matter extraction images, 

and Column 4 shows white matter extraction for the brain 

images in the ADNI dataset. Because the image sizes for the 

ADNI datasets vary significantly, they are resized to 512×640 

pixels as part of the pre-processing step. The post-processing 

step involves converting the final segmented regions to black 

and white to facilitate comparison with the ground truth.  

The segmentation results of the proposed algorithm are 
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shown in Figure 6. Row 1 illustrates the ground truth for gray 

matter, white matter, and CSF. Row 2 shows GM, WM, and 

CSF extraction using PFCM, while Row 3 shows the same 

extraction method using GRIFCM. According to a subjective 

evaluation, the proposed method effectively extracts brain 

tissue. The segmentation results of the proposed algorithm are 

displayed in Figure 7. Based on subjective evaluation, the 

proposed method proves effective for brain tissue extraction. 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

 

Figure 5. (a) very mild (e) mild (i) moderate images from ADNI data set, (b)(f)(j) CSF extracted, (c)(g)(k) gray matter extracted 

(d)(h)(l) white matter extracted 

 

   
(a) (b) (c) 

   
(d) (e) (f) 
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(g) (h) (i) 

 

Figure 6. Segmentation results of proposed algorithm (row 1) ground truths of GM, WM, and CSF, (row 2) GM, WM, and CSF 

extracted using PFCM (row 3) GM, WM, and CSF extracted using GRIFCM [14] 

 

 
 

Figure 7. Segmentation results of proposed algorithm PFCM 

for normal, moderate, and mild Alzheimer's images 

 

4.2 Statistical methods 

 

Measurable metrics such as segmentation accuracy (SA), 

Jaccard coefficient (JC), and Dice coefficient (DC) are used to 

verify the performance of the proposed model. The 

performance of most classification or clustering algorithms is 

assessed using SA, JC, DC, precision, specificity, and 

sensitivity. Metrics closer to 1 indicate high performance. If 

the value is above 0.7 (or 70%), the model is considered to be 

performing well. As the metrics approach 1 or 100%, the 

model demonstrates improved performance. 

 

Jaccard_coefficient = 
𝐴∩𝐵

𝐴∪𝐵
 (14) 

 

Dice_coefficient = 
2 | A⋂B |

| A |+| B |
 (15) 

 

in which, A is an original image on the ground. The resulting 

segmented image is represented by B. 

 

Segmentation Accuracy(SA)=
T P+F N

T P + T N + F P + F N
 (16) 

 

Sensitivity=TP/T P+F N (17) 

 

Specificity=TN/(TN+FP) (18) 

 

Precision=TP/(TP+FP) (19) 

 

where, 

(1). True positive (TP): Quantity of the B’s actual pixels as 

seen in A expressed as a ratio. 

(2). True negative (TN): Negatively segmented true pixels 

in B as a ratio to the total number of pixels in A. 

(3). False positive (FP): Sum of incorrect positive pixels 

segmented in B as negative and vice versa. 

(4). False negative (FN): The percentage of B images where 

negative values were observed in A. 

 

The performance measures of segmentation accuracy, JC, 

DC sensitivity, specificity, and precision are depicted in Table 

2. The extracted tissues are compared with the ground truths 

of the images to compute the performance measures. The 

ADNI data sets images of mild, moderate, and severe dementia 

images from which these performance measures are derived. 

The outcomes validated the effectiveness of the proposed 

algorithms in extracting the brain tissue region. With the 

proposed method, the typical JC score is 0.95, and the SA is 

0.98. A Jaccard coefficient (JC) value of 0.8 or higher 

indicates aesthetic correctness and therefore suggests high-

quality segmentation. In a sample of 100 images from ADNI, 

assuming universal agreement, the JC value is 0.86. Using this 

sample, we find that observers consistently agree on a JC value 

of 0.86. 

 

Table 2. Comparative performance metrics 

 
Images SA JC DC Precision Sensitivity Specificity 

very mild 0.9864 0.9545 0.9771 0.9842 0.9696 0.9956 

Mild 0.9741 0.8633 0.9277 0.8813 0.9768 0.9763 

Moderate 0.9814 0.7945 0.8894 0.8278 0.9508 0.9859 
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Table 3. Measures of effectiveness compared across a range 

of segmentation algorithms 

 

Algorithm SA JC DC Sensitivity Specificity 

[26] 0.909 0.7895 0.891 0.736 0.920 

[27] 0.910 0.755 0.749 0.815 0.875 

[28] 0.912 0.752 0.857 0.830 0.878 

[29] 0.884 0.665 0.884 0.869 0.884 

[14] 0.972 0.912 0.882 0.920 0.882 

PFCM 0.985 0.973 0.891 0.9508 0.891 

 

Table 4. Comparison of algorithm execution times 

 
KM FCM RFCM GRIFCM PFCM 

39.5±2.3 36.8±2.5 33.4±2.1 21.5±3.2 15.56±2.5 

 

Table 3 compares the proposed PFCM approach with 

advanced methodologies from the literature. As shown in the 

table below, the suggested approach achieves slightly higher 

JC values compared to the most advanced techniques for brain 

segmentation. Values of sensitivity are also improved by the 

proposed method. Deep learning algorithms have 

demonstrated remarkable precision and accuracy in this area 

of research on brain tissue segmentation. However, the 

performance measures of the proposed method are in line with 

those acquired by deep learning proving the efficacy of the 

algorithm concerning performance and time as well. 

The widely used FCM categorization of pixels using 

histogram has shown an accuracy of 88% only as the FCM 

suffers from noise. Values for SA, JC, precision, and 

sensitivity are greatly enhanced by the proposed methods, 

however, values for specificity and DC are reduced. The 

approach is also compared with the IFCM proposed by 

Namburu et al. [14], which utilized intuitionistic fuzzy c-

means for clustering. Compared to IFCM, the proposed 

method performs better due to its higher degree of certainty 

than PFS. Table 4 describes the execution time comparison for 

different algorithms. The proposed algorithm takes less time 

than the existing fuzzy-based algorithms as the clustering 

mistakes are reduced with the certainty membership as the 

ambiguity and vagueness of the pixels are reduced. 

PFS has the advantage of addressing ambiguity, vagueness, 

and uncertainty in the data, with a higher degree of 

membership, making it more suitable for extracting brain 

tissues. The extracted brain tissue further aids in classifying 

the stages of Alzheimer’s. 

Alzheimer's is identified by an increase in CSF fluid and 

shrinkage of white matter. The time series data need to be 

collected for each patient and the changes in the tissues are 

verified to state the patient is in which state of AD. The 

proposed work is limited to segmenting the tissues which 

further need to be enhanced to classify the AD by using hybrid 

techniques that can combine the time-series image data and the 

proposed segmentation algorithm. As the classification of AD 

is complex with a single image of the brain, hence extracting 

the tissues and measuring the tissues with a classification 

model enhances Alzheimer which will be further considered 

in our later studies. 

 

 

5. CONCLUSION 

 

Computer-aided detection of Alzheimer’s with the use of 

brain images has tremendously assisted clinicians. Due to 

numerous factors like artifacts in brain MRI, varied pixel 

intensity, and images with poor contrast Alzheimer’s detection 

increased complexity. Here, we introduce a novel PFCM 

algorithm for Segmenting Brain Images. The histogram peaks 

of the image are used as initial regions and centroids. This 

avoids the local minima and the initial regions are determined 

without depending on the membership function making the 

algorithm generalized. Cluster stability is improved, and 

runtime is shortened, thanks to the regions’ contributions. The 

extracted regions serve as inputs in the membership function 

calculations of the Pythagorean fuzzy soft sets clustering 

handling uncertainty in the brain images. Further, the extracted 

tissues can be used as input to deep learning models that can 

classify the Alzheimer's stages more accurately. 
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