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Satellite imagery is crucial for disaster assistance, law enforcement, and environmental 

monitoring. Some users need to identify facilities and items in photographs manually. 

Automation becomes essential when there are large areas to search and few available 

analysts. However, the problem can only be fixed by increasing the precision of existing 

object identification and categorization methods. The "deep learning" subfield of machine 

learning has demonstrated promising results for automating specific tasks. Using 

convolutional neural networks, it was able to understand images successfully. In this work, 

we use high-resolution, multi-spectral satellite photos to solve the problem of identifying 

objects and infrastructure. In this paper, we describe a deep-learning system for labeling 

objects. In this research, we make use of the Satellite Image Classification Dataset-RSI-

CB256. This dataset uses Google Maps images and sensors to create four distinct categories. 

In this study, a hybrid model is proposed, which achieves an accuracy of 98.96%. 
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1. INTRODUCTION

In machine learning, deep learning refers to models that use 

numerous processing layers to create progressively more 

abstract input representations. Combining massive neural 

network models, convolutional neural networks (CNNs), with 

robust graphics processing units has shown astounding 

success in object identification and categorization (GPUs). 

The annual ImageNet Large Scale Visual Recognition 

Competition [1] for object detection and classification in 

pictures has been dominated by CNN-based algorithms since 

2012. As a result of this breakthrough, several big IT firms 

have already implemented CNN-based products and services 

[2], including industry heavyweights like Google, Microsoft, 

and Facebook. 

Layers of processing code make up a convolutional neural 

network. The picture characteristics are detected via 

convolution filters, one for each layer. Feature detectors in the 

first layers resemble Gabor-like and color-blob filters, while 

those in the latter layers take the shape of convolutional neural 

networks. In contrast to earlier techniques such as SIFT [3] and 

HOG [4], the algorithm designer is not required to develop 

feature detectors when using CNNs. Over time, the network 

trains itself to recognize specific traits and improves its ability. 

Successful CNNs from the beginning had less than ten 

layers and were intended for tasks like reading handwritten 

postal codes. There were five levels in LeNet [5], whereas 

AlexNet had eight [6]. Since then, complexity has gradually 

increased. VGG emerged in 2015 with 16 layers [7]; in 2016, 

Google released Inception with 22 layers [8]. Newer iterations 

of Inception, such as ResNet (152 levels) and DenseNet (161 

layers), add even more layers. 

CNNs need tiny, fixed-size pictures to maintain a tolerable 

processing time. In contrast to Inception [8, 9], ResNet [10] 

and DenseNet [11], can handle photographs as large as 

299×299. Advanced GPUs offer the processing power needed 

for such massive CNNs. Further progress in deep learning has 

been fueled in part by open-source deep learning software 

frameworks like TensorFlow [12] and Keras [13], as well as 

powerful GPUs. 

Deep learning often involves cropping and warping pictures 

to fit [14]. These processes preserve important visual details 

for typical images. On the other hand, objects and facilities in 

satellite photos may be considerably bigger than they seem in 

regular photographs. Places like airports and dockyards may 

span tens of thousands of pixels. More details are needed when 

these vast photos are downsized to 224×224 or 299×299 pixels. 

Aeroplanes on a runway or container cranes at a shipyard are 

two examples of such distinctive elements. Even if you tried 

to crop the image down to size to preserve detail, you'd lose 

too much of the picture. 

2. LITERATURE REVIEW

Several picture datasets containing annotations, as well as 

related detection and classification efforts, have recently 

emerged. Land cover categorization and structure recognition 

have dominated deep learning's applications to remotely 

sensed images. For instance, the UC Merced Land Use Dataset 

has 2100 photographs of the United States taken from the air. 

Cartography of the Earth [15, 16]. The ground sample distance 

per pixel in these 256×256 photos is 0.3 metres. Among the 21 

categories are storage tanks, tennis courts, and more typical 

land uses like agriculture, roads, and water. One study found a 

98.5 percent accuracy rate in classifying UC Merced photos 
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into land cover categories using the VGG, ResNet, and 

Inception CNNs [17-19]. Nevertheless, this dataset has severe 

limitations in terms of scope, classification depth, and 

geographic coverage. 

High-resolution Digital Globe satellite photos of five cities 

and building footprints make up the SpaceNet dataset [20]. 

Convolutional neural networks (CNNs) have been taught to 

extract building footprints from photos [21]. In terms of 

training a classifier, this dataset has several severe limitations. 

Further remote sensing data sets are included in the previous 

study [22]. They need the global corpus of hundreds of 

thousands of photos to train a robust image classification 

algorithm. 

Satellite image classification organises pictures by an object 

or semantic meaning into three primary categories: techniques 

based on standard features, methods based on high-scene 

features, and hybrid approaches [23]. Mid-features-based 

methods work well for complex images [24]. Plans with many 

qualities best handle complex visuals. CNN is a popular deep-

learning image-processing method [25]. 

"Deep Belief Network for classification" utilizing 

Convolutional Neural Networks achieves 97.946 SAT4 and 

93.916 SAT6 accuracy [26]. Ju et al. [27] investigated image 

classification and identification ensemble techniques using 

deep convolutional neural networks. Saikat Basu, Sangram 

Ganguly, and others developed "DeepSat," a satellite image 

learning system. The super learner, majority voting, and Bayes 

Optimal Classifier are examples. Albert et al. [28] use deep 

CNN-based computer vision and large-scale satellite imagery 

to examine urban land use. A deep neural network does this 

with data. To find ground truth land, they carefully use open-

source survey class designations. The Urban Atlas land 

categorization dataset comprises 300 European cities and 20 

land use types. They also show that deep representations using 

satellite pictures of urban landscapes can compare cities' 

communities. Metropolitan satellite photographs proved this. 

Robinson et al. [29] created high-resolution population 

estimates using satellite data and a deep-learning 

convolutional neural network model. CNN algorithm trained 

on one year of composite Landsat pictures predicts the US 

population on a 0.01 by 0.01 grid. CNN model validation used 

quantitative and qualitative methodologies. The quantitative 

validation compared the proposed model's grid cell estimates 

to many US Census county-level population estimations. 

Qualitative validation directly evaluated model predictions for 

satellite image inputs. The model illustrates how machine 

learning algorithms can tackle social issues using unstructured 

and remotely sensed data. The literature review is described in 

Table 1. 

 

Table 1. Summarized results of literature review 

 
Reference Model Limitations Results 

[30] 
Adaboost, XGBoost, GBDT, LR, 

DT, RF, SVM, NB, LR 
The dataset is restricted 

Recall=0.9699 and F1-score =0.9582, algorithm 

shows the highest performance. 

[31] 
Neural Networks, NB, k-NN, DT, 

and SVM 

Control and sample coming close to 

discovery cannot be told apart 

Both kNN and SVM algorithms worked 95.56% 

of the time. 

[32] Boost XG 
XGBoost cannot find antibiotic-resistant 

k-mers 
The model has a 95% accuracy rate. 

[33] SVM, ANN, and kNN influencing how well algorithms perform 
k-NN performed better, achieving an accuracy of 

77.15%. 

[34] ANN, NB, SVM, RF, and k-NN issue with overfitting RF fared better, with 97.57% accuracy. 

[35] 
GBDT, RF, DT, and adaptive 

boosting methods 

There wasn't much data gathered from 

the surveillance system 
The GBDT model's accuracy was 69%. 

[36] NN, LB, RF, SVM, and GBM 
Dose-response mechanisms limit risk 

assessment methods 
SVM fared better, achieving 89% accuracy. 

 

 

3. DATASET USED AND PERFORMANCE MEASURE 

 

The Satellite Image Classification (RSI-CB256) dataset 

(https://www.kaggle.com/datasets/mahmoudreda55/satellite-

image-classification) combines Sensor data with a Google 

Maps picture to form four distinct categories as: Cloudy; 

Desert; Green; Water. 

A collection of 5631 JPEG photos is used as training data. 

Figure 1 shows the sample images of all four types of images. 

The exam uses 80:20 images. Model performance is 

measured by accuracy, precision, recall, and F1-score.  

 

Model’s Accuracy (𝐴𝐶𝐶) =
𝑇𝑝+𝑇𝑓

𝑇𝑝+𝑇𝑓+𝐹𝑝+𝐹𝑛
 (1) 

 

Model’s Precision (𝑃𝑟𝑒) =
Tp

Tp+Fp
 (2) 

 

Model’s Recall (𝑅𝑒) =
Tp

Tp+F𝑛
 (3) 

 

Model’s 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒×𝑅𝑒

𝑃𝑟𝑒+𝑅𝑒
 (4) 

where, true positive, true negative, false positive, and false 

negative, are represented by 𝑇𝑝, 𝑇𝑓 , 𝐹𝑝 and 𝐹𝑛 respectively. 
 

 
 

Figure 1. Sample images 
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4. ENSEMBLE DEEP NEURAL NETWORK FOR 

SATELLITE IMAGE CLASSIFICATION 

 

The suggested ensemble model combines layered 

Convolutional Neural Network and SVM algorithm [30-34]. 

Figure 2 depicts the whole model. 

Convolutional Neural Network (CNN) is used for 

classification, one of the most popular technologies, as shown 

in Figure 3. Each layer of CNN contains the following sub-

layers: 

(1). Convolutional Layer (2). Completely Networked Layer 

(3). The Pooling Layer (4). The Drop-out Layer (5). Linked 

Dataset Classification Layer. 

 

• Convolutional Layer 

The convolution procedure is crucial to the convolutional 

layer, which maps the input picture with a filter of size mm to 

produce feature maps for the output. In equation form, the 

result of the convolutional layer may be represented as 

 

𝐴𝑛
𝑚 = 𝑓 ( ∑ 𝐴𝑘𝑛

𝑚−1

𝑘∈𝐿𝑛

∗ 𝑀𝑘𝑛
𝑚 + 𝐶𝑛

𝑚) (5) 

 

where, 

Results-based feature maps; 

Cn: Bias term; 

Ln: Input maps; 

Mkn: Convolution kernel. 

The final feature map's sophistication may be described as: 

 

𝑁 =
(X − M − 2Y)

T
 (6) 

 

Calculating Output Height/Length (N). 

Height/Length Input X. 

Filter size (M), padding (Y), and stride length (T). 

The data may be saved via padding in this case. Eq. (7) 

describes the padding: 

 

𝑌 =
(𝑀 − 1)

2
 (7) 

 

where, M is the size of the filter. 

 

• The ReLU Layer 

The convolutional process becomes more linear due to this 

layer's contributions. Hence, a ReLU layer is connected to 

each convolutional layer in the network. The most important 

thing that needs to be done in this layer is to ensure that all 

negative activations are set to zero and that the thresholding is 

set to maximum (0, p). 

 

 
 

Figure 2. Ensemble deep neural network 

 

 
 

Figure 3. CNN architecture 
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• The Max-Pooling Layer 

This layer is responsible for producing the output in a 

smaller size after the components of each block have been 

maximized. 

 

• Dropout Layer 

During the training phase, this layer is used to remove input 

components whose probability is less than a predetermined 

threshold. 

 

• The Batch Normalization Layer 

To standardize the value of the activation layer, this layer 

does a variety of mathematical operations, including 

subtraction, division, shifting, and scaling. The Eqs. (8)-(11) 

may be used to represent the batch normalized result, also 

known as Bk: 

 

𝐵𝑘 = D𝑂𝜃𝛼
× (𝐴𝑘) 

≡ θ𝐴�̂� + 𝐷 
(8) 

 

where, �̂�k is the settling down of activation Ak. 

 

�̂�𝑘 =
𝐴𝑘 + 𝑈𝐷

(𝜎𝐷
2 + 𝜀)1/2

 (9) 

 

where, 

ε: constant in nature; 

UD: Mini-batch average; 

σD
2: Minimal batch variance given by: 

 

𝑈𝐷 =
1

𝑑
∑ 𝐴𝑘

𝑑

𝑘=1

 (10) 

 

𝜎𝐷
2 =

1

d
∑ (Ak − UD)2

d

k=1
 (11) 

 

• Completely Connected Layer 

This layer links the neurons of the next layer to those of the 

layer below it, creating a vector. The vector's dimensions 

indicate class numbers. 

 

• The Output Layer 

At this layer, the softmax algorithm is used. The equation 

that defines the softmax is as follows: 

 

𝑃(𝑣𝑟|𝐴, 𝜃) =
𝑃(𝐴, 𝜃|𝑣𝑟) 𝑃(𝑣𝑟)

∑ 𝑃(𝐴, 𝜃|𝑣𝑟)𝑃(𝑣𝑟)𝑀
𝑛=1

 (12) 

 

where, 0≤ 𝑃(𝑣𝑟 |A 𝜃)≤ 1 and ∑ 𝑃(𝑣𝑟|𝐴, 𝜃) = 𝑃(𝐴,𝑀
𝑛=1 𝜃|𝑣𝑟) 

are the conditional and class prior probabilities. Eq. (13) may 

also be: 

 

𝑃(𝑣𝑟|𝐴, 𝜃) =
exp [dr(A, θ)]

∑ exp [ 𝑑𝑛(𝐴, 𝜃)]𝑀
𝑛=1

 (13) 

 
written as follows: 

 

𝑑𝑟 = ln(𝑃(𝐴, 𝜃|𝑣𝑟) 𝑃(𝑣𝑟)) (14) 

 

The output of the layered CNN is used as inputs for the 

regression model in the following way: The logistic regression 

model is described as follows: In this section of the model, the 

feature vector is represented by the letter x, and the outputs are 

probabilities: 

 
�̂� = 𝑃(𝑦 = 1|𝑥) (15) 

 

The feature vector denotes each instance of an item that 

belongs to the class, and each model is represented by one of 

the RGB channels outlined in Eq. (16): 

 

𝑛𝑥 = 𝑛ℎ + 𝑛𝑤 + 3 (16) 

 

�̂� = 𝜎(𝑧) (17) 

 
where, 

 

𝜎(𝑧) =
1

1 + 𝑒𝑧
 (18) 

 
The logistic function is expressed as z: 

 

𝑧 = 𝑤𝑇𝑥 + 𝑏 (19) 

 

Eqs. (20) and (21) express the loss and cost functions, 

respectively: 

 

𝐿(𝑦 ̂(𝑖), 𝑦(𝑖))) = −[𝑦(𝑖)𝑙𝑜𝑔𝑦 ̂(𝑖) + (1
− 𝑦(𝑖))𝑙𝑜𝑔(1 − 𝑦 ̂(𝑖))] 

(20) 

 

𝐽(𝑤, 𝑏) =
1

𝑚
∑(

𝑚

𝑖=1

𝐿(�̂�(𝑖), 𝑦(𝑖))) (21) 

 

where, m represents training examples. 

The classification is provided by: 

 
𝛿𝐿

𝛿𝑤
= (�̂�(𝑖) − 𝑦(𝑖))𝑥𝑗(𝑖)𝑎𝑛𝑑

𝛿𝐿

𝛿𝑏
= �̂�(𝑖) − 𝑦(𝑖) (22) 

 

The feature vector is represented by j =1, 2, ..., nx. 

The size of each picture is first normalized here in Figure 4 

preprocessing so that it conforms to the criterion of 256 pixels 

by 256 pixels. Python libraries are used to carry out identical 

operations with the highest possible degree of precision. When 

the data have been preprocessed, the appropriate acronyms are 

affixed. Then the data are separated into the various classes 

that will be utilized for testing afterwards. 

 

 
 

Figure 4. Segmentation and classification 
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The input layer depicts the picture fed into the CNN at the 

beginning of the process. The image loaded into the computer 

is denoted by the formula [height * width * many color 

channels]. The value of the color channel indicates the kind of 

picture; for example, the value channel=3 indicates an RGB 

image. The same input is then run through a data 

argumentation before being sent to the CNN for processing. 

The argumentation is carried out using various procedures, 

including cropping, rotation, and so on. Since the CNN model 

requires a substantial quantity of data to provide accurate 

results, the input data are augmented using some process that 

generates more data to meet its requirements. 

 

 

5. PROPOSED ENSEMBLE ALGORITHM 

 

The algorithm is summarised in several steps: 

Step 1. Define a function named def 

generate_classification(data). 

Step 2. Take Convolutional Size as cnn_svm = Conv3D (4, 

32, 5, 1). 

Step 3. Set parameter as cnn_svm.set_parameters. 

Step 4. Take Input Size as input_shape = (batch_size, 

data_length, input_dim). 

Step 5. Output Shape as output_shape = (batch_size, 

classification_dim). 

Step 6. Set Output Type as output_type = 'linear'). 

Step 7. Set CNN_SVM to fit data cnn_svm.fit(data, True). 

Step 8. Set Classification as classification = 

cnn_svm.output. 

Step 9. Return classification. 

 

Table 2. SVM and CNN tuning parameter 

 

SVM 

Kernel RBF 

Regularization (C) 1 

Gamma (for RBF) 0.1 

Class Weights 'balanced' 

CNN 

Architecture 
Convolutional layers: 3, Dense 

layers: 2 

Activation ReLU 

Dropout Rate 0.25 

Batch Size 32 

Learning Rate 0.001 

Optimizer Adam 

Input Image Size (256, 256, 3) 

Ensemble 

Combining Method Weighting Averaging 

SVM Weight 0.4 

CNN Weight 0.6 

Training 

Training/Validation 

Split 
80% training, 20% validation 

Training Duration 100 Epoch 

Validation Strategy K-Fold (5,10,20) 

Evaluation 

Metrics 
Accuracy, precision, recall, F1-

score 

Hyperparameter 

Tuning 

Grid search for SVM 

parameters, random search for 

CNN parameters 

 

The ensemble of CNN and SVM models may be motivated 

by the desire to combine the strengths of both approaches. 

CNNs are proficient in feature extraction from images, while 

SVMs are known for their strong classification capabilities. 

Combining these two models in an ensemble could potentially 

leverage the feature extraction power of CNNs and the 

discriminative capabilities of SVMs, leading to improved 

overall performance in tasks like image classification or object 

recognition. 

Tunning parameter used in this proposed model is shown in 

Table 2. 

 

 

6. RESULT ANALYSIS AND DISCUSSION 

 

The investigation is done with GPU-based Google Co-Lab 

and karas libraries written in Python. Experiments are carried 

out within the scope of this study, with the batch size, epoch, 

and learning rate all being subjected to change. The 

investigation uses two different epoch sizes, 50 and 100, and 

three different learning rates, namely 0.1, 0.001, and 0.0001. 

Figure 5 shows the training sample images. The comparison 

of the training loss to the validation loss, as shown in Figures 

6 (a) and 6 (b), and the comparison of the training accuracy to 

the validation accuracy, using 50 epochs and 0.0001 as the 

learning rate, are shown. Figure 6 (a) shows the error rate 

inversely proportional to the amount of model learning. When 

there is an increase in model learning, there is a corresponding 

drop in the error rate. As shown in Figure 6 (b), the model's 

accuracy and the amount of learned information improve. The 

accuracy of the model is around 98.97% of the time. 

 

 
 

Figure 5. Sample training images 

 

 
(a) 
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(b) 

 

Figure 6. (a) Loss associated with a learning rate of 0.0001 

and 50 epochs; (b) Accuracy with learning rate 0.0001, 50 

epochs 

 

 
(a) 

 
(b) 

 

Figure 7. (a) Loss during 100 epochs at a learning rate of 

0.0001; (b) Accuracy with learning rate 0.0001, 100 epochs 

 

Figures 7 (a) and 7 (b) show the difference between the 

training loss and the validation loss, as well as the difference 

between the training and validation accuracy, with a learning 

rate of 0.0001 epochs per second. Figure 7 (a) shows the error 

rate inversely proportional to the amount of model learning. 

When there is an increase in model learning, there is a 

corresponding drop in the error rate. Figure 7 (b) illustrates 

that the model's accuracy improves as the amount of learned 

information increases. The accuracy of the model is around 

98.90% of the time. 

 
(a) 

 
(b) 

 

Figure 8. (a) Loss with learning rate 0.001, 50 epochs; 

(b) Accuracy with learning rate 0.001, 50 epochs 

 

These results show that the computing algorithm acts as a 

primary role. For example, the weight correction used in the 

learning rate is computed using a training parameter. Figures 

8 (a) and 8 (b) demonstrate the contrast between training 

loss/validation loss and training accuracy/validation accuracy 

on 50 epochs and a 0.001 learning rate. Figure 8 (a) depicts the 

error rate inverse to the learning of the model. Whenever 

model learning increases, the error rate decreases. Figure 8 (b) 

illustrates that the model accuracy increases as knowledge 

increases. The accuracy of the model reaches 98.98%. 

Figures 9 (a) and 9 (b) show the difference between training 

loss and validation loss, as well as between training accuracy 

and validation accuracy, with a learning rate of 0.001 on 100 

iterations. The error rate inversely related to the learning of the 

model is shown in Figure 9 (a). When there is an increase in 

model learning, there is a corresponding drop in the error rate. 

Figure 9 (b) illustrates that the model's accuracy improves as 

the amount of learned data increases. The accuracy of the 

model is around 98.99% of the time. 

Figures 10 (a) and 10 (b) compare training loss/validation 

loss and training accuracy/validation accuracy on 50 epochs 

and 0.001 learning rate. Figure 10 (a) depicts the error rate 

inverse to the learning of the model. Whenever model learning 

increases, the error rate decreases. Figure 10 (b) illustrates that 

the model accuracy increases as learning rises. The accuracy 

of the model reaches 98.98%. 
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(a) 

 
(b) 

 

Figure 9. (a) Loss with learning rate 0.001, 100 epochs;  

(b) Accuracy with learning rate 0.001, 100 epochs 

 

Figures 11 (a) and 11 (b) show the comparison between 

training loss and validation loss at 100 epochs and 0.01 

learning rate. Figure 11 (a) shows the error rate as a function 

of model learning. Error rates go down as model learning 

speeds up. Figure 11 (b) shows that the model becomes more 

accurate with more training. The model achieves a 98.99% 

degree of accuracy. 

 

 
(a) 

 
(b) 

 

Figure 10. (a) Loss with learning rate 0.001, 50 epochs;  

(b) Accuracy with learning rate 0.01, 50 epochs 

 

 
(a) 

 
(b) 

 

Figure 11. (a) Loss with learning rate 0.01, 100 epochs;  

(b) Accuracy with learning rate 0.01, 100 epochs 

 

Table 3 shows that a dataset and meaningful epoch and 

learning rate settings were used to train the model. The dataset 

and the relevant epoch value affect the experiment's results. 

An exact outcome may be seen in the value of the critical 

epoch. Several epochs and learning rates are used in the 

investigation. This paper provides results for two different 

-0.1

6E-16

0.1

0.2

0.3

0.4

0.5

0.6

1 21 41 61 81 101

Train Loss Vs Val Loss

Train_loss

Val_loss

0.75

0.8

0.85

0.9

0.95

1

1 21 41 61 81 101

Accuracy

Train_acc

Accuracy

Val_acc

0

0.1

0.2

0.3

0.4

0.5

0.6

1 21 41 61 81 101

Train_loss vs Val_loss

Train_loss Val_loss

0.75

0.8

0.85

0.9

0.95

1

1 21 41 61 81 101

Accuracy

Train_acc

Accuracy

Val_acc

0

0.1

0.2

0.3

0.4

0.5

0.6

1 21 41 61 81 101

Train loss Vs Val_loss

Train_loss Val_loss

0.7

0.75

0.8

0.85

0.9

0.95

1

1 21 41 61 81 101

Train_acc

Val_acc

2535



 

period lengths and three different learning rate settings. The 

experiment results with two epochs and three learning rate 

settings are shown in Table 3. The envisioned paradigm 

contrasts with the gold standard classification model and CNN 

based hybrid model. The results, summarized in Table 4, show 

that the suggested model is superior to the alternatives. Table 

5 shows the comparison with literature and other state of art 

algorithms. 

The results show that the suggested neural network 

ensemble performs better than competing models. Accuracy, 

F1, Recall, and precision value are only a few of the metrics 

that have been compared. 

 

Table 3. Tuning parameter values and accuracy 

 
Dataset Size Dimension Epoch LR Accuracy (%) 

5631 256×256 px 

50 0.0001 98.97% 

50 0.001 98.90% 

50 0.01 98.98% 

100 0.0001 98.99% 

100 0.001 98.98% 

100 0.01 98.99% 

 

 

 

Table 4. Comparative analysis 

 
 Model AUC CA F1 Precision Recall 

K FOLD 5 

SVM 0.9992 0.9856 0.9856 0.9857 0.9856 

CNN 0.9997 0.9895 0.9895 0.9895 0.9895 

Logistic Regression 0.9999 0.9929 0.9929 0.9929 0.9929 

AdaBoost 0.9469 0.9208 0.9208 0.9208 0.9208 

SVCNN (Proposed Model) 0.9997 0.9896 0.9896 0.9896 0.9896 

K FOLD 10 

SVM 0.9992 0.9856 0.9856 0.9857 0.9856 

CNN 0.9997 0.9895 0.9895 0.9895 0.9895 

Logistic Regression 0.9999 0.9929 0.9929 0.9929 0.9929 

AdaBoost 0.9469 0.9208 0.9208 0.9208 0.9208 

SVCNN (Proposed Model) 0.9997 0.9896 0.9892 0.9895 0.9895 

K FOLD 20 

SVM 0.9990 0.9853 0.9853 0.9853 0.9853 

CNN 0.9997 0.9897 0.9897 0.9897 0.9897 

Logistic Regression 0.9999 0.9934 0.9934 0.9934 0.9934 

AdaBoost 0.9475 0.9217 0.9217 0.9218 0.9217 

SVCNN (Proposed Model) 0.9997 0.9897 0.9897 0.9897 0.9897 

 

Table 5. Comparative analysis with literature and other state of art algorithms 

 
Reference Model Results 

[30] 
Adaboost, XGBoost, GBDT, LR, DT, RF, SVM, NB, 

LR 

Recall=0.9699 and F1-score =0.9582, algorithm shows the highest 

performance. 

[31] Neural Networks, NB, k-NN, DT, and SVM Both kNN and SVM algorithms worked 95.56% of the time. 

[32] Boost XG The model has a 95% accuracy rate. 

[33] SVM, ANN, and kNN k-NN performed better, achieving an accuracy of 77.15%. 

[34] ANN, NB, SVM, RF, and k-NN RF fared better, with 97.57% accuracy. 

[35] GBDT, RF, DT, and adaptive boosting methods The GBDT model's accuracy was 69%. 

[36] NN, LB, RF, SVM, and GBM SVM fared better, achieving 89% accuracy. 

 Proposed (CNN+SVM) 98.96% 

 

 

7. CONCLUSION, LIMITATION AND FUTURE WORK 

 

The discovery of Cloudy area, Desert area, Green area and 

Water area is an exciting topic of study that has been 

investigated using hybrid approach. This body of work 

explores a further method of locating Cloudy area, Desert area, 

Green area and Water area by using solid artificial intelligence 

model. In this paper, we draw a comparison between various 

models for the detection of Cloudy area, Desert area, Green 

area and Water area by using the intensity of light (flux) along 

with Artificial Intelligence techniques and Machine Learning 

algorithms. In addition to that, an Ensemble-CNN model was 

presented for the same thing. Our suggested model exceeds all 

of them with an accuracy of 98.96%, but most portray good 

outcomes. 98.96% and 98.97% in the K fold, correspondingly 

5, 10, and 20. 

This model classifies only four types of data only if there 

will change in dataset, this model will not work properly. 

In the future, one of our goals is to research additional 

machine learning models and artificial intelligence methods to 

locate Cloudy area, Desert area, Green area and Water area. 
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