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Technology has advanced to the point where it can influence every facet of human existence. 

Here, we look at how technology can help treat brain tumors, one of the most frequent 

malignancies and a leading cause of death. Many people lose their lives each year because 

of brain tumors. In the United States, roughly 85,000 new cases are diagnosed each year, 

bringing the total number of people with primary brain tumors to an estimated 700,000. 

Artificial intelligence has helped medicine and people overcome this challenge. Most brain 

cancers are detected via magnetic resonance imaging. Medical imaging and image 

processing make extensive use of magnetic resonance imaging for diagnosing anatomical 

differences. In this paper, we investigate the performance of various convolutional neural 

network (CNN) models like AlexNet, GoogleNet, VGGnet11, VGGnet13, VGGnet16, 

VGGnet19, ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, DenseNet121, 

DenseNet161, DenseNet169, and DenseNet201 for brain tumor diagnosis tasks. On a dataset 

of 3264 MRI images, we perform experiments for healthy meningioma, glioma, and 

pituitary brain tumor classification. Our tests reveal that the ResNet and DenseNet models 

yield the highest accuracy (82%). Furthermore, we investigate the potential of a fusion-

based approach where we test for different combinations of fusion of CNN models. The 

results show that fusing many CNN features improves accuracy even more. Classification 

accuracy is improved to 86% when ResNet50 and ResNet101 are fused and improves to 

84% when DenseNet161 and DenseNet169 are fused. 
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1. INTRODUCTION

A brain tumor is a potentially fatal condition characterized 

by aberrant tissue structure in the brain as a result of several 

cerebrovascular disorders. Since 1970, several researchers 

have worked to improve brain tumor detection by adding more 

interaction with medication to ensure proper and speedy 

treatment, but the goal of medical imaging is to offer adequate 

observation to neurologists in order to pinpoint the tumor's 

precise position [1, 2]. Today's computational power and 

availability of high-quality medical imagery like MRI Dicom 

images have greatly improved the accuracy of computer-

assisted brain tumor identification [3]. 

The brain, the human body's most vulnerable and heaviest 

organ, controls most bodily functions, including movement, 

taste, hearing, vision, sensation, and smell. Brain tumors, 

resulting from abnormal cell growth, can strain adjacent 

tissues and disrupt brain function, leading to symptoms such 

as seizures, severe headaches, and changes in smell, sight, and 

hearing. These tumors can vary in size and location within the 

brain, complicating detection and treatment. Symptoms 

depend on factors like tumor size, location, and origin, and 

may also include personality changes, insomnia, memory loss, 

fatigue, nausea, and vomiting. The safest way to diagnose 

brain tumors is through a medical professional. 

The spinal cord and brain make up the human central 

nervous system (CNS), which is the control center of the 

nervous system [4, 5]. The brain is responsible for a variety of 

bodily functions, including data processing, integration, 

coordination, decision making, and the transmission of 

commands to different areas of the body. Physiologically 

speaking, the human brain is extraordinarily complex. Brain 

tumors, TBI, developmental defects, MS, stroke, dementia, 

infections, and headaches are some examples of CNS diseases. 

Magnetic resonance imaging (MRI) and Computed 

tomography (CT) can diagnose brain problems. Brain MRI 

diagnosis most CNS diseases non-invasively [6]. Brain MRI 

allows the general practitioner to view brain slices. It detects 
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CNS diseases and provides information for patient diagnosis. 

MRI provides better image contrast than CT and allows living 

brain structure identification [7]. 

Medical experts are learning to read medical imaging 

probes. With its many imaging sequences for different 

purposes, MRI takes longer to learn. It takes time and effort 

for medical experts to accurately diagnose CNS problems [8]. 

The most common MRI sequences, T1 and T2, reveal tissue 

characteristics and information. Weighted MRI-MRI-T2 is 

associated with fluid-attenuated inversion retrieval, while T1 

is associated with contrast enhancement, tensor eigenvalues, 

and image texture, and local histograms are used with MRI in 

brain tumor segmentation research. Human interaction has 

been associated with manual, semi-automated, and fully 

automated MRI [9]. Using deep learning in the healthcare 

industry will allow for more accurate diagnoses, better 

treatments, and better overall decision making. 

This study makes three key contributions: 

 

(i) A comparison of several state-of-the-art CNN 

models for detecting tumors in brain MRI scans. 

(ii) An investigation into the impact of a late fusion-

based approach on classification metrics. 

(iii) An experiment using a dataset of 3264 images to 

evaluate the performance improvement achieved 

by late fusion of ResNet and DenseNet. 

 

This paper follows the structure described below. Related 

work is discussed in Section 2. The methodology follows in 

Section 3. In Section 4, we provide a brief overview of the 

experiments, like the dataset, hardware-software 

configurations, and results, and in Section 5, we draw a 

conclusion and talk about possible future works. 

 

 

2. RELATED WORK 

 

In this section, we review the current medical state of tumor 

detection research. Existing surveys on artistic methods are 

reviewed, and the literature review of deep learning-based 

approaches is discussed. 

 

2.1 Machine learning based methods 

 

Image segmentation improves the detection of brain 

abnormalities. Researchers found strategies to accurately 

localize brain malformations from MRI images. SIENA and 

SIENAX are fully automated longitudinal and cross-sectional 

(single time point) analysis methods by Smith et al. [10]. BET 

took out the skull and brain. Registration techniques were 

developed to isolate the region of interest by separating the 

brain from the skull. The "Binary Oread" operation reduced 

brain transformation artifacts. For change analysis, brain edge 

motion was tracked in time-sequential images. Both are 

precise and robust, with 0.15% longitudinal brain volume 

change inaccuracy and 0.5-1% single-time point accuracy 

(cross-sectional). They are particularly insensitive to the 

scanning parameters. Vovk et al. [11] studied the MRI 

intensity inhomogeneous approach. Papers were ranked by 

their correction techniques, optimization, modeling, forward 

processing, and prior knowledge contribution. Makropoulos et 

al. [12] explored several segmentation strategies for automated 

prenatal and neonatal brain MRI imaging. Deformation 

models, unsupervised, classification, parametric, and atlas 

fusions have been created to search for brain, tissue, or more 

specific regions of interest. The neonatal tissue segmentation 

algorithms were then evaluated using NeoBrainS12, a 

benchmark dataset. In 2021, Fawzi et al. [13] provided a more 

thorough evaluation of recent brain imaging segmentation 

algorithms. This article discusses the 2019-2020 technologies. 

This includes most brain tumor segmentation deep learning 

models. This review paper found that hybrid and deep learning 

metaheuristic approaches perform better to segment brain 

tumors [14, 15]. 

 

2.2 Deep learning based methods 

 

Artificial intelligence (AI) imaging methods provide a wide 

range of recommendations to facilitate the transfer of image 

data between systems [16]. The ability of radiologists to 

differentiate between malignant and benign breast lesions 

from MRI scans has been enhanced by artificial intelligence 

[17]. AI helps radiologists make more accurate diagnoses, 

which can lead to more effective treatment and ultimately a 

faster patient recovery. In paper [18], we build a high-

efficiency algorithm for the detection and recognition of 

meniscus tears in an MRI of the knee. In paper [19], the 

authors perform a systematic literature analysis on the topic of 

radiomics and artificial intelligence (AI), covering all medical 

imaging methods with a focus on their non-oncological and 

oncological uses for general medical applications. In paper 

[20], we get an overview of MRI image analysis and 

processing using deep learning. In paper [21], a deep learning 

algorithm that uses an end-to-end training technique is 

designed to accurately diagnose breast cancer on screening 

mammograms. 

The difficulties of convolutional neural networks (CNNs) 

have been the subject of many published studies and tutorials 

[22, 23]. In their book, Zhu et al. [24] and colleagues explain 

the layers that make up a CNN, as well as their applications 

and design. The forward and backward propagation of CNNs 

was also discussed. Pereira et al. [25], using CNN, employed 

normalization as a pre-processing step. He contributed to 

BraTS in 2013 and 2015, and his contributions included a 

proposal for a CNN-based automatic segmentation approach. 

MBINet model classifies RMB tumor pictures [26]. Self-

organized operational neural networks power MBINet. The 

SMBI system collected 920 raw microwave brain (RMB) 

picture samples using a tiny 3D stacked wideband nine 

antenna array sensor. In their survey [27], Bernal et al. [27] 

provided an overview of CNN techniques in MRI image 

analysis, discussing architecture, data preparation, pre-

processing, and post-processing methodologies. He details the 

development of several CNN designs and explores state-of-

the-art methods in the field. 

A technique based on a combination of CNN and genetic 

algorithms was implemented by Anaraki et al. [28]. To reduce 

variation in prediction errors, they proposed the use of bagging 

as an ensemble technique to non-invasively classify glioma 

grades from MRI scans. According to Tandel et al. [29], the 

goal of the initiative is to develop a non-invasive, quicker-

than-a-biopsy automated MRI-based method for classifying 

brain tumors. This instrument can be used as a primary or 

secondary method for grading brain tumors. The authors used 

a fully connected conditional random field in three dimensions 

to reduce false positives [30]. Furthermore, a 3D CNN 

architecture was also described for automatic lesion 

segmentation. 
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The dual-force training method is introduced in study by 

Chen et al. [31] to motivate deeper models to acquire excellent 

multiple scales advantages. In paper [32], we zero in on a 

completely convolutional network that learns quickly, takes in 

data of any size, and returns data of the same size. For 

segmenting and evaluating images slice by slice, Havaei et al. 

[33] suggested FCNN. A two-phase training program was also 

suggested as a solution to the problem of social stratification. 

Menze et al. [34] suggested an approach for multi-modality 

image segmentation of brain tumors. This tactic can be viewed 

as either creative or selective. For 3D-based deep learning 

components, Frischer et al. [35] presented a three-pass CNN. 

Asad et al. [36] created a generic model for identifying tumors 

in brain cells. The study's primary objective was to improve 

medical professionals' ability to identify one of the worst 

diseases afflicting human beings. In his research, tumor types 

were determined using the CNN deep-learning system. The 

model was trained using a 2D CNN and ResNet-50. The SGD 

optimizer was used to improve the effectiveness of the model. 

 

3. METHODOLOGY 

 

The diagnostic framework for brain tumor diagnosis is 

shown in Figure 1. There were 15 different types of CNNs 

used in this work [37, 38]. We create a late fusion model to 

increase brain tumor categorization accuracy. We built our 

model using 15 unique convolutional neural network (CNN) 

layers. In order to acquire multi-granularity and multiscale 

global features, we combine the networks' features and employ 

the multi receptive field. The purpose of the late fusion module 

is to improve the system's capacity to identify pathogenic and 

nonpathological regions. In late fusion, we independently run 

models on all available modalities, extracting their features 

individually, and then combine these features for classification. 

To be more precise, our network architecture features a 

preprocessing dataset, a two-stream network, a late-stage 

fusion module, and multiple classifications. The two-stream 

network employs a pair of networks in tandem to collect and 

profit from a greater variety of disease characteristics. 

 
 

Figure 1. Deep learning framework for brain tumor diagnosis 

 

 

4. EXPERIMENTAL ANALYSIS 

 

4.1 Dataset 

 

This study made use of data from a publicly available 

Kaggle dataset [39]. Meningioma, Glioma, healthy, and 

pituitary MRIs make up the whole set of 3264 pictures. 

Gliomas, the most prevalent type of malignant brain tumor, 

occur in spinal cord and brain glial cells. Even though 

meningiomas are mostly harmless, they can progress to more 

dangerous tumors if left untreated. Most cases of meningioma 

develop in the membranes that surround the brain (the 

meninges). Pituitary tumors, which originate in the pituitary 

gland located at the base of the brain, are also considered 

benign. The lack of symptoms shared by meningiomas and 

pituitary tumors makes them challenging to identify. 

Physicians should double-check the accuracy of the 

classifications used. Input images are 64×64 pixels in size. 

There are a total of 2870 pictures in the dataset's training set, 

and only 394 in the test set. In Table 1, we can see the 

breakdown of the data, and Figure 2 shows dataset images 

from training and testing datasets. 
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Table 1. Brain tumor distribution into 4 categories 

 
Class Training Testing 

Meningioma 822 115 

Glioma 826 100 

Pituitary 827 74 

Healthy 395 105 

 

 
 

Figure 2. Sample images from dataset [39] 
 

4.2 Implementation 
 

15 pre-trained CNNs are used. We used K80 GPU in 

combination with a Google Colab notebook running models 

created with the PyTorch toolkit to conduct our tests. The 

CNN is trained by decreasing the size of an image from its 

original 256×226 at random, and then randomly flipping the 

image horizontally. The learning rate was set at 0.001, the 

mini-batch size was 16, and the maximum number of epochs 

for fusion was 60. Their goal was to lay the groundwork for 

using fusion in computing to facilitate transfer learning. The 

batch size, maximum epochs, momentum, initial learning rate, 

and step size employed in the experiments (single CNN and 

fusion) are summarized in Tables 2 and 3. 
 

Table 2. Hyperparameters for single CNN 
 

Parameter Value 

Epochs 40 

Learning Rate 0.001 

Minibatch 16 images 

Momentum 0.9 

Step size 20 

 

Table 3. Hyperparameters for late fusion 
 

Parameter Value 

Epochs 60 

Learning Rate 0.001 

Minibatch 16 images 

Momentum 0.9 

Step size 20 

 

A standard metric that is focused on accuracy can be used 

to quantify the success of a model. The fact that there were 

enough false positives (FP), and true positives (TP) as well as 

enough false negatives (FN), and true negatives (TN) gave 

additional evidence that the quality assessment model was 

accurate. For the purposes of calculating precision, accuracy, 

weighted average, F1-score, and recall, the formulas (1), (2), 

(3), (4), and (5) were utilized: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (1) 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
 (2) 

Weighted Avg. =
∑ 𝑤𝑖 𝑋𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 (3) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)
/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) 

(4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (5) 

 

4.3 Results 

 

4.3.1 Experiment with transfer learning 

The results of 15 deep CNN models being applied to a 

classification job are presented in Table 4. The confusion 

matrices for cross-validation are depicted in Figure 3 for Alex-

Net, Google-Net, VGG11, VGG13, VGG16, VGG19, 

ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, 

densnet121, DenseNet161, DenseNet169, and DenseNet201. 

We show the following classes in the experiment table for 

glioma tumor i.e., GT, meningioma tumor i.e., MT, pituitary 

tumor i.e. PT and no tumor i.e. NT. Here is a detailed 

examination of each CNN model: 

 

a) Transfer learning with different CNN models 

We first tried AlexNet out in a series of experiments. Table 

4 displays the experiment results, while Figure 3 depicts the 

confusion matrix. The AlexNet model has a 77% success rate 

on the accuracy test. Additionally, the experiment was run 

through GoogleNet. There are visual representations of both 

the confusion matrix (Figure 3) and the experimental 

outcomes (Table 4). Googlenet's testing accuracy was 80%. 

Tests with vgg11 were performed. Table 4 displays the 

experimental data, and Figure 3 depicts the confusion matrix 

in graphic form. On the accuracy test, the VGG11 model 

performs at 81%. The vgg13 was used in the study. There are 

visual representations of both the confusion matrix (Figure 3) 

and the experimental outcomes (Table 4). A total of 80% 

accuracy was achieved in vgg13 testing. The obtained findings 

are shown in Table 4, with an accuracy of 81% from vgg16. In 

Figure 3, we see the confusion matrix. The vgg19 serves as the 

experimental medium. There are visual representations of both 

the confusion matrix (Figure 3) and the experimental 

outcomes (Table 4). Testing accuracy in the vgg19 averaged 

81%. Next, we put the ResNet18 to work in the experiment. 

Figure 3 depicts the confusion matrix, and Table 4 provides an 

overview of the experiment's findings. An 81% accuracy is 

reached in ResNet18. The ResNet34 was then used to conduct 

the experiment. Figure 3 depicts the confusion matrix, and 

Table 4 provides an overview of the experiment's results. The 

accuracy of ResNet34 is 82%. The ResNet50 was then used to 

conduct the experiment. Figure 3 depicts the confusion matrix, 

and Table 4 provides an overview of the experiment's results. 

The accuracy of ResNet50 is 82%. The experiment was then 

conducted using ResNet101. Figure 3 depicts the confusion 

matrix, and Table 4 provides an overview of the experiment's 

results. The ResNet101 pass rate is 82%. The ResNet152 was 

used in the experiment. Figure 3 depicts the confusion matrix, 

and Table 4 summarizes the experiment's results. In 

ResNet152, accuracy is at 82%. The DenseNet121 played a 

key role in the execution of the experiment. Figure 3 depicts 

the confusion matrix, and Table 4 summarizes the 

experiment's results. DenseNet121 has the potential to achieve 

an accuracy of around 80%. The experiment was then 

conducted using DenseNet161. Figure 3 depicts the confusion 

matrix, and Table 4 summarizes the experiment's results. To 
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be more specific, DenseNet161 achieves 81 percent accuracy. 

Finally, the experiment was carried out using DenseNet169. 

Figure 3 depicts the confusion matrix, and Table 4 summarizes 

the experiment's results. The accuracy of DenseNet169 is 82%. 

DenseNet201 was used to conduct the experiment. Figure 3 

depicts the confusion matrix, and Table 4 summarizes the 

experiment's results. DenseNet201 achieves an accuracy of 

82%. 

 

Table 4. Classification results with different CNN models 

 

AlexNet 

Class Pre. Rec. F1 ACC 

GT 1 0.25 0.41 

77 

MT 0.65 1 0.79 

NT 0.8 1 0.89 

PT 0.95 0.76 0.84 

Weighted avg. 0.83 0.77 0.73 

Googlenet 

GT 1 0.27 0.43 

80 

MT 0.7 1 0.82 

NT 0.8 1 0.89 

PT 0.96 0.92 0.94 

Weighted avg. 0.85 0.8 0.76 

vgg11 

GT 1 0.35 0.52 

81 

MT 0.71 1 0.83 

NT 0.81 1 0.89 

PT 1 0.89 0.94 

Weighted avg. 0.86 0.81 0.79 

vgg13 

GT 1 0.32 0.48 

80 

MT 0.71 1 0.83 

NT 0.77 1 0.87 

PT 0.98 0.85 0.91 

Weighted avg. 0.85 0.8 0.77 

vgg16 

GT 0.9 0.46 0.61 

81 

MT 0.73 0.97 0.83 

NT 0.8 1 0.89 

PT 1 0.8 0.89 

Weighted avg. 0.84 0.81 0.8 

vgg19 

GT 0.93 0.39 0.55 

81 

MT 0.72 1 0.84 

NT 0.81 1 0.9 

PT 0.98 84 0.91 

Weighted avg. 0.85 0.81 0.79 

ResNet18 

GT 0.81 0.44 0.57 

81 

MT 0.8 0.95 0.87 

NT 0.75 1 0.86 

PT 0.97 0.84 0.9 

Weighted avg. 82 81 0.8 

ResNet34 

GT 1 0.4 0.57 

82 

MT 0.69 1 0.82 

NT 0.84 1 0.91 

PT 1 0.85 0.92 

Weighted avg. 0.87 0.82 0.8 

ResNet50 

GT 1 0.38 0.55 

82 

MT 0.71 1 0.83 

NT 0.82 1 0.9 

PT 1 0.88 0.94 

Weighted avg. 0.87 0.82 0.8 

ResNet101 

GT 1 0.34 0.51 

82 

MT 0.71 1 0.83 

NT 0.8 1 0.89 

PT 1 0.92 0.96 

Weighted avg. 0.86 0.82 0.79 

ResNet152 

GT 0.96 0.45 0.61 

82 

MT 0.74 0.98 0.84 

NT 0.78 1 0.88 

PT 1 0.81 0.9 

Weighted avg. 0.86 0.82 0.8 

DenseNet121 

GT 1 0.39 0.56 

80 MT 0.71 1 0.83 

NT 0.78 1 0.88 

PT 1 0.78 0.88 

Weighted avg. 0.86 0.8 0.78 

DenseNet161 

GT 1 0.32 0.48 

81 

MT 0.68 1 0.81 

NT 0.83 1 0.91 

PT 1 0.89 0.94 

Weighted avg. 0.86 0.81 0.78 

DenseNet169 

GT 1 0.34 0.51 

82 

MT 0.67 1 0.8 

NT 0.87 1 0.93 

PT 1 0.92 0.96 

Weighted avg. 0.87 0.82 0.79 

DenseNet201 

GT 1 0.36 0.53 

82 

MT 0.68 1 0.81 

NT 0.86 1 0.93 

PT 1 0.92 0.96 

Weighted avg. 0.87 0.82 0.8 

 

Table 5. Classification results with fusion of different CNN 

models 

 

ResNet34+

ResNet50 

Class Pre. Rec. F1 ACC 

GT 0.97 0.39 0.56 

83 

MT 0.79 0.99 0.88 

NT 0.75 1 0.86 

PT 0.99 0.92 0.95 

Weighted avg. 0.86 0.83 0.8 

ResNet34+

ResNet101 

GT 0.98 0.42 0.59 

83 

MT 0.77 0.99 0.86 

NT 0.77 1 0.87 

PT 1 0.88 0.94 

Weighted avg. 0.86 0.83 0.81 

ResNet34+

ResNet152 

GT 0.97 0.34 0.5 

80 

MT 0.76 0.98 0.86 

NT 0.73 1 0.85 

PT 0.97 0.88 0.92 

Weighted avg. 0.85 0.8 0.78 

ResNet50+

ResNet101 

GT 0.88 0.59 0.71 

86 

MT 0.89 0.91 0.9 

NT 0.76 1 0.86 

PT 0.97 0.92 0.94 

Weighted avg. 0.87 0.86 0.85 

ResNet50+

ResNet152 

GT 1 0.35 0.52 

82 

MT 0.69 1 0.82 

NT 0.84 1 0.91 

PT 1 0.92 0.96 

Weighted avg. 0.87 0.82 0.79 

ResNet101

+ResNet15

2 

GT 1 0.35 0.52 

82 

MT 0.72 1 0.84 

NT 0.8 1 0.89 

PT 1 0.92 0.96 

Weighted avg. 0.87 0.82 0.79 

DenseNet1

61+DenseN

et169 

GT 1 0.43 0.6 

84 

MT 0.73 1 0.84 

NT 0.84 1 0.91 

PT 1 0.92 0.96 

Weighted avg. 0.88 0.84 0.82 

DenseNet1

61+DenseN

et201 

GT 1 0.35 0.52 

82 

MT 0.74 1 0.85 

NT 0.78 1 0.88 

PT 1 0.92 0.96 

Weighted avg. 0.86 0.82 0.79 

DenseNet1

69+DenseN

et201 

GT 1 0.4 0.57 

83 

MT 0.76 1 0.86 

NT 0.78 1 0.88 

PT 1 0.92 0.96 

Weighted avg. 0.87 0.83 0.81 

 

b) Experiment with late fusion of CNN 

We select the top-performing seven models (ResNet34, 
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ResNet50, ResNet101, ResNet152, DenseNet161, 

DenseNet169, and DenseNet201) and employ them in a wide 

range of late fusion configurations. By fusing ResNet34 and 

ResNet50, as shown in Table 5, an accuracy of 83% was 

reached; the related confusion matrix is displayed in Figure 4. 

ResNet34 and ResNet101 are the two networks chosen for 

fusion. By fusing ResNet34 with ResNet101, as shown in 

Table 5, an accuracy of 83% was reached; the related 

confusion matrix is displayed in Figure 4. We use ResNet34 

and ResNet152 for fusion. By fusing ResNet34 with 

ResNet152, as shown in Table 5, an accuracy of 80% was 

reached; the related confusion matrix is displayed in Figure 4. 

ResNet50 and ResNet101 are the two networks chosen for 

fusion. By combining ResNet50 and ResNet101, as shown in 

Table 5, an accuracy of 86% was reached; the related 

confusion matrix is displayed in Figure 4. We use ResNet50 

and ResNet152 for fusion. Table 5 shows that by combining 

ResNet50 and ResNet152, an 82% accuracy was achieved, and 

Figure 4 depicts the associated confusion matrix. Two 

networks, ResNet101 and ResNet152, have been selected for 

fusion. Table 5 shows that by combining ResNet101 and 

ResNet152, an 82% accuracy was achieved, and Figure 4 

depicts the associated confusion matrix. DenseNet161 and 

DenseNet169 are used in the fusion process. Table 5 shows 

that by combining DensNet161 and DenseNet169, an 84% 

accuracy was achieved, and Figure 4 depicts the associated 

confusion matrix. For the fusion, we use DensNet161 and 

DenseNet201.  
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Figure 3. Confusion matrix of all CNN models 
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Figure 4. Confusion matrix of all fusion 

 

Table 5 shows that by combining DensNet161 and 

DenseNet201, an 82% accuracy was achieved, and Figure 4 

depicts the associated confusion matrix. DensNet169 and 

DenseNet201 are used in the fusion process. Table 5 displays 

the results of using DensNet169 and DenseNet201 together, 

and Figure 4 shows the related confusion matrix. 

 

c) Analyzing and comparing several CNN Pre-Trained 

models. 

 

 
 

Figure 5. Diagrammatic depiction of classification metrics of 

fusion models 

 
 

Figure 6. Diagrammatic depiction of classification metrics of 

fusion models 

 

The findings from different models are compared here, the 

CNN model is fused, and the differences are explained. Our 

experiments with numerous CNN models (including AlexNet, 

GoogleNet, VGGnet11, VGGnet13, VGGnet16, VGGnet19, 

ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, 

DenseNet121, DenseNet161, DenseNet169, and DenseNet201) 

show that ResNet, and DenseNet provide the highest 

classification accuracy, as shown in Tables 6 and 7. 

Improvements in precision, recall, and F1-score were 

especially noticeable when compared to other CNN models. In 

terms of classification accuracy, fusing ResNet50 and 

ResNet101 yields an 86% improvement, whereas fusing 

DenseNet161 and DenseNet169 yields an 84% improvement. 

There is a graphical representation of fusion methods and pre-

trained CNN models in Figures 5 and 6. 

 

Table 6. Evaluation of various pre-trained CNN models 

 
Models Prec. Rec. F1. Accu. Time (Training) 

AlexNet 0.85 0.75 0.75 0.77 164m 41s 

GoogleNet 0.86 0.80 0.77 0.80 367m 34s 

VGG11 0.88 0.81 0.80 0.81 994m 47s 

VGG13 0.87 0.79 0.77 0.80 1576m 2s 

VGG16 0.86 0.81 0.80 0.81 1974m 59s 

VGG19 0.86 0.81 0.80 0.81 2344m 39s 

ResNet18 0.83 0.81 0.8 0.81 385m 31s 

ResNet34 0.88 0.81 0.81 0.82 677m 17s 

ResNet50 0.88 0.81 0.8 0.82 933m 45s 

ResNet101 0.88 0.81 0.8 0.82 1535m 9s 

ResNet152 0.87 0.81 0.81 0.82 2167m 5s 

DenseNet121 0.87 0.79 0.79 0.80 990m 54s 

DenseNet161 0.88 0.8 0.79 0.81 1964m 7s 

DenseNet169 0.89 0.81 0.8 0.82 1193m 39s 

DenseNet201 0.89 0.82 0.81 0.82 1507m 55s 

 

d) Statistical analysis of late fusion approach 

Using the late fusion method, we employed seven CNN 

models selected based on their accuracy, achieving an 

accuracy range of 80% to 86%. In contrast, various single 

CNN models achieved accuracy ranging from 77% to 82%. 

Thus, our late fusion strategy enhanced accuracy by 3% to 4%. 

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
le

x
n
et

G
o

o
g

le
N

et

V
G

G
1
1

V
G

G
1
3

V
G

G
1
6

V
G

G
1
9

R
es

N
et

1
8

R
es

N
et

3
4

R
es

N
et

5
0

R
es

N
et

1
0

1

R
es

N
et

1
5

2

D
en

se
N

et
1
2

1

D
en

se
N

et
1
6

1

D
en

se
N

et
1
6

9

D
en

se
N

et
2
0

1

Precision Recall F1-Score Testing Accuracy

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

Precision Recall F1-Score Testing Accuracy

2581



 

Table 7. Evaluation of various fusion methods 

 

Models Prec. Rec. F1. Accu. 
Time 

(Training) 

ResNet34+Res

Net50 
0.86 0.83 0.80 83.00 2299m 31s 

ResNet34+Res

Net101 
0.86 0.83 0.81 83.00 3287m 24s 

ResNet34+Res

Net152 
0.85 0.80 0.78 80.00 4276m 53s 

ResNet50+Res

Net101 
0.87 0.86 0.85 86.00 3616m 39s 

ResNet50+Res

Net152 
0.87 0.82 0.79 82.00 4909m 59s 

ResNet101+Re

sNet152 
0.87 0.82 0.79 82.00 5803m 60s 

DenseNet161+

DenseNet169 
0.88 0.84 0.82 84.00 6018m 55s 

DenseNet161+

DenseNet201 
0.86 0.82 0.79 82.00 7266m 58s 

DenseNet169+

DenseNet201 
0.87 0.83 0.81 83.00 3978m 25s 

 

e) Comparative analysis 

In this evaluation, we compare our proposed method with 

previous studies that employed the same brain tumor types but 

differed in network topologies and parameters. The results of 

this comparative study, presented in Table 8, demonstrate that 

our proposed network outperformed all tested methodologies 

in terms of both classification accuracy and robustness. These 

findings affirm the reliability and resilience of our model. 

 

Table 8. Comparative analysis of the proposed approach with 

previous works 

 
Method Year Accuracy 

Das et al. [40] 2019 84.19 

Abiwinanda et al. [41] 2021 79 

Wahid et al. [42] 2019 84.18 

Devi and Selvaraju [43] 2020 85 

Nhlapho et al. [44] 2024 85 

Proposed 2024 86 

 

 

5. CONCLUSIONS 

 

We compared fifteen distinct deep learning models for 

classifying brain MRI images: the AlexNet, GoogleNet, 

VGGnet11, VGGnet13, VGGnet16, VGGnet19, ResNet18, 

ResNet34, ResNet50, ResNet101, ResNet152, DenseNet121, 

DenseNet161, DenseNet169, and DenseNet201. We used an 

MRI dataset containing 3,264 images that consist of four 

categories: glioma, meningioma, pituitary tumor, and healthy. 

Tables 4-7 display the results with comparisons obtained using 

various CNN-based methods. Figure 3 and Figure 4 show the 

cross-validation confusion matrices. Our results show that the 

ResNet and DenseNet models provide the best classification 

accuracy (82 percent). Fusion of ResNet50 and ResNet101 

achieves 86% accuracy in classification, while fusion of 

DenseNet161 and DenseNet169 achieves 84% accuracy. 

Several variations of deep learning models, such as 

EfficientNet, and their combinations may allow for further 

progress in the future. Ultimately, we hope to soon explore the 

prospect of training the model on a massive labeled dataset. 
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