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With the advancement of Virtual Reality (VR) technology, interactive theater has gained 

increasing attention as an emerging art form. VR environments provide audiences with 

immersive experiences, allowing them not only to observe but also to influence the narrative 

progression. However, existing research primarily focuses on static scenes and simple 

interaction mechanisms, lacking real-time analysis of dynamic user behavior, which limits 

engagement and the quality of the experience. Moreover, traditional image recognition 

techniques often fall short in accuracy and real-time performance when handling complex 

scenes, making them insufficient for the evolving demands of interactive theater. Therefore, 

exploring interactive theater experience design based on image recognition—particularly 

with adaptive initial contouring and saliency detection—becomes crucial. This study aims 

to enhance the user experience in interactive theater through two main components. First, it 

investigates adaptive initial contouring of VR images in interactive theater to enable 

personalized user interactions. Second, it employs superpixel-based contour-aware methods 

for saliency detection in VR images, aiming to improve the efficiency and accuracy of visual 

content recognition. Through these studies, this research seeks to provide new technical 

support and theoretical foundations for creating interactive theater in VR, driving further 

advancements in the field. 
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1. INTRODUCTION

With the rapid development of technology, VR technology 

has gradually become a core driving force for innovation 

across multiple fields, especially demonstrating broad 

application prospects in the fields of entertainment and art [1-

4]. Interactive theater, as an emerging art form, integrates the 

characteristics of theatrical performance and audience 

participation, providing a unique immersive experience for the 

audience [5-9]. The VR environment offers a new platform for 

the presentation of interactive theater, allowing the audience 

not only to be mere observers but also to directly influence the 

development and outcome of the narrative through their 

actions and choices. However, how to achieve efficient image 

recognition and user interaction in a VR environment remains 

a major challenge in current research. 

In this context, research on the design of interactive theater 

experiences based on image recognition in VR environments 

has significant theoretical and practical implications [10-15]. 

First, an in-depth exploration of the interaction between users 

and virtual environments will help enhance the sense of 

immersion and participation in theatrical works, promoting 

emotional resonance among the audience. Second, research on 

adaptive initial contouring can provide personalized 

interactive experiences for different users, thus enhancing the 

appeal of the work. In addition, research on saliency detection 

based on superpixel and contour awareness can offer a new 

perspective for optimizing visual content in virtual 

environments, helping designers better grasp the focus of 

audience attention [16, 17]. These studies not only enrich the 

expressive forms of VR art but also provide theoretical support 

for the development of related technologies. 

Although there has been some existing research on VR and 

interactive theater, current methods still exhibit obvious 

deficiencies [18-21]. Many studies focus primarily on static 

scenes or simple interaction mechanisms, lacking real-time 

analysis and adaptation to dynamic user behavior. 

Furthermore, some existing image recognition technologies 

are insufficient in accuracy and real-time performance when 

processing complex scenes, rendering them ineffective in 

responding to rapidly changing environments and user 

demands in interactive theater. This limits audience 

engagement and experience quality, preventing the full 

potential of interactive theater from being realized. 

This paper aims to address the above issues by proposing a 

more effective VR image design scheme for interactive theater. 

The research mainly includes two parts: first, exploring 

adaptive initial contouring of VR images in interactive theater, 

using image recognition technology to analyze user 

characteristics in real time to achieve personalized interactive 

experiences; second, performing saliency detection of 

interactive theater VR images based on superpixel and contour 
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awareness methods, aiming to improve the efficiency and 

accuracy of visual content recognition. Through these two 

aspects of research, this paper not only provides new ideas for 

the creation and design of interactive theater but also lays a 

solid foundation for enhancing user experience and promoting 

the application of VR technology in the field of art. 

 

 

2. ADAPTIVE INITIAL CONTOUR OF VR IMAGES IN 

INTERACTIVE THEATER 

 

In a VR environment, the design of an interactive theater 

experience must fully consider the user's sense of immersion 

and engagement. The main purpose of researching adaptive 

initial contours for VR images in interactive theater is to 

enhance the user's personalized experience. When 

participating in interactive theater, each user may have unique 

backgrounds, emotional states, and behavioral preferences. 

Therefore, design teams need to leverage image recognition 

technology to analyze users' facial expressions, movements, 

and other physiological feedback in real time to generate initial 

contours that adapt to the user's characteristics. This adaptive 

design can not only offer users a narrative progression closer 

to their psychological expectations but also dynamically adjust 

scenes and characters, allowing users to feel a stronger sense 

of engagement and immersion in the virtual environment, 

thereby significantly improving the overall experience quality 

of interactive theater. 

In the VR environment of interactive theater, the audience's 

sense of engagement and immersion depends on the quality 

and precision of image segmentation. Traditional image 

segmentation methods often require manual setting of initial 

contours, a process that is both time-consuming and labor-

intensive. In practical applications, background interference 

can lead to suboptimal segmentation effects. For instance, the 

Active Contour Model (ACM) can be highly influenced by 

various background features depending on the initial contour, 

thereby affecting the precision of target extraction. To enhance 

the segmentation performance of VR images in interactive 

theater, it is necessary to explore a more efficient and adaptive 

method for initial contour setting. The Robust Noise via Local 

Similarity Factor (RLSF) model, based on local similarity 

information, can conduct segmentation experiments under 

different initial contours, providing an automated solution that 

reduces manual intervention and improves segmentation 

accuracy. 

In a VR environment for interactive theater, an ideal initial 

contour setting must meet specific conditions. (1) Due to the 

frequent scene changes in interactive theater, the audience’s 

attention and interactive behavior are also highly dynamic. 

Therefore, designing a system that can automatically generate 

initial contours can effectively reduce the operational burden 

on users within the immersive experience, allowing them to 

focus more on the plot development and character interaction. 

This adaptive initial contour not only enhances segmentation 

efficiency but can also quickly adjust to various visual scenes 

to meet different audience needs, thereby strengthening 

immersion and engagement. (2) The ideal initial contour 

should strive to cover the target and maintain an appropriate 

distance from the target boundary. In VR images for 

interactive theater, the targets are typically dynamic characters 

or important scene elements. Ensuring that the initial contour 

includes these targets can improve segmentation accuracy and 

real-time performance. If the distance between the initial 

contour and the target boundary is too large, the segmentation 

result may be suboptimal, thereby affecting the audience’s 

experience and understanding of the narrative. Thus, designing 

a system that can intelligently recognize targets and 

automatically adjust the contour ensures that the initial contour 

maintains a suitable distance from the target, making the 

segmentation process more precise. 

Interactive theater VR experiences often involve rapidly 

changing scenes and characters, where audience interactions 

require the system to respond and adjust swiftly, with the 

audience's attention typically focused on dynamic characters 

and key scenes. Hence, effectively capturing the target area 

while maintaining clear image boundaries is essential. 

Therefore, this paper adopts Simple Linear Iterative Clustering 

(SLIC) for coarse segmentation selection of VR images in 

interactive theater. The advantage of the SLIC algorithm lies 

in its ability to divide the image into a small number of 

irregular superpixels based on pixel texture, color, and 

brightness features. This segmentation approach not only 

effectively captures the target area but also maintains clear 

image boundaries. By generating compact and uniform 

superpixels, SLIC establishes a foundation for subsequent 

segmentation and recognition steps, ensuring that the 

audience’s immersion experience is not compromised by 

blurry boundaries, thereby enhancing understanding and 

engagement with the plot. Furthermore, SLIC’s computational 

speed is relatively fast, enabling it to meet the efficiency 

requirements in real-time interactive environments. SLIC 

initializes clustering centers randomly and continually 

optimizes them during iterations, providing flexibility to adapt 

to various visual scenes and supporting reliable data for 

generating adaptive initial contours. 

Based on the above analysis, this paper first conducts coarse 

segmentation of VR images in interactive theater using the 

SLIC algorithm, aiming to generate adaptive initial contours 

through fuzzy clustering. Next, by calculating the standard 

deviation of each superpixel, it quantifies the dispersion of 

pixel values within each superpixel to identify those with 

significant features. Suppose the original image I generates an 

image with v superpixels through the SLIC algorithm, 

represented as UT = [UT1, UT2, UT3, ..., UTv]. The calculated 

standard deviation for each superpixel UTu is denoted as δ = 

[δ1, δ2, ..., δv], and all superpixel blocks are concentrated into 

a one-dimensional matrix Aδ. 

Then, a Fuzzy Clustering Algorithm (FCM) is applied to 

classify the one-dimensional matrix Aδ to further refine the 

feature regions of superpixels. In VR images for interactive 

theater, the dynamic changes of characters and scenes require 

the system to rapidly identify and respond to key feature areas. 

Through clustering of superpixels, fuzzy clustering can 

aggregate those superpixels containing target features together, 

thus generating adaptive initial contours. Let z represent the 

clustering center and l the weighted index, with the FCM loss 

function given by: 
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The u-th cluster center expression zru: 
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Membership function expression iu(ak): 
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3. SALIENCY DETECTION FOR INTERACTIVE 

THEATER VR IMAGES BASED ON SUPERPIXELS 

AND CONTOUR AWARENESS 

 

In a VR environment, the core objective of interactive 

theater experience design is to create an immersive space that 

evokes strong emotional resonance and engagement from the 

audience. This study introduces an image saliency detection 

method based on superpixels and contour awareness as an 

innovative exploration to achieve this goal. Using superpixel 

technology, images are divided into more structured regions, 

facilitating analysis of each region’s visual information and 

features. Contour awareness effectively identifies and extracts 

the boundaries of key characters and significant scenes within 

the performance, thereby helping the system more accurately 

target the audience's focal points. This saliency detection 

method not only enhances the visual effect of the scene but 

also enables real-time adjustment of visual content within the 

dynamic interactive environment, keeping the audience 

focused on elements with the most emotional and dramatic 

tension as they engage with the storyline. 

The total energy function R of interactive theater VR images 

serves as a global fitting energy that incorporates overall 

saliency information of the image, allowing the model to 

assess the relative importance of target regions across a 

broader context. For interactive theater VR experience design, 

constructing R ensures that the audience can capture the 

dynamic changes of main characters and significant scenes 

even amid rapidly evolving plots. This total energy function E 

consists of three components: the local similarity-based fitting 

energy RM, the global saliency-based fitting energy RH, and the 

energy regularization term RE. RM aims to quantify the fit 

between the contour and the target region by analyzing the 

local similarity of superpixels within an image, thereby driving 

the contour to gradually approach the target boundary. The 

local similarity factor, RH, ensures that the model fully 

leverages local structural information within the image, aiding 

in the identification of salient regions. The energy 

regularization term, RE, is used to control the model's 

smoothness and stability, preventing overfitting and noise 

interference, thus enhancing the robustness of saliency 

detection. The constraint term based on gradient similarity is 

denoted by d, the regional gradient coefficient matrix is 

represented as I = [I1, ..., Iv], and the v-dimensional linear 

combination is expressed as F = [F1, …, Fv]T. The functional 

expression is as follows: 

 

1

. .
l
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u
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Specifically, during interaction, when the audience engages 

with characters or objects in the scene, RM can adjust in real-

time to ensure that these interactive elements maintain visual 

saliency without being overwhelmed by surrounding clutter. 

This dynamic adjustment not only enhances the audience's 

sense of immersion but also boosts their interaction with the 

virtual environment, making each interaction filled with 

exploratory excitement and surprise. Given the vulnerability 

of traditional region-based methods to non-Gaussian noise and 

image feature interference, RM incorporates a local similarity 

factor. By analyzing spatial and intensity differences in local 

regions of the image, it enhances the model’s robustness. In 

the rapidly changing scenes of interactive theater, where the 

audience's attention often centers on dynamic characters and 

significant objects, the use of local similarity factors ensures 

that these key elements are effectively highlighted against 

complex backgrounds. Assume that a local window centered 

at pixel a is represented by Va, the Euclidean spatial distance 

between two pixels is denoted by f, and the local average 

intensity value is denoted by mz. The energy computation 

formula based on region that incorporates the local similarity 

factor is as follows: 
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Assuming mz1 and mz2 represent the intensity averages in 

the local internal and external regions around contour a, and 

Gγ (.) is the Heaviside function, the local intensity mean zu is 

defined as: 
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Assuming the Euclidean spatial distance from pixel b to the 

local area center a is represented by f, and the parameter 

defining the size of the local area is e. The expression for the 

local region L (a, b) based on the local similarity image fitting 

in interactive theater VR is: 
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In summary, the expression for the region-based image 

fitting function RM is: 
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The construction of the global fitting energy function RH 

based on saliency aims to enhance the accurate detection of 

salient areas, especially in natural images and interactive 

theater scenes. Figure 1 presents a comparison between 

traditional saliency algorithms and improved saliency 

algorithms. The traditional local fitting constraint is often 

affected by various features in the image, leading to 

suboptimal segmentation results. To address this issue, RH 

performs a comprehensive analysis of the image’s global 

features, considering the distribution and relative relationships 

2509



 

of significant information throughout the entire image. This 

global fitting energy not only focuses on extracting local 

information but also includes a global evaluation of saliency 

regions, enabling the model to identify key elements that 

capture the audience's attention, such as dynamic character 

movements and changes in important props, within a broader 

context. Assume that the saliency map is represented by Tv, 

and the weight of the global fitting energy is represented by ηH. 

The expression is: 
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The expression for the mean value tu inside and outside the 

curve Z in image Tv is: 

 

( , ) ( )
, 1,2

( )

v u

u

u

T a b G dadb
t u

G dadb






= 






 (10) 

 

The saliency of interactive theater VR images stems from 

the uniqueness of VR visuals. The formula for computing 

image Ust in traditional saliency detection algorithms is as 

follows: 
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Given that certain pixels exhibit very low intensity in at 

least one-color channel, this paper leverages these points to 

enhance contrast between the target and background. Figure 2 

shows the effect of weighting in RGB image channels. Let the 

original image be represented as U, with each channel’s 

weight denoted as μu. U1, U2, and U3 represent the R, G, and B 

channels of the original image, respectively. A new saliency 

detection formula is then proposed as follows: 
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where, 
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Consequently, the saliency feature map Tv is expressed as: 
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Figure 3 displays a visual comparison of saliency detection 

in interactive theater scene images. 

In interactive theater, where scenes change rapidly, viewers 

must quickly and accurately focus on dynamic characters or 

significant elements. The regularization term is introduced to 

ensure the smoothness of the evolving curve Z, preventing 

instability in saliency boundaries caused by local noise or 

irregular shapes. By constraining the curve’s perimeter, the 

regularization term effectively limits the complexity of 

segmentation results, ensuring that the boundary of the 

saliency region remains smoother and more natural. This 

avoids visual distractions due to overfitting, thus enhancing 

the overall viewing experience. The length regularization term 

is defined as: 

 
( ( )) ( ( )) | ( ) |M a a a =    (15) 

 

Since Z is the zero value of the level set function Θ(a), the 

energy function can be updated to: 
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Minimizing the energy function with respect to Θ yields the 

variational level set formula: 
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Figure 1. Comparison of traditional saliency algorithm and 

improved saliency algorithm 

 

 
 

Figure 2. The effect of weighting in RGB image channels 
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Figure 3. Visual comparison of saliency detection in interactive theater scene images 

 

To effectively extract saliency regions in complex 

interactive scenes, this study employs the Orthogonal 

Matching Pursuit (OMP) algorithm to solve the total energy 

function for image saliency detection. This ensures optimal 

decomposition results while addressing the diversity and 

complexity of image features in the interactive theater VR 

environment. Specifically, by constructing an overcomplete 

dictionary d containing various possible visual feature atoms, 

the algorithm can accommodate different types of sparse 

decomposition requirements. During each iteration, the 

algorithm first selects the atom Ib from dictionary d that best 

matches the current signal b and uses region gradient similarity 

to evaluate the accuracy of each decomposed signal Iu. By 

calculating the residual Eu = |Iu-Ib|, if the residual falls below a 

preset threshold, the current decomposition is deemed 

satisfactory, retaining the signal Iu as output; otherwise, the 

dictionary matrix Fu is updated to enhance the accuracy in the 

next iteration. 

 

 

4. ALGORITHM IMPLEMENTATION 

 

The framework for the saliency detection algorithm based 

on superpixels and contour awareness in interactive theater 

VR images is shown in Figure 4. The specific implementation 

steps are as follows: 

(1) Preprocessing and Initialization: Begin by inputting the 

original image of the interactive theater VR scene, setting 

necessary parameters such as the number of FCM clusters, 

SLIC seed count, and color space distance-related parameters. 

These parameters should be selected based on the unique 

characteristics of the VR environment and the specific 

demands of interactive theater. 

(2) Superpixel Segmentation: Apply the SLIC algorithm to 

the VR image to perform coarse segmentation, generating a 

limited number of superpixels. This step helps reduce the 

complexity of subsequent processing while retaining the main 

structural information of the image. In a VR interactive theater 

environment, superpixel segmentation can assist in quickly 

identifying key elements in the scene, such as characters, props, 

and background. 

(3) Initial Contour Generation: Use the FCM clustering 

algorithm to cluster superpixel blocks, generating an initial 

contour. In an interactive theater scene, the initial contour 

assists in locating potential interactive objects or key visual 

elements. 

(4) Saliency Detection Iteration: Enter the primary iterative 

loop, which includes the following steps: 

(a) Use the improved saliency detection algorithm to 

compute the saliency map Tv. This step considers the specific 

requirements of the VR environment, such as a 360-degree 

view and depth information. 
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Figure 4. Framework of the saliency detection algorithm for interactive theater VR images 

 

 

(b) Calculation of mzu and tu: These values are crucial for 

accurately identifying salient objects within the VR 

environment. 

(c) Update the level set function, gradually refine the 

saliency detection results through iterative optimization. 

(d) Periodic apply the gradient similarity constraints to 

improve the accuracy and stability of the detection. 

(5) Result Optimization and Output: After completing the 

iterations, perform optimization on the final saliency detection 

results. This includes processes such as edge smoothing and 

small-region merging, which are essential to meet the needs of 

the VR environment. Finally, output the optimized saliency 

map. 

 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the data in Figure 5, it can be seen that the proposed 

method performs well in terms of Boundary Recall under 

different numbers of superpixels. Specifically, as the number 

of superpixels increases from 250 to 1500, the Boundary 

Recall improves from 0.53 to 0.86. This result is competitive 

compared to other saliency detection models. For example, 

when the number of superpixels is 1000, the Boundary Recall 

of the proposed method is 0.78, slightly higher than the Itti-

Koch Model (0.66) and Graph-Based Visual Saliency (0.71), 

but lower than the Deep Learning-Based Saliency (0.96) and 

Spectral Saliency Detection (0.96). Similarly, when the 

number of superpixels reaches 1500, the Boundary Recall of 

the proposed method is 0.86, which is comparable to methods 

such as the Saliency Map Model, Deep Saliency Model, and 

Visual Attention Model, and significantly better than the Itti-

Koch Model (0.77) and Graph-Based Visual Saliency (0.82). 

As shown by the data in Figure 6, the proposed method 

demonstrates competitive performance in terms of accuracy 

under different numbers of superpixels. Specifically, when the 

number of superpixels is 250, the accuracy of the proposed 

method is 0.66, which is higher than that of the Itti-Koch 

Model (0.56) and Graph-Based Visual Saliency (0.57), and 

relatively close to Deep Learning-Based Saliency (0.74) and 

Spectral Saliency Detection (0.7). As the number of 

superpixels increases, the accuracy of the proposed method 

gradually decreases, dropping from 0.66 with 250 superpixels 

to 0.55 with 1500 superpixels. However, this downward trend 

is common across models, such as Deep Learning-Based 

Saliency, which decreases from 0.74 to 0.6, and Spectral 

Saliency Detection, which decreases from 0.7 to 0.6. Notably, 

when the number of superpixels increases to 1000, the 

accuracy of the proposed method still maintains a level of 0.59, 

slightly higher than that of the Itti-Koch Model and Graph-

Based Visual Saliency, both at 0.54. 

As shown by the F-measure data in Figure 7, the proposed 

method demonstrates relatively stable and excellent 

performance across different numbers of superpixels. 

Specifically, when the number of superpixels is 250, the F-

measure of the proposed method is 0.59, which is moderate; in 

comparison, the Itti-Koch Model is 0.475, and Graph-Based 

Visual Saliency is 0.5, both lower than the proposed method. 

As the number of superpixels increases, the F-measure of the 

proposed method gradually improves, maintaining a range of 

0.63 to 0.635 within 500 to 1500 superpixels. This 

performance surpasses that of the Itti-Koch Model and Graph-

Based Visual Saliency and is comparable to other traditional 

models such as the Saliency Map Model, Deep Saliency 

Model, and Visual Attention Model, all of which stabilize 

around 0.63 as the superpixel number increases. Notably, 

Deep Learning-Based Saliency and Spectral Saliency 

Detection exhibit higher F-measure values at 500 superpixels 

and above, reaching 0.76, though their complexity and 

resource requirements are also relatively higher. 

From the data of under-segmentation error in Figure 8, there 

are significant differences in the performance of different 

algorithms at different superpixel numbers. The under-

segmentation error of the proposed method is 0.3 when the 

number of superpixels is 250. As the number of superpixels 

increases, the under-segmentation error gradually decreases, 

eventually dropping to 0.13 at 1500 superpixels. In contrast, 

the under-segmentation error of the Itti-Koch Model is 0.45 at 

250 superpixels, and it gradually decreases to 0.25 as the 

number of superpixels increases, still higher than that of the 

proposed method. The under-segmentation error of Graph-

Based Visual Saliency is also higher than that of the proposed 
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method at all superpixel numbers, decreasing from 0.47 (250 

superpixels) to 0.26 (1500 superpixels). Other traditional 

models, such as the Saliency Map Model and Deep Saliency 

Model, have under-segmentation errors that are higher than the 

proposed method across the entire range, especially at higher 

superpixel numbers, where the under-segmentation errors are 

0.2 and 0.205, respectively. It is worth noting that the under-

segmentation errors of Deep Learning-Based Saliency and 

Spectral Saliency Detection are high at all superpixel numbers, 

particularly the Deep Learning-Based Saliency, which has an 

under-segmentation error of 0.09 at 1500 superpixels. 

From the data of achievable segmentation accuracy in 

Figure 9, there are significant differences in the performance 

of different algorithms at different superpixel numbers. The 

segmentation accuracy of the proposed method is 0.81 when 

the number of superpixels is 250. As the number of superpixels 

increases, the segmentation accuracy gradually improves, 

eventually reaching 0.91 at 1500 superpixels. In contrast, the 

segmentation accuracy of the Itti-Koch Model is 0.75 at 250 

superpixels, and as the number of superpixels increases to 

1500, its accuracy is only 0.86. Graph-Based Visual Saliency 

performs slightly better, with an initial accuracy of 0.74, 

eventually reaching 0.85. The segmentation accuracy of the 

Saliency Map Model and Deep Saliency Model is slightly 

higher across the entire superpixel range, but at 1500 

superpixels, they only reach 0.88. Convolutional Neural 

Networks and Multi-Resolution Saliency have similar 

performance, with segmentation accuracies of 0.865 and 0.855 

at 1500 superpixels, respectively. Deep Learning-Based 

Saliency and Spectral Saliency Detection have higher 

segmentation accuracy at all superpixel numbers, particularly 

Deep Learning-Based Saliency, which reaches 0.96 at 1500 

superpixels, but its accuracy fluctuates significantly at lower 

superpixel numbers. 

The aforementioned experimental results show that the 

proposed superpixel and contour-aware saliency detection 

algorithm significantly improves segmentation accuracy at 

different superpixel numbers and demonstrates very high 

stability and accuracy as the number of superpixels increases. 

Compared with other traditional and deep learning methods, 

the proposed method maintains a high segmentation accuracy 

across the range from 250 to 1500 superpixels, especially at 

higher superpixel numbers, where the segmentation accuracy 

is 0.91, significantly outperforming most traditional methods. 

Although Deep Learning-Based Saliency has the highest 

accuracy at high superpixel numbers, its accuracy fluctuates 

significantly at low superpixel numbers, making it less stable. 

 

 
 

Figure 5. Boundary recall comparison 

 
 

Figure 6. Accuracy comparison 

 

 
 

Figure 7. F-measure comparison 

 

 
 

Figure 8. Under-segmentation error comparison 

 

From Table 1, it can be seen that the proposed method 

performs relatively balanced in various metrics when the 

number of superpixels is 300. Specifically, the boundary recall 

is 0.514875, accuracy is 0.662315, F-measure is 0.578405, 

under-segmentation error is 0.298546, and the achievable 

segmentation accuracy reaches 0.823215. This performance 

outperforms many traditional saliency detection algorithms. 
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For example, the achievable segmentation accuracy of the Itti-

Koch Model is only 0.732158, Graph-Based Visual Saliency 

is 0.721548, and the accuracy of the Saliency Map Model and 

Deep Saliency Model are 0.812256 and 0.789546, respectively. 

Although Deep Learning-Based Saliency has the highest 

segmentation accuracy at 0.874521, its under-segmentation 

error is 0.213256, indicating its shortcomings in model 

complexity and stability. While Spectral Saliency Detection 

shows a higher accuracy of 0.824512, its boundary recall and 

F-measure are slightly inferior to those of the proposed method. 

Through the analysis of the above experimental data, it can 

be seen that the proposed superpixel and contour-aware 

saliency detection algorithm performs excellently in several 

key metrics, especially in terms of accuracy and segmentation 

performance. Its achievable segmentation accuracy reaches 

0.823215, which is significantly higher than most traditional 

methods. This indicates that the proposed method can not only 

more accurately identify salient regions in images but also 

effectively control under-segmentation errors, thereby 

improving the overall quality of segmentation. For interactive 

drama experience design in VR environments, the application 

of this algorithm can significantly enhance user immersion and 

interaction. By more accurately identifying the visual content 

that the user focuses on and reducing unnecessary detail 

confusion, the proposed method provides more precise and 

efficient technical support for interactive drama VR image 

design, further optimizing personalized interactive 

experiences for users and enhancing the efficiency and 

accuracy of visual content recognition in VR. 
 

 
 

Figure 9. Achievable segmentation accuracy comparison 

 

Table 1. Comparison of different metrics for algorithms at 300 superpixels 

 

Metric 

Algorithm 

Boundary 

Recall 
Accuracy F-measure 

Under-

Segmentation 

Error 

Achievable 

Segmentation 

Accuracy 

Itti-Koch Model 0.421548 0.554152 0.465215 0.432152 0.732158 

Graph-Based Visual Saliency 0.445268 0.562358 0.512325 0.456238 0.721548 

Saliency Map Model 0.578495 0.623154 0.623154 0.332651 0.812256 

Deep Saliency Model 0.589623 0.625866 0.623265 0.351248 0.789546 

Convolutional Neural Networks 0.441526 0.612458 0.512148 0.421535 0.754126 

Multi-Resolution Saliency 0.552369 0.612352 0.589516 0.389523 0.756233 

Visual Attention Model 0.558795 0.623158 0.587415 0.362545 0.765412 

Deep Learning-Based Saliency 0.681236 0.725894 0.721562 0.213256 0.874521 

Spectral Saliency Detection 0.623514 0.712458 0.652545 0.332145 0.824512 

Proposed Method 0.514875 0.662315 0.578405 0.298546 0.823215 

 

 

6. CONCLUSION 

 

This paper aims to address the issues of adaptability and 

saliency detection in interactive theater VR image design by 

proposing a new design solution. The paper explores the 

adaptive initial contours of interactive theater VR images. 

Based on image recognition technology, it analyzes user 

characteristics in real-time to achieve a personalized 

interactive experience. By dynamically adjusting the initial 

contours of the images to suit the needs and preferences of 

different users, it enhances user immersion and engagement. 

This paper proposes a superpixel and contour-aware saliency 

detection method to improve the visual content recognition 

efficiency and accuracy of interactive theater VR images. 

Through superpixel segmentation and contour-aware 

technology, it is more effective in detecting salient regions in 

the image, thus improving the accuracy and speed of image 

processing. This method helps to more quickly and accurately 

identify and process key content in the image, enhancing the 

overall visual effect and user experience. 

The experimental results show a comparison of multiple 

algorithms and metrics, including boundary recall comparison 

curve, accuracy comparison curve, F-measure comparison 

curve, under-segmentation error comparison curve, achievable 

segmentation accuracy comparison curve, and a comparison 

of various metrics for different algorithms when the number of 

superpixels is 300. These results indicate that the proposed 

solution outperforms traditional methods in multiple metrics, 

especially in terms of boundary recall, accuracy, and F-

measure. 

Overall, the interactive theater VR image design solution 

proposed in this paper significantly enhances the user 

interactive experience and image processing efficiency 

through adaptive initial contours and saliency detection 

technology. The experimental results prove that this solution 

outperforms traditional methods in several key metrics, 

demonstrating higher boundary recall, accuracy, and F-

measure. The research value of this paper mainly lies in: 1) 

improving the personalization and immersion of interactive 

theater VR images, enhancing the user experience, and 2) 

improving the accuracy and efficiency of saliency detection, 

which is especially important for real-time interactive 

scenarios. 

However, the research also has certain limitations. The 

study mainly focuses on specific scenarios and user 

characteristics, and its effectiveness may vary in other types of 

interactive content. Real-time performance and computational 

resource consumption still need further optimization to be 
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applied in broader scenarios. In the future, the application 

scope of the study will be expanded to verify the suitability 

and effectiveness of the solution in different types of 

interactive content. Further optimization of the algorithm will 

be conducted to reduce computational resource consumption 

and enhance real-time processing capabilities. 
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