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Acute myocardial infarction (AMI) is a heart muscle ischemia caused by blockage or 

narrowing of coronary arteries, leading to left ventricular wall rupture (LVWR). Diagnosing 

AMI is challenging due to improper border and edge enhancement, segmentation, and 

classification. To address the above-mentioned, a deep denoised convolutional neural 

network (DnCNN) is applied to enhance the edge and boundary regions of the myocardium. 

A ResNet 18-based deep active curriculum learning (DACL) model is proposed to classify 

MI or non-MI patients by left ventricular wall rupture. The model is trained with a few 

samples to detect MI and dynamically updates the number of samples in the training dataset. 

The adaptive sampling strategy efficiently classifies myocardial infarction in the HMC-QU 

dataset, achieving a sensitivity of 98.2%, a specificity of 97.3%, an accuracy of 98.5%, and 

an AUC of 99.6%. 
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1. INTRODUCTION

According to the World Health Organization, heart disease 

is the leading cause of death in India, accounting for nearly 

54.1% of deaths in 2020. The majority of deaths occur in 

adults between the ages of 30 and 69, and high blood pressure, 

poor diabetes control, high cholesterol, and obesity are all 

causes of heart disease. Heart disease affects both the heart and 

the arteries. Doctors classify heart disease into several types, 

including peripheral arterial disease (PAD), cerebrovascular 

disease (CVD), aortic aneurysm, cardiomyopathy, 

hypertensive heart disease, heart failure, pulmonary heart 

disease, and arrhythmias-congenital heart disease, 

eosinophilic myocarditis [1]. 

Imaging techniques such as duplex ultrasound, computed 

tomography angiography (CTA), or magnetic resonance 

angiography (MRA) of the lower extremities can be used to 

assess the anatomic location and severity of stenosis in patients 

with symptomatic PAD who are candidates for 

revascularization, to restore blood flow in blocked arteries, 

according to Gerhard-Herman et al. [2]. Patients with 

symptomatic PAD may also benefit from these imaging 

modalities. Individual patients are treated with antiplatelet 

therapy, aspirin and clopidogrel, statin therapy, 

antihypertensive therapy, oral anticoagulation, and glycemic 

control. Acute ischemic stroke occurs because of bleeding in 

the brain. Non-contrast computed tomography (NCCT) and 

magnetic resonance imaging (MRI)) are used to Physicians 

treat patients with acute ischemic stroke with emergency 

intravenous injections, emergency endovascular therapy, and 

stent retrieval. 

The aortic root, through the aortic bifurcation, is all 

susceptible to aneurysmal disease. Endovascular aneurysm 

repair with stent grafts has caused a huge paradigm shift in the 

field of aortic aneurysm surgery over the past three decades [3, 

4]. Cardiomyopathies are diseases that cause anatomical and 

functional changes in the heart muscle. Cardiac magnetic 

resonance imaging can detect cardiomyopathy. Pharmacologic 

therapies include diuretics, beta-blockers, angiotensin-

converting enzyme inhibitors (ACEIs), angiotensin-2 receptor 

blockers (ARBs), mineralocorticoid antagonists (e.g., 

spironolactone), ivabradine, and sacubitril/valsartan [5]. 

Hypertensive heart disease causes structural cardiac 

changes such as left ventricular hypertrophy (LVH) and left 

atrial (LA) dilatation, leading to an increased risk of atrial 

fibrillation (AF) or heart failure (HF) from preserved to 

reduced ejection fraction (HFpEF) (HFrEF). Detection by 

cardiac magnetic resonance imaging (MRI) is critical. 

Recently, researchers have shown that sodium-glucose 

cotransporter 2 (SGLT2) inhibitors can improve symptoms [6]. 

Changes in the structure or function of the right ventricle 

associated with impaired respiratory function define 

pulmonary heart disease (PHD) [7]. Diuretics are used to treat 

the excess volume, especially if it is associated with right heart 

congestion. Long-term oxygen therapy is the cornerstone of 

PHD treatment. Eosinophilic myocarditis [1] is an 

inflammatory cardiomyopathy characterized by eosinophilic 

infiltration of cardiac tissue. A large clinical trial is underway 

for a drug treatment for eosinophilic myocarditis. There are 

mainly symptomatic and immunosuppressive therapies 

available. Myocardial remodelling improved with 

angiotensin-converting enzyme inhibitors/angiotensin 

receptor blockers and aldosterone receptor antagonists. Blood 

pressure medications are used to treat congenital heart disease 
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(CHD) [8]. 

 

 

2. RELATED WORK 

 

A heart attack, called an acute myocardial infarction (AMI), 

is a potentially fatal condition that occurs when the blood 

supply is suddenly interrupted, resulting in tissue damage. The 

diagnosis of myocardial infarction requires evidence of 

myocardial necrosis in a clinical situation consistent with 

acute myocardial ischemia. (1) symptoms of myocardial 

ischemia, (2) new or presumed new significant ST-segment 

changes or new left bundle branch block, (3) development of 

pathological Q waves on the electrocardiogram, (4) imaging 

evidence of loss of viable myocardium or new regional wall 

motion abnormality, or (5) identification of an intracoronary 

thrombus by angiography or autopsy are all symptoms of 

myocardial infarction. The classification distinguishes 

between type 1 myocardial infarction, caused by 

atherosclerotic plaque thrombosis, and type 2 myocardial 

infarction, caused by an imbalance of myocardial oxygen 

supply and demand in another acute condition. Sudden 

myocardial infarctions are percutaneous coronary intervention 

(type 4) and coronary artery bypass grafting (type 5) [9]. AMI 

is caused by physical inactivity, alcohol use, smoking, 

dyslipidemia, diabetes, hypertension, obesity, BMI, stress, 

gout, age, and periodontal disease [10]. Table 1 shows the state 

of the art in the detection of myocardial infarction. 

 

Table 1. State of the art comparison techniques 

 
Author Method/Data Used Cons Dataset/Metrics 

[11] 
Shallow neural network 

ECG signal 

Limited ability to capture complex 

hierarchical patterns 

Physikalisch-Technische Bundesanstalt (PTB) 

Accuracy: 98% 

[12] 
Multi channel lightweight 

network(MLNET)/ECG Signal 
Fusion of the Complex feature is difficult 

Physikalisch-Technische Bundesanstalt (PTB) 

Accuracy: 96.5% 

[13] CNN-LSTM Large data required 85.1% 

[14] Encoder -Decoder with CNN SVM 

The performance of Encoder and decoder 

depends on the quantity and quality of the 

data 

HMC-QU Dataset 

Accuracy 88.92 

[15]         Active polynomial+ Echocardiogram Required specialized knowledge 
HMC -QU Dataset 

Accuracy 87.94% 

[16] Knowledge graph/12 lead ECG signal Creation of accurate ontology is complex 
Physikalisch-Technische Bundesanstalt (PTB) 

Accuracy: 93.65% 

[17] 
DenseNet 

(ECG signal) 
Requires more computational resources 

Physikalisch-Technische Bundesanstalt(PTB) 

95% 

[18] 
Semantic Segmentation (SegNet)-

Cardiac MRI 

Misclassification of myocardial infarction 

due to noise in cardiac MRI 

Hospital of Qingdao University 

Left Ventricle Cardiac MRI dataset 95.5% 

[19] 
Convolutional Neural 

Network(CNN)-Cardiac MRI 

Difficult in detecting small objects due to 

low contrast MRI 

Delayed Enhancement of MRI dataset 

95.53% 

[20] RNN -LSTM (3 lead ECG ) 
Difficult in capturing long term 

dependencies 
PhysioNet STAFF III-97.4% 

[21] 
Deep LSTM network (single beat 

ECG) 
Difficult to train PTB-XL database-77.12% 

[22] 
Polar Residual Network 

(echocardiography-short axis view) 
Lead to instability and convergence 99.6% 

[23] Inception V3 model(echocardiogram) Requires large amount of data PLA general Hospital 99.6% 

Proposed 

ResNet 18 based Deep Active 

Curriculum learning (DACL) 

(echocardiogram) 

Advantages over 

Efficient learning by selecting 

informative samples. 

Increasing number of samples gradually 

improve generalization in unseen data. 

Supports better resource allocation by 

prioritizing the samples. 

HMC-QU 

 

Researchers have used various methods to detect AMI, 

including electrocardiograms and cardiac MRI. They have 

used deep learning and machine learning models to detect 

AMI automatically. However, MRI is expensive and not 

readily available like other imaging modalities. The variation 

of the ECG signal depends on the patient's mind. Therefore, to 

avoid these challenges, echocardiogram images are used to 

detect MI because echocardiograms provide detailed 

information about the structure of the heart and wall motion 

abnormalities. Although echocardiogram images are readily 

available, left ventricular wall abnormalities are unclear due to 

ultrasound waves. To address these challenges, researchers 

used the inception v3 model [23], CNN-LSTM [13], and 

encoder-decoder CNN [14] models to detect and classify MI. 

Although the models produced accuracy of 99.6%, 85.1%, and 

88.92%, however, the models have some disadvantages, such 

as the inception v3 model requires a large amount of annotated 

data, does not capture spatial and temporal characteristics, and 

requires more computational resources. CNN-LSTM model 

captures spatial and temporal features; however, the model 

needs more data augmentation. The Encoder and Decoder 

CNN model requires a large amount of data and struggles with 

class imbalance to capture the fine details from segmented 

lesions. Hence, to avoid the above-mentioned disadvantages, 

we have used a transverse dyadic wavelet transform to project 

the wall abnormalities, and a deep denoised convolutional 

neural network is used to remove noise from the images. The 

DACL-ResNet 18 architecture is used to detect AMI. The 

performance of the proposed model is enhanced by adding 

selective samples through a deep, active curriculum learning 

strategy. 
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2.1 Contribution 

 

(1). To extract local and global frequency information from 

an image, we have used transverse dyadic wavelet transform 

(TxDyWT) by computing low and high-frequency 

components at different scales. 

(2). To remove noise and protect the corners and edges of 

the left ventricular wall, we have used a deep denoised 

convolutional neural network (DnCNN). 

(3). To extract the features from a deep denoised image, we 

have used ResNet 18 architecture, and to improve the 

performance of the proposed transfer learning ResNet 18 

architecture, the deep active curriculum learning model is used 

to update the training samples dynamically using various 

sampling techniques, including least significant, entropy, 

random, and Bayesian active learning by disagreement 

(BALD). 

In this paper, Section 2 describes the state-of-the-art 

techniques used in the identification of AMI. Section 3 

describes the proposed methodology. Section 4 presents the 

results and discussions. Section 5 presents the conclusion and 

future work. 

 

 

3. METHODOLOFY 

 

The overall architecture of the proposed deep active 

curriculum learning model for detecting acute myocardial 

infarction via left ventricular wall rupture is shown in Figure 

1. Echocardiogram images are initially of poor quality. The 

images are pre-processed with a dyadic wavelet transform and 

a deep denoised convolutional neural network to improve their 

quality. The images are labeled as MI or non-MI. The dataset 

is then divided into training and test sets. Then, we use the 

ResNet 18 deep active curriculum learning technique to 

dynamically update the samples to improve the accuracy of 

our model by evaluating the precision, recall, and accuracy of 

our proposed method. 

 

 
 

Figure 1. Architecture of ResNet 18-DACL 

 

3.1 Image enhancement through TxDyWT-DnCNN 

 

We cannot directly process raw medical images for real-

time image processing applications. Because medical images 

are larger and contain large spatial coordinates of images, the 

images are in high-dimensional values. There is no 

standardization of medical image data because different 

medical images contain different methods such as X-ray, CT 

scan, MRI, and ultrasound. Each image varies in pixel value, 

dynamic range, and high resolution. Medical images have 

complex structures and different patterns, and images are 

noisy due to different radiation exposures, instruments, and 

differences in image acquisition. Medical images are gray. 

Due to the above characteristics, it is difficult to interpret and 

analyze medical images. To avoid this problem, the image is 

pre-processed to improve the image quality. Therefore, we 

have applied the transverse dyadic wavelet transformation 

with a deep learning denoised network to improve the 

visibility and contrast in the analysis of medical images. 

 

3.1.1 Transverse dyadic wavelet transform (TxDyWT) 

TxDyWT is a technique for representing images as a 

collection of wavelets in the time and frequency domains. 

Wavelets that are referred to as dyadic are those that have been 

repeatedly translated and expanded. In our work, we improved 

the segments of different left ventricles using TxDyWT. By 
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using the five-level Haar wavelet transform, it separates the 

low-frequency and high-frequency components. From the 

approximate image, it extracts the details at each level. The 

discrete Haar wavelet transform is a combination of 2n and the 

Haar matrix is represented as in Eq (1): 

 

𝐻(𝑛) = [
𝐻(𝑛 − 1) ⊗ [1     1]

2
𝑛−1

2 𝐼(𝑛 − 1) ⊗ [1 − 1]
] H(0)=1 (1) 

 

where, 𝐻(𝑛) ≠ 𝐻(𝑛)𝑇 for n>1 and 𝐻(𝑛) is a discrete matrix. 

Haar function and I(n) is the identity matrix of degree 2n. ⊗ 

denotes the product. 

The process of obtaining the original image by filtering, 

adding, and up sampling the inverse wavelet transform of the 

same wavelet is known as wavelet transform reconstruction. 

The information is lost due to the same type of inverse wavelet 

transform. Therefore, the different wavelet transform is used 

to reconstruct the image to avoid the above problem. Therefore, 

the different wavelet transforms used for the reconstruction 

process improves the accuracy, reduces the computational 

complexity, and lack of information loss results in improved 

image features during the reconstruction process. Because of 

the high compression capacity of the Coiflet wavelet, we used 

it to reconstruct a myocardium of two-chamber 

echocardiogram, then the image is given to the deep denoised 

convolutional neural network to remove the noise from the 

image. 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 2. Image pre-processing using transverse dyadic 

wavelet transform and deep denoised convolutional network. 

(a) Original image (b) Decomposed image (c) Reconstructed 

image (d) Denoised image 

 

Figure 2 shows the pre-processing of raw echocardiogram 

images using TxDWT and DnCNN. We cannot directly 

process raw echocardiogram images because the image quality 

is poor. Processing medical images with poor quality leads to 

misclassification of MI. To improve the classification 

accuracy using ResNet 18 based DACL model, we have pre-

processed the 2D myocardial chamber images. The proposed 

TxDWT extracts frequency information at different scales, 

and high frequency components capture the global details and 

low frequency components capture the local details from the 

image. Level 5 decomposition effectively captures small 

variations and abnormalities to effectively capture tissue 

characteristics and avoid excessive dimensionality, which 

reduces the computational complexity. Although TxDWT 

reduces the noise, TxDyWT cannot completely eliminate the 

noise in echocardiogram images. Therefore, additional 

DnCNN image denoising techniques are used to remove the 

noise by improving sharpness and learning complex mapping 

by preserving the fine details of the echocardiogram image. 

We have used the input image size as 224×224 with 52 layers 

of deep learning network, the model removes the noise and 

preserves the fine details of the reconstructed image. Therefore, 

the model is able to discriminate MI and non-MI segmental 

view of echocardiogram images effectively. 

 

3.2 Deep active curriculum learning (DACL) 

 

Deep learning (DL) and active learning (AL) are subfields 

of machine learning models. Because of its complicated 

structure, DL has significant learning capabilities, but it also 

requires a large number of labeled examples to complete 

training. The learning process in active curriculum learning is 

guided by a curriculum, which determines the order and 

difficulty of the tasks that the learning system should perform. 

The curriculum is dynamically updated based on the learning 

system's success in these activities, allowing the system to 

actively choose which tasks to focus on next and to change the 

curriculum as it learns. Through the integration of ACL and 

DL, we enhance efficiency, boost model performance, 

improve interpretability, handle unbalanced data better, and 

adapt dynamically. 

The Figure 3 shows the architecture of deep active 

curriculum learning model. 

Algorithm:Least Significant 

Input: Labeled dataset D={(x1,y1),...,(xn,yn)}, Unlabeled 

dataset U={u1,...,um}, initial model f0 

Output: Trained model fT 

(1). Set T=total number of iterations, k=1, and initialize the 

model f=f0 

(2). Define the curriculum order c1,...,cn for the labelled 

dataset D 

(3). Define the initial set of query indices Q=curriculum 

order c1,...,cN 

(4). while k<=T do 

        Train the model f on labelled dataset D using Q as 

training indices 

        Evaluate the model f on unlabelled dataset U 

        Compute the difficulty scores d(u) for each unlabelled 

sample u in U 

       Compute the expected gradient magnitude for each 

unlabelled sample u in U using f and d(u) 

        Select the top-k samples with the highest expected 

gradient magnitude 

        Label the top-k samples and add them to the labelled 

dataset D 

       Update the curriculum order using the newly labelled 

samples 

       Set Q to the new curriculum order 

       Increment k by 1 

 end while 

 Return the final model fT 

2498



 
 

Figure 3. Deep active curriculum learning with ResNet 18 architecture 

 

3.2.1 Entropy 

Uncertainty Sampling is a machine learning technique for 

selecting informative samples for human labelling. The 

purpose of this method is to choose the samples with the least 

confident predictions. The uncertainty in a distribution is 

quantified by its entropy. The entropy is calculated using Eq. 

(2): 

 

H(p) = − ∑ p(x)log (p(x)) (2) 

 

where, p(x) is the probability that the model predicts class x 

for the given sample. The entropy value ranges from 0 to 

log(C), where C is the number of classes in the classification 

problem. A lower entropy value indicates that the model is 

more confident in its prediction for the sample. The least 

confident sampling method selects the samples with the lowest 

maximum probability. Mathematically, for a given sample x, 

the least confident score is calculated as in Eq. (3): 

 

LC(x) = max (p(x)) (3) 

 

where, p(x) is the probability distribution over the classes 

predicted by the model for the sample x. The sample with the 

lowest LC score is the one for which the model is least 

confident in its prediction. 

 

Algorithm: Entropy 

Input: 

• model: a trained machine learning model 

• data: a set of unlabeled data points 

• k: the number of data points to select 

Output: 

• A set of k selected data points 

1) Initialize an empty set called selected. 

2) For i=1 to k: 

a. Calculate the model's predicted probabilities for 

each data point in data. 

b. Sort the probabilities in descending order. 

c. Select the data point with the lowest probability and 

add it to the selected set. 

d. Remove the selected data point from the data set. 

3) Return the set of selected data points. 

 

3.2.2 Bayesian active learning by disagreement 

Bayesian Active Learning by Disagreement (BALD) is an 

uncertainty sampling method commonly used in machine 

learning for model training and testing. BALD is based on 

Bayesian inference and aims to select the data points that are 

most informative for the model. 

The mathematical expression for BALD is given in Eq. (4): 

 

BALD(x) = H⟨y|x⟩ − E[H⟨y|x, D⟩] (4) 

 

where, H[y|x] is the entropy of the model's output distribution 

for input x, and E[ H[y|x,D] ] is the expected entropy of the 

output distribution if data D (the training set) were augmented 

with x. The BALD measures the difference between the 

entropy of the model's predictions for x and the expected 

entropy of the predictions if x were added to the training set. 

 

Algorithm: BALD 

Input: 

• model: a trained machine learning model 

• data: a set of unlabeled data points 

• k: the number of data points to select 

• n: the number of Monte Carlo simulations to run 

Output: 

• A set of k selected data points 

1). Initialize an empty set called selected. 

2). For i = 1 to k: 

a. For each data point in data, run n Monte Carlo 

simulations: 

i. Sample a set of model parameters from the posterior 

distribution. 
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ii. Use the sampled parameters to generate a prediction 

for the data point. 

iii. Record the predicted class probabilities. 

b. For each data point in data, calculate the expected 

entropy: 

i. Calculate the entropy of the average predicted class 

probabilities across the n simulations. 

ii. Subtract the average entropy of the predicted class 

probabilities across the n simulations for each individual 

simulation. 

c. Select the data point with the highest expected entropy 

and add it to the selected set. 

d. Remove the selected data point from the data set. 

3). Return the set of selected data points. 

 

 

4. RESULTS AND DISCUSSIONS 

 

4.1 HMC-QU dataset 

 

Table 2. Statistics of 2 chamber view of myocardium 

 
Myocardial Segments MI Patients NonMI Patients 

Segment 4 29 101 

Segment 10 29 101 

Segment 15 53 77 

Segment 13 47 93 

Segment 7 40 90 

Segment 1 40 90 

Segment 4,10 58 202 

Segment 4,15 82 178 

Segment 4,13 76 194 

Segment 4,7 69 191 

Segment 1,4 69 191 

Segment 10,15 82 178 

Segment 10,7 69 191 

Segment 10,1 69 191 

Segment 15,13 100 170 

Segment 15,7 93 167 

Segment 13,1 87 183 

All Segments 10 62 

 

 
2-Chamber View     

 

Figure 4. Sample images from dataset 

 

Apical 4-chamber and apical 2-chamber 2D 

echocardiogram images from 2018 and 2019 make up the 

HMC-QU benchmark dataset [24]. Hamad Medical 

Corporation (HMC), in collaboration with the University of 

Tampere and Qatar University, created the dataset. The 

collection includes more than 10,000 echoes and more than 

800 hospitalized patients with acute ST-elevation MI. Ground-

truth names are provided for each cardiac segment. 130 A2C-

view echocardiograms and 162 A4C-view echocardiograms in 

the dataset. The 93 MI patients (all acute, first-time MI 

patients) and 69 non-MI participants are the owners of the 

A4C view recordings. The A2C view 2D echocardiogram 

recordings belong to 62 non-MI participants and 68 MI 

patients. The dataset contains ground truth labeling where MI 

is indicated as 0 and 1 indicates non-MI patients. The spatial 

resolution of the echocardiogram images is varied from 

422×636 to 768×1024 pixels at 25 frames per second. Table 2 

shows the statistics of the 2-chamber segmental view of MI 

and Non MI patients. 

The Figure 4 shows the sample images from the dataset. 

 

4.2 Experimental set up 

 

The proposed model is evaluated in 80% of training set and 

20% of test set with ResNet 18 DACL model. The 

echocardiogram images are preprocessed because of noise and 

ultrasound waves using TxDyWT-DnCNN. Hence, the 

preprocessed images fed into ResNet 18 architecting and 

training process is done through deep active curriculum 

learning techniques. Table 3 shows the model architecture and 

training parameters. 

 

Table 3. Model architecture and training parameter 

 
Model Architecture ResNet 18 Architecture 

Preprocessing Images are resized with [224×224] 

Layers added 
Classification layer is added 

according to output class as 2 

Optimizer Stochastic Gradient with momentum 

Number of epochs 10 

Validation 

Frequency 

Validation is performed for every 50 

iterations 

Learning rate 0.01 

 

4.2.1 Evaluation metrics 

The evaluation metrics are shown in Eqs. (5)-(11). 

True Positive(TP): Number of patients correctly classified 

as AMI. 

True Negative(TN): Number of patients correctly classified 

as not having AMI. 

False Positive(FP): Number of patients incorrectly 

classified as having AMI. 

False Negative(FN)=Number of patients incorrectly 

classified as not having AMI. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (5) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (6) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
∗ 𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) 

(7) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (8) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (9) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (10) 

 

𝐴𝑈𝐶 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 ⁄  (11) 

 

4.3 Preprocessing technique 

 

Speckle noise, Gaussian noise, shadowing and attenuation, 

and ringing noise all affect ultrasound imaging. Speckle noise 

creates small circles in the image. The clarity of an image is 
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affected by Gaussian noise. The image becomes darker and 

less clear due to attenuation and shadows. Ringing is caused 

by a series of oscillations around the edges of the image. 

Ringing affects the image structure. The reconstructed dyadic 

wavelet transformed image is passed through a deep denoised 

convolutional neural network to reduce noise. Peak Signal to 

Noise Ratio (PSNR), Structural Similarity Index (SSIM), 

Mean Square Error (MSE), and Blind/Reference less Picture 

Spatial Quality Evaluator (BRISQUE) [25] are used to 

quantify the quality of the image metrics. The Figure 5 shows 

the original, dyadic wavelet image, and the deep denoised 

image. Figure 6 shows the image quality metrics.  

 

 
(a). Original Image 

MSE:0.567 

PSNR:10dB 

SSIM:0.3234 

BRISQUE:78 

 
(b). TxDyWT Image 

MSE:0.004 

PSNR:26.5dB 

SSIM:0.789 

BRISQUE:45 

 
(c). Denoised using DnCNN 

MSE:0.0006 

PSNR:46.5dB 

SSIM:0.9 

BRISQUE:30 

 

Figure 5. (a). Original image (b). Dyadic wavelet image (c). Deep denoised image 

 

 
 

Figure 6. Image quality metrics 

 

The difference between the original and the denoised image 

is measured by the peak signal-to-noise ratio (PSNR). PSNR 

is measured in dB (decibels). A higher PSNR value indicates 

a higher quality image with less noise. 

𝑃𝑆𝑁𝑅 = 10 ∗ 𝑙𝑜𝑔10(
𝑀𝐴𝑋2

𝑀𝑆𝐸
) (12) 

 

In Eq. (5), MAX is the maximum possible pixel value in the 

image. MSE is the mean square error. 

Structure Similarity Index measures the quality between 

two images. The values are in the range between [0, 1]. 1- 

means that two images are similar. 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦) ∗ 𝑐(𝑥, 𝑦) ∗ 𝑠(𝑥, 𝑦)] (13) 

 

In Eq. (13), l(x, y) represents luminance, c(x, y) represents 

contrast, and s(x, y) represents structure. 

Mean Square Error measures the error between the original 

image and the denoised image. 

 

𝑀𝑆𝐸 1
𝑁⁄ ∑ 𝑥𝑖 − 𝑦𝑖

2

𝑁

𝑖=1

 (14) 
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In Eq. (14), N represents the total number of pixels in an 

image, 𝑥𝑖  is a pixel in an original image, and𝑦𝑖  represents a 

pixel in the denoised image. A lower MSE value represents a 

good quality image. 

Blind/Reference less Image Spatial Quality Evaluator 

(BRISQUE) measures the image naturalness pixel by pixel on 

the denoised image. The BRISQUE score is between [0-100]. 

Lower score value produces better quality of an image. 

The metrics for the original echocardiogram and the 

denoised image is shown in Figure 6. Echocardiogram images 

are noisier and have less contrast. We used the DnCNN 

network to improve the image quality. The image quality was 

greatly improved by the denoising process, which led to an 

increase in contrast and a decrease in noise level. With this 

advancement, heart disease can be more accurately diagnosed 

and treated. MSE, PSNR, SSIM and BRISQUE are metrics 

used to determine the quality of an image. MSE values for 

echocardiogram images should be less than 10, PSNR values 

between 25 and 40 dB, SSIM values between 0.5 and 0.9, and 

BRISQUE values between 10 and 60. The DnCNN network 

performed well in each of these metrics, which provide 

quantitative assessments of image quality. The success of this 

method suggests that denoising techniques based on deep 

learning is useful in medical imaging applications. As a result, 

the DnCNN network improves the image quality of 

echocardiograms. 

 

4.4 Least significant uncertainty strategy 

 

The least significant sampling strategy is used to select 

crucial data samples for training a deep learning network. This 

method can reduce the number of training samples required, 

resulting in faster and more efficient model development. 

Active learning and data augmentation techniques can 

significantly reduce the amount of data required while 

maintaining or improving model accuracy. Active Curriculum 

Learning uses a small sample size at each stage by selecting 

the least significant samples. The trained network selects 

samples until it achieves the best performance. The 

architecture of ResNet18 is modified by increasing the weight 

and bias of the fully connected FC1000 layer. A new output 

layer for classification is added to the existing ResNet18 

architecture. After 14 trials, the least significant sampling 

strategy achieves the highest accuracy. Figure 7 shows the 

training and validation accuracy of ResNet 18 DACL. 

 

 
 

Figure 7. Training and validation loss curve of ResNet 18 

DACL 

 

 

4.5 Uncertainty sampling using entropy 

 

The study utilised entropy-based deep active curriculum 

learning to collect uncertainty examples from a dataset, 

enhancing the model's performance and reducing training time 

compared to traditional methods. The initial training set 

consisted of 50 samples, and the ResNet18 architecture model 

was trained with these samples. Entropy was calculated for 

each probability class, with higher entropy indicating higher 

uncertainty and lower entropy indicating higher confidence in 

predictions. The model was fine-tuned using the updated 

training set, resulting in improved accuracy on the test set. The 

model added 100 samples for cross-validation, and the process 

was repeated until the highest recognition accuracy was 

achieved. The study provides a detailed analysis of the training 

and testing losses and accuracy of each iteration (Figure 8). 

 

 
 

Figure 8. Deep active curriculum learning using entropy 

method 

 

4.6 Uncertainty sampling using random 

 

 
 

Figure 9. Training and validation accuracy and loss curve of 

ResNet 18 Random DACL 

 

The random sampling method was used to select samples 

from an unlabelled sample, ensuring equal chances and 

reducing bias. This method allowed for statistical inferences 

about the larger population from which the samples were 

drawn. The model was initially trained with small, labelled 

samples to improve its accuracy in predicting outcomes. As 

the model became more sophisticated, random sampling was 

used to collect larger, unlabelled samples for further training 
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and testing. This approach helped refine the model's 

predictions and increase its effectiveness in real-world 

applications. However, the random method does not select 

informative samples, so active learning techniques can be used 

to select the most informative samples for labelling, reducing 

the amount of labelled data needed for high accuracy in the 

model's predictions (Figure 9). 

 
4.7 Uncertainty sampling using BALD 

 

 
 

Figure 10. Training, testing accuracy and loss 

 

By computing Bayesian probabilistic inferences, Bayesian 

active learning by disagreement was used to select the samples. 

This method makes it possible to efficiently select informative 

samples for labeling in a classification task. To improve the 

overall accuracy of the model, the algorithm selects the most 

uncertain or disagreeing samples among the classifiers. We 

compute the disagreement using a joint entropy probability 

distribution. This method is particularly useful when labeling 

all samples is impractical due to time or cost constraints. The 

algorithm can achieve high accuracy with fewer labeled 

examples by prioritizing the most informative samples for 

labeling. The Figure 10 shows the training, testing loss, and 

accuracy of BALD. 

 

4.8 Comparison with state-of-the-art techniques 

 

The Table 4 shows the myocardial infarction detection 

using CNN-LSTM, Encoder-Decoder CNN+SVM, Inception 

V3 and proposed model. Among all the methods, the proposed 

model provides high sensitivity, specificity, accuracy and area 

under the curve. CNN-LSTM, Inception V3, and Encoder-

Decoder CNN+SVM models require high computational 

power due to the complexity of architecture, lack of 

interpretability in clinical decision making, needs large 

amount of labeled data, however, in medical domain large 

amount of data is challenging due to privacy and imbalance 

issues, lead to reduced generalization in unseen data, 

deployment of deep learning model in clinical environment is 

difficult due to model size, inference speed and integration of 

existing healthcare system. Therefore, these limitations are 

solved by our proposed model. The proposed model adds the 

data slowly by sampling strategy, more interpretable, and 

computationally efficient and robust for myocardial infarction. 

The Figure 11 shows the integration of DACL into the 

clinical environment. The proposed DACL model plays an 

important role in accurate detection of myocardial infarction. 

Echocardiogram has several challenges such as poor image 

quality due to ultrasound waves, limited visualization in 

regional wall motion abnormalities, interoperated variability, 

difficult in diagnosing small infarcts, and temporal resolution 

of an image. These challenges lead to false diagnosis of 

accurate detection of myocardial infarction. Therefore, to 

accurately detect myocardial infarction, artificial intelligence 

techniques are integrated into picture archiving 

communication system (PACS). Therefore, our proposed 

TxDyWT-DnCNN-ResNet 18 DACL model improves the 

quality of an image and enhances the left ventricular wall to 

detect infarcted segment in the left ventricle at an early stage. 

Earlier detection of myocardial infarction increases the 

survival rate of patients. 

 

 
 

Figure 11. Integration of DACL to clinical environment 
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Table 4. Comparison of state-of-the-art techniques 

 
Author Sensitivity Specificity Accuracy AUC 

[13] 83.8 86.4 85.1 87 

[14] 83.09 74.03 80.24 82.2 

[15] 96.2 95.3 96.59 98.52 

Proposed TxDyWT+DnCNN+ResNet 18 DACL 98.2 97.3 98.5 99.6 

 

 

5. CONCLUSIONS 

 

The difficulties of early detection of acute myocardial 

infarction are addressed in the conclusion of this study. 

Traditionally, left ventricular ejection fraction, blood tests, and 

ECG signal analysis are used to detect AMI. However, these 

methods have some drawbacks, such as the temporal variation 

of the ECG signal in ST segment changes and the need for 12-

lead ECG signals to detect AMI instead of a single ECG signal. 

The diagnosis of AMI took longer with the troponin blood 

markers; this delay affects how quickly the diagnosis is made. 

It's also important to remember that interpreting ECG signals 

requires expertise and is susceptible to human error. To detect 

and treat AMI, it is important to combine multiple diagnostic 

tools and seek medical attention as soon as possible. Changes 

in myocardial function may not be detected by LVEF, which 

instead measures blood flow to the left ventricle. To avoid 

these problems, we have used echocardiogram image analysis 

to detect AMI. This technique provides a more accurate 

assessment of myocardial function and has the ability to detect 

changes in the structure and function of the heart that may not 

be apparent with other diagnostic tests. In addition, AMI can 

be effectively diagnosed and treated early to improve patient 

outcomes and reduce the risk of complications. With a Left 

ventricular wall rupture and a short-axis view of the 

myocardium, a number of deep learning algorithms can detect 

AMI. However, a larger number of images must be used to 

train these models. These methods require more time to find 

AMI. It takes a long time to complete. In order to detect AMI 

with a small data set, our proposed deep active curriculum 

learning model uses a sampling strategy to learn the training 

set. In the future, we'll add actual clinical images to our model 

to improve it. 
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