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In this study, the multi-criteria decision-making (MCDM) method was applied for the 
optimum parameter selection in CNC turning operations. The aim of this paper is to 
optimize the process parameters for the H-13 tool steel. In this study, the TOPSIS ranking 
method is used for the selection of process parameters. However, the three levels of 
parameters were considered for optimization, which are cutting speed, feed rate, and 
depth of cut. H-13 tool steel material has wide applications in bulk as well as in sheet 
metal forming industries for the manufacturing of rolling, extrusion, bending, and forging 
dies. Due to the wide application of this material, there is a need to develop the optimum 
process parameter for an effective machining process. In this work, the combination of 
the parameters was planned in the Taguchi ANOVA L18 array for experimentation on a 
CNC machine. However, the Taguchi technique is applied for efficient and reliable 
product design and development so that variations in machining processes can be 
minimized. Furthermore, the ANOVA is used to study the relationship between the 
variables. According to the combinations of the parameters, the experiments were 
conducted, and the output parameters were measured, which are material removal rate 
(MRR), surface roughness (Ra), tool tip temperature, and emissions produced during the 
machining process for a sustainable solution. The main objectives of this study are to 
maximize the material removal rate and to get the minimum surface roughness (Ra). In 
this work, the optimum parameters are observed to be: cutting speed of 200 m/min, feed 
rate of 0.15rev/mm, and depth of cut of 0.6mm, which give the best combinations to 
achieve high MRR and low Ra values. 
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1. INTRODUCTION

Nickel-based H-13 tool steel is renowned for its heat
resistance, particularly during the machining process. 
Optimizing turning parameters is crucial for enhancing 
efficiency, reducing waste, and minimizing environmental 
impacts across various industries. Many researchers have 
focused on Al6061 alloy, noting that speed and feed are the 
major influencing parameters in turning operations. The 
Taguchi experimental design has proven helpful in achieving 
a good surface finish at high cutting speeds [1]. Rao et al. [2] 
investigated Al6315 alloy, performing operations on a CNC 
machine by varying cutting velocity, feed, and depth of cut. 
They recorded responses such as machining rate and surface 

roughness, utilizing multi-objective optimization TOPSIS. 
Al7075 grade aluminum alloy was also studied to optimize 
material removal rate and machining time. Using a carbide 
tool for the turning operation, it was observed that speed is the 
most influential parameter compared to feed and depth of cut 
[3]. 

Sustainable machining practices, which consider the 
lifecycle implications of parameter choices, enable 
manufacturers to improve productivity and quality while 
maintaining environmental responsibility [4]. Turning 
operations are integral to manufacturing and prevalent in the 
automotive, aerospace, and agriculture industries. With 
evolving technologies and market requirements, it is 
imperative to optimize input parameters in turning operations 

Revue des Composites et des Matériaux Avancés-Journal 
of Composite and Advanced Materials  

Vol. 34, No. 5, October, 2024, pp. 549-556 

Journal homepage: http://iieta.org/journals/rcma 
 

549

https://orcid.org/0000-0001-8559-9232
https://orcid.org/0000-0002-5356-9335
https://orcid.org/0000-0002-7631-3084
https://orcid.org/0000-0002-5246-0282
https://orcid.org/0000-0003-3440-6781
https://orcid.org/0000-0003-0607-3916
https://orcid.org/0000-0001-5537-0971
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/rcma.340502&domain=pdf


to meet these demands. Sustainability in machining involves 
improvements in production rate, coolant consumption, tool 
life, power consumption, and emissions, along with achieving 
quality surface finish and dimensional accuracy. Optimized 
parameters are key to enhancing manufacturing performance 
and reducing emissions [5]. 

Sustainable manufacturing has grown widely owing to 
recent environmental issues. This study aims to develop a 
multi-objective, multi-pass turning optimization model to 
determine the optimal cutting parameters, including spindle 
rotation speed, feed rate, depth of cut, and number of roughing 
passes. The optimization model considers several criteria in 
the key metrics of sustainable manufacturing, i.e., energy 
consumption, carbon emissions, production time, and 
production cost. A numerical example is provided to show the 
application of the model, including sensitivity analysis, to 
study the effects of several cutting parameters on the objective 
functions [5]. The model can be used by manufacturing 
industries to improve their manufacturing process efficiency 
and simultaneously produce products that support sustainable 
manufacturing [6]. Researchers have extensively studied 
various materials and machining conditions to optimize 
parameters. For instance, the Al6061 alloy showed that speed 
and feed significantly influence turning operations, achieving 
a good surface finish at high cutting speeds through the 
Taguchi experimental design. Rao et al. [2] optimized 
machining rate and surface roughness for Al6315 alloy using 
CNC machines and multi-objective optimization TOPSIS by 
varying cutting velocity, feed, and depth of cut. For the Al7075 
alloy, speed was identified as the most influential parameter in 
optimizing material removal rate and machining time using a 
carbide tool. In the automotive industry, EN-45 spring steel’s 
optimal parameters were determined using the Taguchi L9 
method, and Kumar et al. [5] employed the Taguchi L16 
orthogonal array and regression analysis for further 
optimization. 

The aim of this research work is to optimize material 
removal process parameters using CNC turning operations to 
get the desired value of surface roughness. With an orthogonal 
array of L27, the Taguchi approach is used, where three levels 
of each parameter are taken into account, which are cutting 
speed, feed, and nose radius. The experiments were done on 
EN8D carbon steel, and a carbide insert was used for a total of 
27 experiments. Using the surface roughness tester, the 
roughness values were obtained. An analysis of variance 
(ANOVA) was executed on Minitab software to recognize the 
impact of individual machining parameters on surface 
roughness. A regression model was developed from the 
experimental data to validate the findings of the random 
experiment [7]. The Taguchi technique minimizes 
manufacturing variations, while ANOVA studies relationships 
between variables. TOPSIS helps in decision-making in 
manufacturing processes. Palaniappan et al. [8] investigated 
optimal parameters for material removal rate (MRR) and 
surface roughness (Ra) in aluminum 6082 alloy, finding feed 
rate to be the dominant factor affecting surface roughness. 

A novel method, TOPSIS, was recommended by Kumar and 
Singh [9] to optimize the turning operation parameters on 
GFRP composites due to the non-requirement of computing 
challenging modeling formulations or process simulations. 
The AHP and TOPSIS methods have been recommended for 
parameter optimization, aiding material selection decisions for 
hydroforming process experimentation. Turning machining 

deals with removing unwanted material from the workpiece in 
the form of chips to get the required dimension. Hence, 
industries face the inevitable challenge of reducing costs as 
well as optimizing the machining operation. The response 
characteristics, such as material removal rate (MRR), surface 
roughness (Ra), and tool tip temperature, are greatly 
influenced by the input cutting parameters like speed, feed 
rate, and depth of cut [10]. Industries must consider multiple 
performance characteristics simultaneously, as focusing on a 
single objective may appear as a loss for the rest of the 
objectives. Hence, multi-objective optimization techniques 
may be suitable for experimentation. H-13 is commonly used 
in industries to perform different types of work. Response 
surface methodology (RSM) was used to determine the 
optimal value of cutting parameters, and the significance of the 
cutting parameters was determined and calculated using 
analysis of variance (ANOVA) with Central Composite 
Design (CCD) [11]. 

Despite extensive research on parameter optimization for 
efficiency and productivity [12, 13], there’s a notable gap in 
assessing sustainability implications. Our study aims to bridge 
this gap by systematically evaluating the interplay between 
optimized turning parameters and sustainability metrics. This 
involves considering material usage, energy consumption, 
waste generation, and environmental impact. By integrating 
these aspects, we provide actionable insights for sustainable 
machining practices. 

Surface finish [14] in manufacturing is critical for ensuring 
quality, avoiding secondary operations, and improving 
performance aspects like fatigue strength and corrosion 
resistance. Surface finish is influenced by input parameters 
such as speed, feed, and depth of cut. The heat generated 
during machining, primarily due to plastic deformation and 
friction, affects material properties and tool life. Quality 
machining products reduce manufacturing costs and enhance 
effectiveness. The cutting conditions, including speed, feed, 
and depth of cut, significantly impact performance 
characteristics. High production rates depend on optimized 
turning input parameters, with tools like PCD inserts achieving 
lower surface roughness [15]. Our study represents an 
advancement in sustainable machining by integrating 
parameter optimization with sustainability considerations. By 
addressing the often-overlooked relationship between 
temperature effects, parameter optimization, and 
sustainability, we empower manufacturers to make informed 
decisions balancing productivity with environmental 
responsibility. Temperature plays a crucial role, influencing 
material properties, tool life, and process performance. 
Excessive heat can degrade material integrity, increase tool 
wear, and necessitate frequent tool changes, thus raising 
production costs and environmental impact due to air and 
water pollution. 

This work focuses on optimizing material removal process 
parameters for CNC turning operations, particularly studying 
surface roughness behavior. Multi-Criteria Decision Making 
(MCDM) methods, including the TOPSIS ranking method, are 
used for parameter selection. Employing an orthogonal L9 
array with the Taguchi approach under wet conditions, we 
develop a regression model to validate findings through 
random experiments. This continuous need for parameter 
optimization in production departments enhances productivity 
and sustainability in manufacturing.

  

550



2. TOPSIS METHOD

The selection of the Taguchi L18 array for creating a
decision matrix in this study is well-justified due to its 
orthogonality, efficiency, robustness, factor prioritization 
capabilities, and statistical rigor. The inherent orthogonality of 
Taguchi arrays ensures that each factor level combination 
appears equally with every other combination, allowing for 
independent estimation of factor effects and facilitating the 
identification of significant factors without confounding 
effects. The L18 array, in particular, provides a balanced 
design for experiments with up to 17 factors and requires only 
18 experimental runs, striking a balance between the number 
of trials and the precision of estimates, thus reducing 
experimental costs and time while maintaining result quality 
[10, 16]. Furthermore, Taguchi methods emphasize robustness 
against variations and noise factors, making them suitable for 
experiments under imperfectly controlled conditions. This 
robustness, combined with the array’s ability to prioritize 
influential factors and its grounding in statistical principles, 
allows for the efficient and reliable optimization of decision-
making processes. The L18 array also enables the application 
of techniques like ANOVA to identify significant factors and 

interactions, assess their effects, and make data-driven 
decisions for process optimization or product improvement. 

The MCDM method [17, 18] is widely used in the 
manufacturing sector to find optimum parameters in available 
alternatives. This method is powerful, widely used and 
efficient nowadays. In this method one of the TOPSIS 
methods is used to solve the multi model criteria problems. 
This is work on the best choice among the various alternatives. 
The following are the steps to choose the best choice: 

Step-I Formulation of multi-objectives for experimental 
decision matrix (Dij). 

11 1 1
1
1

x x j x m
Dij xi xij xim

xn xnj xnm

 
 =  
  

where, i=1,2,3…n=number of experimental trials, 
j=1,2,….m=number of responses. The decision matrix is 
formulated by doing permutation and combinations of the 
variables by Taguchi L18 Array. The experimental analysis 
results are recorded and presented in Table 1. 

Table 1. Experimental analysis 

Experiment 
Nos. V (m/min) F (rev/min) D (mm) Ra MRR Workpiece 

Surface Temp 
1 100 0.05 0.2 0.132 1 14.365 
2 100 0.1 0.4 0.111 4 16.377 
3 100 0.15 0.6 0.114 9 20.385 
4 150 0.05 0.2 0.196 1.5 23.541 
5 150 0.1 0.4 0.186 6 21.558 
6 150 0.15 0.6 0.191 13.5 27.572 
7 200 0.05 0.4 0.262 4 32.731 
8 200 0.1 0.6 0.235 12 37.762 
9 200 0.15 0.2 0.246 6 28.774 
10 100 0.05 0.6 0.099 3 17.365 
11 100 0.1 0.2 0.114 2 21.37 
12 100 0.15 0.4 0.107 6 15.36 
13 150 0.05 0.4 0.207 3 24.552 
14 150 0.1 0.6 0.192 9 32.565 
15 150 0.15 0.2 0.186 4.5 36.556 
16 200 0.05 0.6 0.097 6 33.732 
17 200 0.1 0.2 0.109 4 40.72 
18 200 0.15 0.4 0.117 12 47.727 

Table 2. Normalized responses 

Experiment No. Cutting Speed (v) Feed Rate (f) Depth of Cut (d) Surface Roughness (Ra) MRR Workpiece Surface Temp 
1 100 0.05 0.2 0.183024 0.033908 0.117048 
2 100 0.1 0.4 0.153907 0.135632 0.133442 
3 100 0.15 0.6 0.158066 0.305172 0.166099 
4 150 0.05 0.2 0.271763 0.050862 0.191815 
5 150 0.1 0.4 0.257898 0.203448 0.175657 
6 150 0.15 0.6 0.26483 0.457759 0.22466 
7 200 0.05 0.4 0.363275 0.135632 0.266696 
8 200 0.1 0.6 0.325838 0.406897 0.307689 
9 200 0.15 0.2 0.34109 0.203448 0.234454 

10 100 0.05 0.6 0.137268 0.101724 0.141492 
11 100 0.1 0.2 0.158066 0.067816 0.174125 
12 100 0.15 0.4 0.14836 0.203448 0.125155 
13 150 0.05 0.4 0.287015 0.101724 0.200053 
14 150 0.1 0.6 0.266217 0.305172 0.265344 
15 150 0.15 0.2 0.257898 0.152586 0.297863 
16 200 0.05 0.6 0.134495 0.203448 0.274852 
17 200 0.1 0.2 0.151134 0.135632 0.331792 
18 200 0.15 0.4 0.162226 0.406897 0.388885 
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Table 3. Weighted normalized matrix 

Experiment 
No. v f d Ra MRR Workpiece 

Surface Temp 
1 100 0.05 0.2 0.036605 0.010172 0.029262 
2 100 0.1 0.4 0.030781 0.04069 0.03336 
3 100 0.15 0.6 0.031613 0.091552 0.041525 
4 150 0.05 0.2 0.054353 0.015259 0.047954 
5 150 0.1 0.4 0.05158 0.061034 0.043914 
6 150 0.15 0.6 0.052966 0.137328 0.056165 
7 200 0.05 0.4 0.072655 0.04069 0.066674 
8 200 0.1 0.6 0.065168 0.122069 0.076922 
9 200 0.15 0.2 0.068218 0.061034 0.058614 
10 100 0.05 0.6 0.027454 0.030517 0.035373 
11 100 0.1 0.2 0.031613 0.020345 0.043531 
12 100 0.15 0.4 0.029672 0.061034 0.031289 
13 150 0.05 0.4 0.057403 0.030517 0.050013 
14 150 0.1 0.6 0.053243 0.091552 0.066336 
15 150 0.15 0.2 0.05158 0.045776 0.074466 
16 200 0.05 0.6 0.026899 0.061034 0.068713 
17 200 0.1 0.2 0.030227 0.04069 0.082948 
18 200 0.15 0.4 0.032445 0.122069 0.097221 

Table 4. Ideal+ve and -ve 

P+ 1 100 0.05 0.2 0.026899 0.010172 0.029262 
P- 18 200 0.15 0.6 0.072655 0.137328 0.097221

Table 5. Separation measures 

Experiment No. S+ S- 
1 0.009706 0.148615 
2 0.031035 0.123169 
3 0.082433 0.082958 
4 0.0336 0.132903 
5 0.058402 0.095428 
6 0.132558 0.045533 
7 0.066518 0.101351 
8 0.127502 0.026475 
9 0.071803 0.085621 

10 0.02125 0.131441 
11 0.018147 0.1351 
12 0.050978 0.109614 
13 0.042131 0.11777 
14 0.093226 0.058533 
15 0.062611 0.096663 
16 0.064369 0.093418 
17 0.061843 0.106503 
18 0.131035 0.043008 

Step-II Normalize the responses (Nij) is given as, 

1
2n

i

xijNij
x ij

=

=
∑

The responses are normalized to eliminate the difference in 
measuring units and bring them on the same scale in the range 
of 0 and 1 as shown in Table 2. Table 3 shows the weighted 
normalized matrix. 

Step-III Ideal positive (P+) and negative (P-) 

P+=Max(Wij) , P-=Max(Wij) 

whereas, P+=Larger is the better, P-=Smaller is the better. 
The ith criteria were considered during evaluation of the 

alternative solutions and positive indicates the best alternative 

and negative sign indicates the worst alternative and the 
predictions are shown in Table 4. 

Step-IV Separations the measure as, 

2
1
( )n

iji
S W P+ +

=
= −∑

2
1
( )n

iji
S W P− −

=
= −∑

Step-V Multi-response index (MRI) or closeness 
coefficient 

In the TOPSIS (Technique for Order Preference by 
Similarity to Ideal Solution) method, the Multi-response Index 
(MRI) or Closeness Coefficient is a measure used to assess the 
relative proximity of alternatives to the ideal solution. It helps 
in determining the overall performance of each alternative 
based on its distance to the ideal solution and the ideal negative 
solution.The Multi-response Index (MRI) or Closeness 
Coefficient for a particular alternative is calculated as the ratio 
of the distance from the ideal solution to the sum of the 
distances from both the ideal solution and the ideal negative 
solution. 

SMRI
S S

−

+ −=
+

The rationale behind the chosen weights (wj) in STEP-III is 
grounded in an extensive review of existing literature. These 
weights were determined by analyzing numerous studies that 
have addressed similar problems and employed comparable 
methodologies. By synthesizing the findings from these 
sources, we identified a consistent set of weights (Table 3) that 
have been validated in previous research. 

In TOPSIS (Technique for Order Preference by Similarity 
to Ideal Solution), the separation measure (Table 5) evaluates 
the relative performance of alternatives by their proximity to 
the ideal and negative ideal solutions. First, we defined the 
evaluation criteria such as cost-effectiveness and efficiency, 
then normalized these values to ensure comparability. We 
assigned weights to each criterion based on their importance, 
grounded in extensive literature review. The ideal solution 
(P+) was identified as the highest values for beneficial criteria 
and lowest for non-beneficial, while the negative ideal solution 
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(P-) was the lowest values for beneficial criteria and highest 
for non-beneficial criteria. We calculated the Euclidean 
distances of each alternative to these ideal solutions, then 
computed the separation measure by dividing the distance to 
the ideal solution by the sum of the distances to both ideal and 
negative ideal solutions [10, 11]. Finally, we ranked the 
alternatives based on these separation measures, identifying 
Experiment X as the best due to its highest separation measure, 
which was consistent with expectations and offered a 
balanced, objective assessment compared to methods like 
AHP, ensuring a robust decision-making process. 

The use of the TOPSIS (Technique for Order Preference by 
Similarity to Ideal Solution) method in the manufacturing 
sector is well-documented in the literature, showcasing its 
relevance and applicability in various decision-making 
processes. Several studies have utilized TOPSIS for tasks such 
as supplier selection, process optimization, product design, 
and quality management [18]. These studies collectively 
demonstrate the versatility and effectiveness of TOPSIS in 
addressing diverse decision-making challenges in the 
manufacturing sector, providing a systematic framework for 
informed decision-making and helping organizations enhance 
operational efficiency, quality, and competitiveness [19, 20]. 

One notable study that applied the TOPSIS method in the 
manufacturing sector. In their research, they utilized TOPSIS 
for the optimization of machining parameters in computer 
numerical control (CNC) machining processes. By identifying 
optimal machining parameters, they achieved improved 
efficiency and productivity in CNC machining operations 
[21]. This study serves as a valuable reference for 
understanding how TOPSIS can be effectively used in process 
optimization within the manufacturing domain. 

 
 

3. EXPERIMENTAL SETUP 
 
The selection of specific input and output parameters, as 

well as their ranges, for this study was guided by an extensive 
review of relevant literature. The input parameters were 
chosen based on their significant impact on the manufacturing 
process, as identified in previous research. For instance, 
studies have shown that parameters such as cutting speed, feed 
rate, and depth of cut are critical in influencing the quality and 
efficiency of machining operations.In Table 6, the ‘Machining 
Condition’ category, specifically ‘Wet,’ refers to the use of 
coolant during the cutting operation. The application of 
coolant is crucial for achieving a good surface finish, as it 
helps to reduce the temperature and friction between the 
cutting tool and the workpiece. This categorization ensures 
clarity and emphasizes the role of coolant in enhancing the 
machining process’s effectiveness and outcome quality. 

The TNMG 160404 carbide cutting insert and the 
PTGRNR-25-25 M16 050 tool holder were chosen for their 
versatility, geometry, chip control, stability, and material 
compatibility. The TNMG 160404 insert is widely used for 
both roughing and finishing operations across various 
materials, including steel, stainless steel, and cast iron, thanks 
to its neutral rake angle and effective chipbreaker design, 
which enhance chip formation and evacuation. Its specific 
carbide grade and coating improve wear resistance for tougher 
materials. The PTGRNR-25-25 M16 050 tool holder provides 
excellent rigidity and stability, reducing vibration and chatter 
during machining, and accommodates various inserts, 
allowing for quick changes and flexible tooling options. Its 

potential coolant-through capability aids in effective chip 
evacuation and cooling, especially with heat-resistant 
materials. This tool holder’s compatibility with the TNMG 
insert style and the machining requirements ensures precise 
and efficient turning operations, resulting in consistent 
performance and extended tool life. 

 
Table 6. Selection of input and output parameters 

 
Machining  
Condition Notation Description 

Cutting speed, mm/min v 100, 150, 200 
Feed, mm/rev f 0.05, 0.1, 0.15 

Depth of cut, mm d 0.2, 0.4, 0.6 
Cutting condition  Wet 

Cutting insert  TNMG 160404 
Tool holder  PTGRNR-25-25 M16 050 

Workpiece dimensions, 
mm  Diameter 20mm, length 100 

mm 
Material  H-13 tool steel 

Voltage, volt  415±10% 
Power, kW  20 

Spindle power, kW  5 to 7 
Working 

temperature, ℃  10 to 500  

Spindle speed, rpm  20 to 4000 
Machine type  CNC 
MRR, mm3/s    

Surface roughness, µm Ra Taylor Hobson Surtronic-3 
Ra Tester 

Workpiece surface 
temp, ℃  T K-Type Digital 

Thermocouple 
 

Each input parameter in Table 6 is selected to predict the 
output measures, Material Removal Rate (MRR) and Surface 
Roughness (Ra), based on their established effects in 
machining processes. Cutting speed typically influences both 
MRR and Ra; higher cutting speeds can increase MRR but 
may also lead to higher Ra if not optimized. Feed rate is 
another critical parameter, where an increase generally boosts 
MRR but can negatively impact Ra by causing rougher 
surfaces. Depth of cut directly affects MRR, with deeper cuts 
removing more material per pass, but it can also increase Ra 
due to greater tool engagement and potential vibrations. The 
use of coolant (‘Wet’ condition) is expected to improve Ra by 
reducing heat and friction, leading to a smoother surface 
finish. These input parameters were chosen based on extensive 
literature review and their known impact on machining 
efficiency and surface quality, and their effects are 
demonstrated in the results section. 

The workpiece specimens were prepared with 20mm 
diameter and 100mm long as shown in Figure 1. The range for 
the spindle speed (20 to 4000 rpm) is based on the capabilities 
of the CNC machine used in the experiments, which allows for 
a broad spectrum of speeds to accommodate various 
machining conditions and material types. The spindle speed 
was precisely controlled and monitored through CNC 
programming to ensure accurate and consistent application 
during each machining operation. For the temperature range 
(10 to 500℃), this wide range reflects the potential 
temperatures that could be encountered during different 
machining scenarios. The temperature of the workpiece 
surface was measured immediately after machining using a 
high-precision infrared thermometer to capture accurate 
temperature readings, ensuring the consistency and reliability 
of the data collected. 
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Figure 1. Workpiece specimens 

The Taylor Hobson Surtronic-3 is a highly accurate and 
portable surface roughness tester used for measuring surface 
texture and roughness parameters such as Ra, Rz, and Rt, 
making it ideal for quality control in various industries. The 
device is cleaned and calibrated before use, and the surface is 
prepared to ensure accurate measurements. During operation, 
the probe scans the surface, displaying roughness parameters 
that can be further analyzed or documented. The K-Type 
Digital Thermocouple is employed for measuring the 
workpiece surface temperature immediately after machining, 
known for its wide temperature range and rapid response time. 
This thermocouple provides precise temperature readings by 
converting thermal potential differences into digital signals. 
Using these high-accuracy instruments ensures the reliability 
and consistency of the experimental data, enhancing the 
overall quality and credibility of the study’s findings. 

The chemical composition as presented in Table 7 of H-13 
material is highly relevant to the study as each element plays 
a crucial role in its machining properties and the quality of the 
final product. H-13 steel is widely used in industries due to its 
excellent combination of toughness, hardness, and resistance 
to thermal fatigue. Elements such as carbon contribute to 
hardness and strength, while chromium increases 
hardenability and corrosion resistance. Molybdenum and 
vanadium enhance toughness and high-temperature strength, 
and silicon improves the steel’s strength and resistance to 
oxidation. The precise balance of these elements affects the 
material’s machinability, wear resistance, and surface finish 
quality, making H-13 an ideal choice for applications requiring 
durable and reliable components. Understanding the chemical 
composition helps in optimizing machining parameters to 
achieve superior performance and product quality. 

Table 7. Chemical composition of H-13 tool steel 

Elements C Mn Cr NI Mo S P Si V 
Contents 

(%) 0.43 0.38 5.23 0.42 1.25 0.007 0.02 0.91 0.87 

A Macpower CNC machine was used for the 
experimentation, providing precise control over machining 
parameters to ensure accurate and reproducible results. The 
workpieces, specifically H-13 material specimens, were 
prepared using a Trob machine to achieve the required 
dimensions. These specimens were then securely mounted in 

the CNC machine’s jaws, ensuring stability and alignment 
before initiating the cutting process. This setup and 
preparation process is crucial for maintaining consistency and 
reliability in the machining operations, allowing for the 
reproducibility of the study. Each experimental condition was 
repeated three times to ensure statistical validity and to 
account for variability in the machining process. During the 
experiments, errors were carefully monitored and handled by 
conducting multiple trials and averaging the results to 
minimize the impact of any outliers or fluctuations. If any 
outlier results were identified, they were scrutinized to 
determine their cause, and if necessary, additional experiments 
were conducted to verify their validity. Ultimately, outlier 
results were treated with caution, and efforts were made to 
understand the underlying reasons for their occurrence to 
ensure the accuracy and reliability of the experimental data. 

4. RESULTS AND DISCUSSION

The maximization of MRR and minimization of Surface
roughness and tool tip temperature were optimized. The 
priority given to output parameters and weight criteria were 
considered as 0.2, 0.3 and 0.5 respectively. The weight criteria 
were multiplied for normalizing the weighted matrix and from 
this best and worst performances were predicted. The response 
factors were taken to check the higher is better the 
performance for the turning operations. The significant 
parameters were cutting speed, feed and depth of cut i.e. 
200m/min, 0.15mm/rev and 0.4mm. 

The response accuracy was predicted in between 95 to 97% 
for MRR, Ra and Tool Tip temperature. The experimental 
numbers, respective closeness coefficients, Input and output 
parameters comparative were shown in Figure 2. 

The experimental table was used for normalizing the data, 
and this same table was used for creating the weighted 
normalized matrix. The measured values were predicted, 
recorded in Excel, and displayed in Figure 2. The machining 
parameters affect the quality of the finished components, as 
shown in the interpreted data presented in the Figure 2. In 
summary, the relationship between cutting speed, Material 
Removal Rate (MRR), and surface roughness is complex and 
influenced by various factors such as material properties, tool 
geometry, cutting conditions, and machine rigidity. Optimal 
cutting speeds must be determined empirically through 
experimentation, considering the balance between achieving 
desired MRR and obtaining acceptable surface finish quality 
[22]. 

Figure 2. Variation of closeness coefficient 
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In CNC turning operations, several input parameters 
(process parameters) can affect output parameters (machining 
performance characteristics) [23]. The closeness coefficient, 
often referred to as the correlation coefficient or coefficient of 
determination, quantifies the degree of linear relationship 
between these input and output parameters. It indicates how 
well the output parameters can be predicted based on the input 
parameters. In CNC turning, the term “patterns” can refer to 
various aspects of the machining process, including toolpath 
patterns, machining strategies, or cutting patterns. Each of 
these contributes to how the material is removed and the final 
shape of the workpiece is achieved [24]. 

From the results, it was found that the optimal parameters 
are crucial for obtaining correct values or good surface finish 
products. The feed rate is measured in mm/rev, and the cutting 
speed is measured in m/min. 

The impact of the machining parameters patterns is shown 
in Figure 3. The machining parameters are dependent on each 
other to get good surface finish and MRR rate [25]. 

The impact of cutting speed on workpiece temperature and 
surface roughness pattern is shown in Figure 4. From Figure 4 
it is observed that the cutting speed is a major contributing 
parameter to get better MRR rate and tool tip temperature 
affect the workpiece surface roughness and the pattern [26]. 
 

 
 

Figure 3. Variation of input parameters 
 

 
 

Figure 4. Variation of output parameters 
 

 
5. CONCLUSION 

 
The study highlights the critical importance of optimal input 

parameter selection during CNC turning operations, which not 
only extends the life of the cutting tool but also ensures the 

production of high-quality surfaces. This finding is significant 
within the broader field of manufacturing, emphasizing the 
necessity of precise control over machining parameters. In this 
study, the process parameters in the CNC turning process were 
optimized using the TOPSIS method. The researcher 
identified the best combination of turning parameters along 
with their levels to achieve the least surface roughness (Ra) 
value and a better Material Removal Rate (MRR). Based on 
the response noted from 𝐶𝐶𝐶𝐶i values, the researcher found the 
optimum combination levels of input process parameters: 
cutting speed 200m/min, feed 0.15mm/rev, and depth of cut 
0.6mm. The study employed the TOPSIS method due to its 
effectiveness in evaluating alternatives based on their 
closeness to an ideal solution, ensuring a robust selection 
process. The main research goal was to identify the optimal 
combination of CNC turning parameters to balance material 
removal rates and surface finish quality, and the findings 
directly address this goal, validating the research hypothesis. 
The practical implications are considerable; integrating these 
findings can enhance productivity and quality in CNC turning 
processes. For future research, exploring other optimization 
methods like the JAYA Algorithm and considering a wider 
range of materials and settings would be beneficial. While the 
results are specific to the materials and tooling used, they have 
the potential to be generalized to other turning operations. 
Industrial practitioners can integrate these optimized 
parameters into existing CNC turning processes to achieve 
significant improvements in productivity, quality, and 
competitiveness. By adopting these findings and pursuing 
continuous optimization and innovation, manufacturers can 
achieve superior results and maintain a competitive edge in the 
industry. 
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