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In this study, the multi-criteria decision-making (MCDM) method was applied for the 

optimum parameter selection in CNC turning operations. The aim of this paper is to 

optimize the process parameters for the H-13 tool steel. In this study, the TOPSIS ranking 

method is used for the selection of process parameters. However, the three levels of 

parameters were considered for optimization, which are cutting speed, feed rate, and 

depth of cut. H-13 tool steel material has wide applications in bulk as well as in sheet 

metal forming industries for the manufacturing of rolling, extrusion, bending, and forging 

dies. Due to the wide application of this material, there is a need to develop the optimum 

process parameter for an effective machining process. In this work, the combination of 

the parameters was planned in the Taguchi ANOVA L18 array for experimentation on a 

CNC machine. However, the Taguchi technique is applied for efficient and reliable 

product design and development so that variations in machining processes can be 

minimized. Furthermore, the ANOVA is used to study the relationship between the 

variables. According to the combinations of the parameters, the experiments were 

conducted, and the output parameters were measured, which are material removal rate 

(MRR), surface roughness (Ra), tool tip temperature, and emissions produced during the 

machining process for a sustainable solution. The main objectives of this study are to 

maximize the material removal rate and to get the minimum surface roughness (Ra). In 

this work, the optimum parameters are observed to be: cutting speed of 200 m/min, feed 

rate of 0.15rev/mm, and depth of cut of 0.6mm, which give the best combinations to 

achieve high MRR and low Ra values. 
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1. INTRODUCTION

Nickel-based H-13 tool steel is renowned for its heat 

resistance, particularly during the machining process. 

Optimizing turning parameters is crucial for enhancing 

efficiency, reducing waste, and minimizing environmental 

impacts across various industries. Many researchers have 

focused on Al6061 alloy, noting that speed and feed are the 

major influencing parameters in turning operations. The 

Taguchi experimental design has proven helpful in achieving 

a good surface finish at high cutting speeds [1]. Rao et al. [2] 

investigated Al6315 alloy, performing operations on a CNC 

machine by varying cutting velocity, feed, and depth of cut. 

They recorded responses such as machining rate and surface 

roughness, utilizing multi-objective optimization TOPSIS. 

Al7075 grade aluminum alloy was also studied to optimize 

material removal rate and machining time. Using a carbide 

tool for the turning operation, it was observed that speed is the 

most influential parameter compared to feed and depth of cut 

[3]. 

Sustainable machining practices, which consider the 

lifecycle implications of parameter choices, enable 

manufacturers to improve productivity and quality while 

maintaining environmental responsibility [4]. Turning 

operations are integral to manufacturing and prevalent in the 

automotive, aerospace, and agriculture industries. With 

evolving technologies and market requirements, it is 

imperative to optimize input parameters in turning operations 
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to meet these demands. Sustainability in machining involves 

improvements in production rate, coolant consumption, tool 

life, power consumption, and emissions, along with achieving 

quality surface finish and dimensional accuracy. Optimized 

parameters are key to enhancing manufacturing performance 

and reducing emissions [5]. 

Sustainable manufacturing has grown widely owing to 

recent environmental issues. This study aims to develop a 

multi-objective, multi-pass turning optimization model to 

determine the optimal cutting parameters, including spindle 

rotation speed, feed rate, depth of cut, and number of roughing 

passes. The optimization model considers several criteria in 

the key metrics of sustainable manufacturing, i.e., energy 

consumption, carbon emissions, production time, and 

production cost. A numerical example is provided to show the 

application of the model, including sensitivity analysis, to 

study the effects of several cutting parameters on the objective 

functions [5]. The model can be used by manufacturing 

industries to improve their manufacturing process efficiency 

and simultaneously produce products that support sustainable 

manufacturing [6]. Researchers have extensively studied 

various materials and machining conditions to optimize 

parameters. For instance, the Al6061 alloy showed that speed 

and feed significantly influence turning operations, achieving 

a good surface finish at high cutting speeds through the 

Taguchi experimental design. Rao et al. optimized machining 

rate and surface roughness for Al6315 alloy using CNC 

machines and multi-objective optimization TOPSIS by 

varying cutting velocity, feed, and depth of cut. For the Al7075 

alloy, speed was identified as the most influential parameter in 

optimizing material removal rate and machining time using a 

carbide tool. In the automotive industry, EN-45 spring steel’s 

optimal parameters were determined using the Taguchi L9 

method, and Kumar et al. employed the Taguchi L16 

orthogonal array and regression analysis for further 

optimization. 

The aim of this research work is to optimize material 

removal process parameters using CNC turning operations to 

get the desired value of surface roughness. With an orthogonal 

array of L27, the Taguchi approach is used, where three levels 

of each parameter are taken into account, which are cutting 

speed, feed, and nose radius. The experiments were done on 

EN8D carbon steel, and a carbide insert was used for a total of 

27 experiments. Using the surface roughness tester, the 

roughness values were obtained. An analysis of variance 

(ANOVA) was executed on Minitab software to recognize the 

impact of individual machining parameters on surface 

roughness. A regression model was developed from the 

experimental data to validate the findings of the random 

experiment [7]. The Taguchi technique minimizes 

manufacturing variations, while ANOVA studies relationships 

between variables. TOPSIS helps in decision-making in 

manufacturing processes. Palaniappan et al. investigated 

optimal parameters for material removal rate (MRR) and 

surface roughness (Ra) in aluminum 6082 alloy, finding feed 

rate to be the dominant factor affecting surface roughness [8]. 

A novel method, TOPSIS, was recommended by Kumar and 

Singh [9] to optimize the turning operation parameters on 

GFRP composites due to the non-requirement of computing 

challenging modeling formulations or process simulations. 

The AHP and TOPSIS methods have been recommended for 

parameter optimization, aiding material selection decisions for 

hydroforming process experimentation. Turning machining 

deals with removing unwanted material from the workpiece in 

the form of chips to get the required dimension. Hence, 

industries face the inevitable challenge of reducing costs as 

well as optimizing the machining operation. The response 

characteristics, such as material removal rate (MRR), surface 

roughness (Ra), and tool tip temperature, are greatly 

influenced by the input cutting parameters like speed, feed 

rate, and depth of cut [10]. Industries must consider multiple 

performance characteristics simultaneously, as focusing on a 

single objective may appear as a loss for the rest of the 

objectives. Hence, multi-objective optimization techniques 

may be suitable for experimentation. H-13 is commonly used 

in industries to perform different types of work. Response 

surface methodology (RSM) was used to determine the 

optimal value of cutting parameters, and the significance of the 

cutting parameters was determined and calculated using 

analysis of variance (ANOVA) with Central Composite 

Design (CCD) [11]. 

Despite extensive research on parameter optimization for 

efficiency and productivity [12, 13], there’s a notable gap in 

assessing sustainability implications. Our study aims to bridge 

this gap by systematically evaluating the interplay between 

optimized turning parameters and sustainability metrics. This 

involves considering material usage, energy consumption, 

waste generation, and environmental impact. By integrating 

these aspects, we provide actionable insights for sustainable 

machining practices. 

Surface finish [14] in manufacturing is critical for ensuring 

quality, avoiding secondary operations, and improving 

performance aspects like fatigue strength and corrosion 

resistance. Surface finish is influenced by input parameters 

such as speed, feed, and depth of cut. The heat generated 

during machining, primarily due to plastic deformation and 

friction, affects material properties and tool life. Quality 

machining products reduce manufacturing costs and enhance 

effectiveness. The cutting conditions, including speed, feed, 

and depth of cut, significantly impact performance 

characteristics. High production rates depend on optimized 

turning input parameters, with tools like PCD inserts achieving 

lower surface roughness [15]. Our study represents an 

advancement in sustainable machining by integrating 

parameter optimization with sustainability considerations. By 

addressing the often-overlooked relationship between 

temperature effects, parameter optimization, and 

sustainability, we empower manufacturers to make informed 

decisions balancing productivity with environmental 

responsibility. Temperature plays a crucial role, influencing 

material properties, tool life, and process performance. 

Excessive heat can degrade material integrity, increase tool 

wear, and necessitate frequent tool changes, thus raising 

production costs and environmental impact due to air and 

water pollution. 

This work focuses on optimizing material removal process 

parameters for CNC turning operations, particularly studying 

surface roughness behavior. Multi-Criteria Decision Making 

(MCDM) methods, including the TOPSIS ranking method, are 

used for parameter selection. Employing an orthogonal L9 

array with the Taguchi approach under wet conditions, we 

develop a regression model to validate findings through 

random experiments. This continuous need for parameter 

optimization in production departments enhances productivity 

and sustainability in manufacturing.
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2. TOPSIS METHOD 

 

The selection of the Taguchi L18 array for creating a 

decision matrix in this study is well-justified due to its 

orthogonality, efficiency, robustness, factor prioritization 

capabilities, and statistical rigor. The inherent orthogonality of 

Taguchi arrays ensures that each factor level combination 

appears equally with every other combination, allowing for 

independent estimation of factor effects and facilitating the 

identification of significant factors without confounding 

effects. The L18 array, in particular, provides a balanced 

design for experiments with up to 17 factors and requires only 

18 experimental runs, striking a balance between the number 

of trials and the precision of estimates, thus reducing 

experimental costs and time while maintaining result quality 

[10, 16]. Furthermore, Taguchi methods emphasize robustness 

against variations and noise factors, making them suitable for 

experiments under imperfectly controlled conditions. This 

robustness, combined with the array’s ability to prioritize 

influential factors and its grounding in statistical principles, 

allows for the efficient and reliable optimization of decision-

making processes. The L18 array also enables the application 

of techniques like ANOVA to identify significant factors and 

interactions, assess their effects, and make data-driven 

decisions for process optimization or product improvement. 

The MCDM method [17, 18] is widely used in the 

manufacturing sector to find optimum parameters in available 

alternatives. This method is powerful, widely used and 

efficient nowadays. In this method one of the TOPSIS 

methods is used to solve the multi model criteria problems. 

This is work on the best choice among the various alternatives. 

The following are the steps to choose the best choice: 

Step-I Formulation of multi-objectives for experimental 

decision matrix (Dij). 

 

11 1 1

1

1

x x j x m

Dij xi xij xim

xn xnj xnm

 
 

=
 
  

 

 

where, i=1,2,3…n=number of experimental trials, 

j=1,2,….m=number of responses. The decision matrix is 

formulated by doing permutation and combinations of the 

variables by Taguchi L18 Array. The experimental analysis 

results are recorded and presented in Table 1. 

 

Table 1. Experimental analysis 

 
Experiment 

Nos. 
V (m/min) F (rev/min) D (mm) Ra MRR 

Workpiece 

Surface Temp 

1 100 0.05 0.2 0.132 1 14.365 

2 100 0.1 0.4 0.111 4 16.377 

3 100 0.15 0.6 0.114 9 20.385 

4 150 0.05 0.2 0.196 1.5 23.541 

5 150 0.1 0.4 0.186 6 21.558 

6 150 0.15 0.6 0.191 13.5 27.572 

7 200 0.05 0.4 0.262 4 32.731 

8 200 0.1 0.6 0.235 12 37.762 

9 200 0.15 0.2 0.246 6 28.774 

10 100 0.05 0.6 0.099 3 17.365 

11 100 0.1 0.2 0.114 2 21.37 

12 100 0.15 0.4 0.107 6 15.36 

13 150 0.05 0.4 0.207 3 24.552 

14 150 0.1 0.6 0.192 9 32.565 

15 150 0.15 0.2 0.186 4.5 36.556 

16 200 0.05 0.6 0.097 6 33.732 

17 200 0.1 0.2 0.109 4 40.72 

18 200 0.15 0.4 0.117 12 47.727 

 

Table 2. Normalized responses 

 
Experiment No. Cutting Speed (v) Feed Rate (f) Depth of Cut (d) Surface Roughness (Ra) MRR Workpiece Surface Temp 

1 100 0.05 0.2 0.183024 0.033908 0.117048 

2 100 0.1 0.4 0.153907 0.135632 0.133442 

3 100 0.15 0.6 0.158066 0.305172 0.166099 

4 150 0.05 0.2 0.271763 0.050862 0.191815 

5 150 0.1 0.4 0.257898 0.203448 0.175657 

6 150 0.15 0.6 0.26483 0.457759 0.22466 

7 200 0.05 0.4 0.363275 0.135632 0.266696 

8 200 0.1 0.6 0.325838 0.406897 0.307689 

9 200 0.15 0.2 0.34109 0.203448 0.234454 

10 100 0.05 0.6 0.137268 0.101724 0.141492 

11 100 0.1 0.2 0.158066 0.067816 0.174125 

12 100 0.15 0.4 0.14836 0.203448 0.125155 

13 150 0.05 0.4 0.287015 0.101724 0.200053 

14 150 0.1 0.6 0.266217 0.305172 0.265344 

15 150 0.15 0.2 0.257898 0.152586 0.297863 

16 200 0.05 0.6 0.134495 0.203448 0.274852 

17 200 0.1 0.2 0.151134 0.135632 0.331792 

18 200 0.15 0.4 0.162226 0.406897 0.388885 
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Table 3. Weighted normalized matrix 

 
Experiment 

No. 
v f d Ra MRR 

Workpiece 

Surface Temp 

1 100 0.05 0.2 0.036605 0.010172 0.029262 

2 100 0.1 0.4 0.030781 0.04069 0.03336 

3 100 0.15 0.6 0.031613 0.091552 0.041525 

4 150 0.05 0.2 0.054353 0.015259 0.047954 

5 150 0.1 0.4 0.05158 0.061034 0.043914 

6 150 0.15 0.6 0.052966 0.137328 0.056165 

7 200 0.05 0.4 0.072655 0.04069 0.066674 

8 200 0.1 0.6 0.065168 0.122069 0.076922 

9 200 0.15 0.2 0.068218 0.061034 0.058614 

10 100 0.05 0.6 0.027454 0.030517 0.035373 

11 100 0.1 0.2 0.031613 0.020345 0.043531 

12 100 0.15 0.4 0.029672 0.061034 0.031289 

13 150 0.05 0.4 0.057403 0.030517 0.050013 

14 150 0.1 0.6 0.053243 0.091552 0.066336 

15 150 0.15 0.2 0.05158 0.045776 0.074466 

16 200 0.05 0.6 0.026899 0.061034 0.068713 

17 200 0.1 0.2 0.030227 0.04069 0.082948 

18 200 0.15 0.4 0.032445 0.122069 0.097221 

 

Table 4. Ideal+ve and -ve 

 
P+ 1 100 0.05 0.2 0.026899 0.010172 0.029262 

P- 18 200 0.15 0.6 0.072655 0.137328 0.097221 

 
Table 5. Separation measures 

 
Experiment No. S+ S- 

1 0.009706 0.148615 

2 0.031035 0.123169 

3 0.082433 0.082958 

4 0.0336 0.132903 

5 0.058402 0.095428 

6 0.132558 0.045533 

7 0.066518 0.101351 

8 0.127502 0.026475 

9 0.071803 0.085621 

10 0.02125 0.131441 

11 0.018147 0.1351 

12 0.050978 0.109614 

13 0.042131 0.11777 

14 0.093226 0.058533 

15 0.062611 0.096663 

16 0.064369 0.093418 

17 0.061843 0.106503 

18 0.131035 0.043008 

 
Step-II Normalize the responses (Nij) is given as, 

 

1
2

n

i

xij
Nij

x ij
=

=


 

 

The responses are normalized to eliminate the difference in 

measuring units and bring them on the same scale in the range 

of 0 and 1 as shown in Table 2. Table 3 shows the weighted 

normalized matrix. 

Step-III Ideal positive (P+) and negative (P-) 

 

P+=Max(Wij) , P-=Max(Wij)  

 

whereas, P+=Larger is the better, P-=Smaller is the better. 

The ith criteria were considered during evaluation of the 

alternative solutions and positive indicates the best alternative 

and negative sign indicates the worst alternative and the 

predictions are shown in Table 4. 

Step-IV Separations the measure as, 

 

2

1
( )

n

iji
S W P+ +

=
= −  

2

1
( )

n

iji
S W P− −

=
= −  

 
Step-V Multi-response index (MRI) or closeness 

coefficient 

In the TOPSIS (Technique for Order Preference by 

Similarity to Ideal Solution) method, the Multi-response Index 

(MRI) or Closeness Coefficient is a measure used to assess the 

relative proximity of alternatives to the ideal solution. It helps 

in determining the overall performance of each alternative 

based on its distance to the ideal solution and the ideal negative 

solution.The Multi-response Index (MRI) or Closeness 

Coefficient for a particular alternative is calculated as the ratio 

of the distance from the ideal solution to the sum of the 

distances from both the ideal solution and the ideal negative 

solution. 

 

S
MRI

S S

−

+ −
=

+
 

 

The rationale behind the chosen weights (wj) in STEP-III is 

grounded in an extensive review of existing literature. These 

weights were determined by analyzing numerous studies that 

have addressed similar problems and employed comparable 

methodologies. By synthesizing the findings from these 

sources, we identified a consistent set of weights (Table 3) that 

have been validated in previous research. 

In TOPSIS (Technique for Order Preference by Similarity 

to Ideal Solution), the separation measure (Table 5) evaluates 

the relative performance of alternatives by their proximity to 

the ideal and negative ideal solutions. First, we defined the 

evaluation criteria such as cost-effectiveness and efficiency, 

then normalized these values to ensure comparability. We 

assigned weights to each criterion based on their importance, 

grounded in extensive literature review. The ideal solution 

(P+) was identified as the highest values for beneficial criteria 

and lowest for non-beneficial, while the negative ideal solution 
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(P-) was the lowest values for beneficial criteria and highest 

for non-beneficial criteria. We calculated the Euclidean 

distances of each alternative to these ideal solutions, then 

computed the separation measure by dividing the distance to 

the ideal solution by the sum of the distances to both ideal and 

negative ideal solutions [10, 11]. Finally, we ranked the 

alternatives based on these separation measures, identifying 

Experiment X as the best due to its highest separation measure, 

which was consistent with expectations and offered a 

balanced, objective assessment compared to methods like 

AHP, ensuring a robust decision-making process. 

The use of the TOPSIS (Technique for Order Preference by 

Similarity to Ideal Solution) method in the manufacturing 

sector is well-documented in the literature, showcasing its 

relevance and applicability in various decision-making 

processes. Several studies have utilized TOPSIS for tasks such 

as supplier selection, process optimization, product design, 

and quality management [18]. These studies collectively 

demonstrate the versatility and effectiveness of TOPSIS in 

addressing diverse decision-making challenges in the 

manufacturing sector, providing a systematic framework for 

informed decision-making and helping organizations enhance 

operational efficiency, quality, and competitiveness [19, 20]. 

One notable study that applied the TOPSIS method in the 

manufacturing sector. In their research, they utilized TOPSIS 

for the optimization of machining parameters in computer 

numerical control (CNC) machining processes. By identifying 

optimal machining parameters, they achieved improved 

efficiency and productivity in CNC machining operations 

[21]. This study serves as a valuable reference for 

understanding how TOPSIS can be effectively used in process 

optimization within the manufacturing domain. 

 

 

3. EXPERIMENTAL SETUP 

 

The selection of specific input and output parameters, as 

well as their ranges, for this study was guided by an extensive 

review of relevant literature. The input parameters were 

chosen based on their significant impact on the manufacturing 

process, as identified in previous research. For instance, 

studies have shown that parameters such as cutting speed, feed 

rate, and depth of cut are critical in influencing the quality and 

efficiency of machining operations.In Table 6, the ‘Machining 

Condition’ category, specifically ‘Wet,’ refers to the use of 

coolant during the cutting operation. The application of 

coolant is crucial for achieving a good surface finish, as it 

helps to reduce the temperature and friction between the 

cutting tool and the workpiece. This categorization ensures 

clarity and emphasizes the role of coolant in enhancing the 

machining process’s effectiveness and outcome quality. 

The TNMG 160404 carbide cutting insert and the 

PTGRNR-25-25 M16 050 tool holder were chosen for their 

versatility, geometry, chip control, stability, and material 

compatibility. The TNMG 160404 insert is widely used for 

both roughing and finishing operations across various 

materials, including steel, stainless steel, and cast iron, thanks 

to its neutral rake angle and effective chipbreaker design, 

which enhance chip formation and evacuation. Its specific 

carbide grade and coating improve wear resistance for tougher 

materials. The PTGRNR-25-25 M16 050 tool holder provides 

excellent rigidity and stability, reducing vibration and chatter 

during machining, and accommodates various inserts, 

allowing for quick changes and flexible tooling options. Its 

potential coolant-through capability aids in effective chip 

evacuation and cooling, especially with heat-resistant 

materials. This tool holder’s compatibility with the TNMG 

insert style and the machining requirements ensures precise 

and efficient turning operations, resulting in consistent 

performance and extended tool life. 

 

Table 6. Selection of input and output parameters 

 
Machining  

Condition 
Notation Description 

Cutting speed, mm/min v 100, 150, 200 

Feed, mm/rev f 0.05, 0.1, 0.15 

Depth of cut, mm d 0.2, 0.4, 0.6 

Cutting condition  Wet 

Cutting insert  TNMG 160404 

Tool holder  PTGRNR-25-25 M16 050 

Workpiece dimensions, 

mm 
 

Diameter 20mm, length 100 

mm 

Material  H-13 tool steel 

Voltage, volt  415±10% 

Power, kW  20 

Spindle power, kW  5 to 7 

Working 

temperature, ℃ 
 10 to 500  

Spindle speed, rpm  20 to 4000 

Machine type  CNC 

MRR, mm3/s    

Surface roughness, µm Ra 
Taylor Hobson Surtronic-3 

Ra Tester 

Workpiece surface 

temp, ℃  
T 

K-Type Digital 

Thermocouple 

 

Each input parameter in Table 6 is selected to predict the 

output measures, Material Removal Rate (MRR) and Surface 

Roughness (Ra), based on their established effects in 

machining processes. Cutting speed typically influences both 

MRR and Ra; higher cutting speeds can increase MRR but 

may also lead to higher Ra if not optimized. Feed rate is 

another critical parameter, where an increase generally boosts 

MRR but can negatively impact Ra by causing rougher 

surfaces. Depth of cut directly affects MRR, with deeper cuts 

removing more material per pass, but it can also increase Ra 

due to greater tool engagement and potential vibrations. The 

use of coolant (‘Wet’ condition) is expected to improve Ra by 

reducing heat and friction, leading to a smoother surface 

finish. These input parameters were chosen based on extensive 

literature review and their known impact on machining 

efficiency and surface quality, and their effects are 

demonstrated in the results section. 

The workpiece specimens were prepared with 20mm 

diameter and 100mm long as shown in Figure 1. The range for 

the spindle speed (20 to 4000 rpm) is based on the capabilities 

of the CNC machine used in the experiments, which allows for 

a broad spectrum of speeds to accommodate various 

machining conditions and material types. The spindle speed 

was precisely controlled and monitored through CNC 

programming to ensure accurate and consistent application 

during each machining operation. For the temperature range 

(10 to 500℃), this wide range reflects the potential 

temperatures that could be encountered during different 

machining scenarios. The temperature of the workpiece 

surface was measured immediately after machining using a 

high-precision infrared thermometer to capture accurate 

temperature readings, ensuring the consistency and reliability 

of the data collected. 
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Figure 1. Workpiece specimens 

 

The Taylor Hobson Surtronic-3 is a highly accurate and 

portable surface roughness tester used for measuring surface 

texture and roughness parameters such as Ra, Rz, and Rt, 

making it ideal for quality control in various industries. The 

device is cleaned and calibrated before use, and the surface is 

prepared to ensure accurate measurements. During operation, 

the probe scans the surface, displaying roughness parameters 

that can be further analyzed or documented. The K-Type 

Digital Thermocouple is employed for measuring the 

workpiece surface temperature immediately after machining, 

known for its wide temperature range and rapid response time. 

This thermocouple provides precise temperature readings by 

converting thermal potential differences into digital signals. 

Using these high-accuracy instruments ensures the reliability 

and consistency of the experimental data, enhancing the 

overall quality and credibility of the study’s findings. 

The chemical composition as presented in Table 7 of H-13 

material is highly relevant to the study as each element plays 

a crucial role in its machining properties and the quality of the 

final product. H-13 steel is widely used in industries due to its 

excellent combination of toughness, hardness, and resistance 

to thermal fatigue. Elements such as carbon contribute to 

hardness and strength, while chromium increases 

hardenability and corrosion resistance. Molybdenum and 

vanadium enhance toughness and high-temperature strength, 

and silicon improves the steel’s strength and resistance to 

oxidation. The precise balance of these elements affects the 

material’s machinability, wear resistance, and surface finish 

quality, making H-13 an ideal choice for applications requiring 

durable and reliable components. Understanding the chemical 

composition helps in optimizing machining parameters to 

achieve superior performance and product quality. 

 

Table 7. Chemical composition of H-13 tool steel 

 
Elements C Mn Cr NI Mo S P Si V 

Contents 

(%) 
0.43 0.38 5.23 0.42 1.25 0.007 0.02 0.91 0.87 

 

A Macpower CNC machine was used for the 

experimentation, providing precise control over machining 

parameters to ensure accurate and reproducible results. The 

workpieces, specifically H-13 material specimens, were 

prepared using a Trob machine to achieve the required 

dimensions. These specimens were then securely mounted in 

the CNC machine’s jaws, ensuring stability and alignment 

before initiating the cutting process. This setup and 

preparation process is crucial for maintaining consistency and 

reliability in the machining operations, allowing for the 

reproducibility of the study. Each experimental condition was 

repeated three times to ensure statistical validity and to 

account for variability in the machining process. During the 

experiments, errors were carefully monitored and handled by 

conducting multiple trials and averaging the results to 

minimize the impact of any outliers or fluctuations. If any 

outlier results were identified, they were scrutinized to 

determine their cause, and if necessary, additional experiments 

were conducted to verify their validity. Ultimately, outlier 

results were treated with caution, and efforts were made to 

understand the underlying reasons for their occurrence to 

ensure the accuracy and reliability of the experimental data. 

 

 

4. RESULTS AND DISCUSSION 

 

The maximization of MRR and minimization of Surface 

roughness and tool tip temperature were optimized. The 

priority given to output parameters and weight criteria were 

considered as 0.2, 0.3 and 0.5 respectively. The weight criteria 

were multiplied for normalizing the weighted matrix and from 

this best and worst performances were predicted. The response 

factors were taken to check the higher is better the 

performance for the turning operations. The significant 

parameters were cutting speed, feed and depth of cut i.e. 

200m/min, 0.15mm/rev and 0.4mm. 

The response accuracy was predicted in between 95 to 97% 

for MRR, Ra and Tool Tip temperature. The experimental 

numbers, respective closeness coefficients, Input and output 

parameters comparative were shown in Figure 2. 

The experimental table was used for normalizing the data, 

and this same table was used for creating the weighted 

normalized matrix. The measured values were predicted, 

recorded in Excel, and displayed in Figure 2. The machining 

parameters affect the quality of the finished components, as 

shown in the interpreted data presented in the Figure 2. In 

summary, the relationship between cutting speed, Material 

Removal Rate (MRR), and surface roughness is complex and 

influenced by various factors such as material properties, tool 

geometry, cutting conditions, and machine rigidity. Optimal 

cutting speeds must be determined empirically through 

experimentation, considering the balance between achieving 

desired MRR and obtaining acceptable surface finish quality 

[22]. 

 

 

 
 

Figure 2. Variation of closeness coefficient 
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In CNC turning operations, several input parameters 

(process parameters) can affect output parameters (machining 

performance characteristics) [23]. The closeness coefficient, 

often referred to as the correlation coefficient or coefficient of 

determination, quantifies the degree of linear relationship 

between these input and output parameters. It indicates how 

well the output parameters can be predicted based on the input 

parameters. In CNC turning, the term “patterns” can refer to 

various aspects of the machining process, including toolpath 

patterns, machining strategies, or cutting patterns. Each of 

these contributes to how the material is removed and the final 

shape of the workpiece is achieved [24]. 

From the results, it was found that the optimal parameters 

are crucial for obtaining correct values or good surface finish 

products. The feed rate is measured in mm/rev, and the cutting 

speed is measured in m/min. 

The impact of the machining parameters patterns is shown 

in Figure 3. The machining parameters are dependent on each 

other to get good surface finish and MRR rate [25]. 

The impact of cutting speed on workpiece temperature and 

surface roughness pattern is shown in Figure 4. From Figure 4 

it is observed that the cutting speed is a major contributing 

parameter to get better MRR rate and tool tip temperature 

affect the workpiece surface roughness and the pattern [26]. 

 

 
 

Figure 3. Variation of input parameters 

 

 
 

Figure 4. Variation of output parameters 
 

 

5. CONCLUSION 

 

The study highlights the critical importance of optimal input 

parameter selection during CNC turning operations, which not 

only extends the life of the cutting tool but also ensures the 

production of high-quality surfaces. This finding is significant 

within the broader field of manufacturing, emphasizing the 

necessity of precise control over machining parameters. In this 

study, the process parameters in the CNC turning process were 

optimized using the TOPSIS method. The researcher 

identified the best combination of turning parameters along 

with their levels to achieve the least surface roughness (Ra) 

value and a better Material Removal Rate (MRR). Based on 

the response noted from 𝐶𝐶i values, the researcher found the 

optimum combination levels of input process parameters: 

cutting speed 200m/min, feed 0.15mm/rev, and depth of cut 

0.6mm. The study employed the TOPSIS method due to its 

effectiveness in evaluating alternatives based on their 

closeness to an ideal solution, ensuring a robust selection 

process. The main research goal was to identify the optimal 

combination of CNC turning parameters to balance material 

removal rates and surface finish quality, and the findings 

directly address this goal, validating the research hypothesis. 

The practical implications are considerable; integrating these 

findings can enhance productivity and quality in CNC turning 

processes. For future research, exploring other optimization 

methods like the JAYA Algorithm and considering a wider 

range of materials and settings would be beneficial. While the 

results are specific to the materials and tooling used, they have 

the potential to be generalized to other turning operations. 

Industrial practitioners can integrate these optimized 

parameters into existing CNC turning processes to achieve 

significant improvements in productivity, quality, and 

competitiveness. By adopting these findings and pursuing 

continuous optimization and innovation, manufacturers can 

achieve superior results and maintain a competitive edge in the 

industry. 
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