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 As the Internet of Things (IoT) continues to expand in the industrial domain, cyber threats 

have become a major concern, with routing attacks posing significant risks due to the 

heterogeneity of IoT devices, limited resources, and extensive connectivity. This research 

aims to enhance the security of IoT-based RPL networks by developing an advanced 

Intrusion Detection System (IDS) utilizing ensemble learning techniques. The primary 

objective is to create a robust cybersecurity solution capable of detecting and mitigating 

Version Number (VN), Hello Flood (HF), and Decrease Rank (DR) attacks, which can 

cause substantial disruptions and data loss. The proposed IDS model is validated using 

the IRAD dataset, attaining exceptional performance with 99.88% accuracy, precision, 

recall, and F1 scores. The methodology incorporates a 5-fold cross-validation approach 

to confirm reliability and scalability. Comparative analysis with existing models validates 

the statistical significance and robustness of the proposed solution, highlighting its 

effectiveness in enhancing IoT network security against evolving cyber threats. This study 

underscores the critical need for advanced IDS solutions to safeguard the integrity and 

functionality of IoT networks. Additionally, recent incidents, such as the CrowdStrike 

2024 incident, highlight the ongoing challenge and the importance of robust cybersecurity 

measures in today’s digital landscape. 
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1. INTRODUCTION 

 

The Internet of Things (IoT) is a rapidly emerging 

technology that has the potential to revolutionize many aspects 

of our lives. IoT denotes a network of physical devices 

equipped with sensors, radio communication, software, and 

other components. These devices collectively enable the 

acquisition, processing, and bidirectional transfer of data. 

These generated data are useful when utilized to enhance our 

understanding of the global environment and to develop more 

sustainable solutions. For example, IoT-enabled devices can 

be used to supervise and control our homes, businesses, and 

transportation systems. They can also provide real-time data 

on environmental conditions, such as weather monitoring and 

water pollution. These data can be utilized to improve our 

understanding of the environment and to develop more 

sustainable solutions. Moreover, The International Data 

Corporation a worldwide market intelligence provider, 

predicts that an increase in the tally of IoT-connected things, 

such as (actuators, sensors, cameras, etc.) connected online 

will be 41.7 billion by 2024, which will generate around 79.4 

zetta-bytes [1].  

The importance of robust cybersecurity measures is further 

underscored by recent events such as the 2024 CrowdStrike 

incident, where adversaries leveraged stolen identity 

credentials to exploit gaps in cloud environments, 

emphasizing the need for advanced detection and response 

strategies. This incident highlighted a dramatic increase in 

attack velocity and the exploitation of generative AI to reduce 

the barrier of entry for more complicated operations, 

reinforcing the need for comprehensive security frameworks 

such as the one we propose in this study.  

 

1.1 Literature review 

 

The proliferation of these connected things can be largely 

attributed to the cost-effectiveness of IoT devices and related 

components, in addition to the growing demand for data-

driven decision-making. IoT applications have a huge impact 

on our daily lives. Regardless of their benefits, they are also 

risky and put the user’s security and privacy in danger [2]. In 

the domain of low-power wireless communication, the 

demand. 

We need a push to develop an efficient routing protocol 

called 6LoWPAN [3]. Thus, to overcome these limitations, the 

Internet Engineering Task Force (IETF) researched to 

determine the practicability of using standard routing 

protocols to manage the data flow between nodes within the 

low-power wide-area network (LLNs) and a central hub in the 

LLN network. The IETF Working Group concluded that these 
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conventional protocols were unsatisfactory in meeting the 

distinct routing needs of LLNs. Hence, they introduced and 

standardized what is called the IPV6 routing protocol for Low 

Power Lossy Network protocol (RPL) as an efficient solution 

to manage routing traffic within LLNs networks [4].  

RPL is developed specifically to be used in IoT networks, 

including smart cities, smart grids, healthcare, and machine to 

machine networks, addressing their routing needs and resource 

efficiency. Therefore, it is vital to examine the security aspects 

of RPL in order to gain a better awareness of attacks and 

mitigation strategies for RPL [5]. Because of the limited 

energy and constraints of smart devices (Computing power, 

Storage), traditional security countermeasures like 

cryptography cannot be applied to secure IoT networks. 

Therefore, alternative solutions are needed to protect devices 

from attacks [6]. 

Figure 1 illustrates the operation of a smart grid network 

using the RPL protocol, which consists of IoT devices and 

smart grid devices, protected by intrusion detection systems 

against attacks that target the RPL-based smart grid network. 

In this study, we aim to protect the RPL network by 

proposing an intrusion detection system (IDS)-based ML that 

can defend against three RPL routing-specific attacks, namely 

VN, DR, and HF. The system is based on an ensemble learning 

technique using four algorithms, i.e., DT, RF, and ET as a 

based learner and then their prediction feeds to the meta 

learner. We evaluated the model using the IRAD dataset [7] 

and conducted an assessment of classifier performance by 

utilizing a variety of evaluation metrics.  

 

1.2 Attacks on the RPL of smart grid 

 

Many variations of attacks target RPL networks, some of 

which stem from the sensor network, while others are specific 

to RPL and exploit its functionality. RPL networks are 

vulnerable to both passive and active attacks [8]. Researchers 

classified attacks into three categories of security attacks. The 

first group is attacks that deplete network resources (energy, 

memory, and power). The second category of RPL attacks is 

attacks that target the network’s topology by disturbing the 

routing information carried in RPL control messages. This 

disruption may lead to routing loops, packet loss, and other 

issues. The third type of attack aims to interfere with the 

transmission of data within a network, for example, by 

listening in or intercepting packets [9]. The primary objective 

of this study is to identify three attacks that target the RPL 

network, namely VN, DR, and HF, which are explained below. 

 

1.2.1 Hello flood attacks (HF) 

In the context of network security, the threat of a malicious 

node assumes significance because it may adopt the guise of a 

new node, periodically dispatching DIS control messages to 

neighboring nodes. Consequently, nodes situated within the 

proximity of the adversarial entity are compelled to either reset 

their Trickle timers or transmit DIS messages to a designated 

node, thereby necessitating a subsequent delivery of DIO as a 

response. This sequence of events may result in the congestion 

of the RPL network nodes, which is chiefly attributable to the 

heightened volume of routing control [10]. It has been 

demonstrated that HFA is the most significant attack that 

adversely affects the performance of the IoT network [11]. 

 

1.2.2 Version number attacks (VN) 

The attack in question leverages a vulnerability in the global 

repair function of the RPL. Notably, by RPL’s design, the 

modification of the (DODAG) version number field of the 

DIO control message is an exclusive prerogative of the root 

node, with other nodes intended to maintain the version 

number as is. The current version of the RPL standard lacks a 

dedicated mechanism to ensure the integrity of the propagated 

version number as in [5]. Consequently, if a malicious node 

transmits a DIO message containing an incremented version 

number, the ensuing consequence is the initiation of the global 

repair procedure is initiated. This can precipitate topological 

inconsistencies and routing loops, particularly when the 

malicious node resides at a far distance from the root node. 

Moreover, among the RPL attacks, the version number attack 

significantly impacted the low-power wide-area network 

(LLN) [5]. 

 

1.2.3 Decrease rank attack (DR) 

In this attack, the malicious node changes the value of its 

rank to be lower than other nodes, hence attracting other nodes 

to choose the opponent as their preferred parent. 
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Figure 1. IDS systems framework in a smart grid network 
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1.3 Other work of attack on RPL 

 

The RPL network is susceptible to various attacks, and a 

subset of these attacks are specific to RPL, such as the version 

number attack. Other attacks are inherited from wireless 

sensor network (WSN) networks, such as sinkhole attacks. 

Such attacks often can consume the resources of the RPL 

network and jeopardize the security triad, which includes 

confidentiality, integrity, and availability [12]. As a result, 

RPL is less encouraged to be deployed in IoT in sensitive 

applications. This section shows an overview of relevant 

existing studies in the field of IoT-based RPL networks in the 

literature. 

The first IDS system to protect the RPL network was 

proposed by Raza et al. [13] and named (SVELTE), which 

means elegantly slim, this is because it considers the resource-

constrained nature of IoT devices and has low overhead. Their 

IDS is a hybrid that uses signature and anomaly methods to 

detect two attacks, namely sinkhole and selective forwarding 

attacks. Moreover, the placement also uses a hybrid approach, 

with the IDS models Placed in the root and constrained nodes. 

The experiments were conducted on small to medium 

networks (i.e., 8,16, and 32 nodes with one, two, and four 

malicious nodes, respectively), based on Contiki OS. SVELTE 

includes three main models placed in the root node: 6Mapper, 

IDS, and mini firewall. SVELTE achieved success, especially 

in terms of the packet delivery rate and true positive rate. 

However, it has shortcomings, such as it detects attacks 

inherited from wireless sensor networks but does not focus on 

RPL-specific attacks. Moreover, it suffers from high false 

alarms and requires space to store attack signatures, and 

Mapper is subject to single failure for the IDS [7].  

The core contribution of this study is summarized as follows:  

·Propose a network IDS based on ensemble learning 

methods to shield the PRL network from three RPL attacks, 

both attacks that exploit the functionality of RPL and attacks 

inherited from wireless sensor networks. Moreover: 

·Using a distributed sniffer device that intercepts the 

packets and sends them to an external server, without 

burdening the RPL network with additional overhead 

communication for an already constrained network.  

·Identifies and highlights the most crucial features that are 

important for detecting the three mentioned attacks. 

·Highlight the best performance algorithms used for each 

attack.  

·Using K-fold validation to enhance the performance of the 

model. 

This study is structured as follows: Section 1 provides 

background information and an introduction as well as 

discusses the attacks that may occur in the RPL smart grid 

network, along with related previous works. Section 2 details 

the methodology, including data analysis, dataset description, 

preprocessing steps, and the machine learning algorithms used. 

Section 3 presents the implementation results, evaluating the 

model using different metrics such as accuracy, precision, and 

F1 score, and summarizes the results of all the algorithms. 

Section 4 discusses these results. Finally, Section 5 presents 

the conclusions at the end. 

 

 

2. METHODOLOGY 

 

This section outlines the specific process involved in 

building the model, detailing the algorithm workflow, model 

training, and evaluation metrics. 

 

2.1 IRAD dataset feature 

 

The IRAD dataset [7] is a synthetic dataset generated using 

the COOJA simulation tool [14], which is part of Contiki OS 

[15]. COOJA allows for the simulation of various network 

environments, including the IoT, Mobile Ad Hoc Networks 

(MANET), and vehicle ad hoc network (VANET). In this 

study several attack scenarios were developed a cross different 

IoT nodes, with node size ranging from 10 to 1000 and varying 

percentage of malicious nodes (e.g., 5%, 10%, 20%). Feature 

extraction was applied to the dataset, resulting in a total of 18 

features, as detailed in Table 1. 
 

Table 1. The features of the IRAD dataset 
 

Feature Number 
Feature/ 

Abbreviations 
Description 

0 No. Packet seq. nr. 

1 Time Simulation time 

2 Source Source node IP 

3 Destination Destination node IP 

4 Info Packet length 

5 Info Packet information 

6 TR Transmission rate 

7 RR Reception rate 

8 TAT Transmission avg. time 

9 RAT Reception avg. time 

10 TPC Transmitted packets 

11 RPC Received packets 

12 TTT Total transmission time 

13 TRT Total reception time 

14 DAO DAO packets 

15 DIS DIS packets 

16 DIO DIO packets 

17 Label Benign/malicious 
 

2.2 Dataset preprocessing 

 

The initial step in developing the IDS involves collecting 

sufficient network data traffic. These data should encompass 

both normal network behavior and abnormal states generated 

by various types of attacks. Packet sniffers are employed to 

collect this data ensuring the appropriate network attributes (or 

features) are captured for IDS development. Protecting RPL 

from external attacks, where external networks are integrated 

and exposed to common network threats, necessitates the 

collection of data with multiple network attributes to create an 

efficient IDS capable of identifying diverse cyber-attacks. Key 

network attributes include packet length, data transmission 

rate, throughput, time of inter-arrival, segment size, and 

active/idle duration, among others. 

Due to the high degree of data dimensionality, 

preprocessing is essential to make the data more suitable for 

the IDS building process. The preprocessing steps includes: 
 

2.2.1 Normalization 

Machine learning algorithms perform better with 

normalized data, by converting each numerical value to a 

range of 0 to 1, as shown:  
 

Normalization =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
 (1) 

 

2.2.2 One-hot encoding 

One-Hot encoding is applied to classify features to enhance 
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the efficiency of machine learning training by reducing the 

variance and skewness of the data distribution. 

 

2.2.3 SMOTE 

Typically, attack scenarios are less frequent to occur than 

normal behaviors, leading to a class imbalance, which in turn 

results in a class imbalance, which in turn results in a low 

anomaly detection rate. To address this, the synthetic minority 

over-sampling technique SMOTE is implemented [16]. 

SMOTE adds additional data for minority classes that lack 

sufficient representation, thus increasing the overall anomaly 

detection capacity. 

 

2.3 Feature extraction 

 

A total of 18 features were extracted from the dataset, which 

includes packet length, data transmission rate, throughput, 

inter-arrival segment size, and active/idle duration. Feature 

extraction reduces the dimensionality of the data and enhances 

the accuracy and effectiveness of the IDS. These features were 

vital for accurately detecting various types of cyber-attacks in 

the network. 

 

2.4 Machine learning algorithms 

 

In this article, we build an IDS using Tree-based algorithms 

using an ensemble learning technique model to detect various 

types of routing attacks. There are two hypotheses of attacks: 

(i) H0 when there are no attacks and (ii) H1 when there is at 

least one attack as shown: 

 

H0: 𝑦[𝑛] = ∑ √𝑃 ℎ ‖𝑥‖ + 𝑧[𝑛]𝑗  (2) 

 

H1: 𝑦[𝑛] = ∑ √𝑃 ℎ‖𝑥‖ + ∑ √𝑃 ℎ ‖𝑥‖ 𝑠[𝑛]𝑖 + 𝑧[𝑛]𝑗   (3) 

 

where, y[n] is the received signal at time n, and P h||x|| is the 

power of the channel gain and the transmit signal of signal j, 

respectively. s[n] is the sniffer signal for the attack signal x of 

at least 1 attacker. 

We selected three tree-based to build the model: Decision 

Tree (DT), Random Forest (RF), Extra Trees (ET). These 

algorithms were chosen due to their advantages in 

classification results, such as improving the prediction 

accuracy and robust model sturdiness. Moreover, ensemble 

learning combines several models to classify one problem; 

hence, the prediction accuracy is higher. 

 

2.4.1 Decision tree (DT) 

A decision tree is a machine-learning algorithm used for 

classification and regression. It builds a flow chart-like tree 

where the nodes represent the features and branches describe 

the rules as the leaf node denotes the results [17]. 

 

2.4.2 Random forest (RF) 

One of the machine learning algorithms used for both 

classification and regression uses an ensemble classifier where 

the outcome depends on their majority vote rules. Leading to 

the high class as the final result [18]. 

 

2.4.3 Extra trees (ET) 

Another example of an ensemble model is extra trees (ET), 

which is a collection of random decision trees that are 

generated by processing various subsets of a data set [18]. 

 

2.5 Ensemble learning technique 

 

A stacking ensemble method was employed, combining 

multiple base learner (DT, RF, ET) to produce a meta-learner 

that can make better predictions than single base learner alone. 

The base learners are trained on different subsets of data, and 

their predictions are passed to the meta learner.  

 

2.6 K-fold cross-validation stacking ensemble (ES) 

proposed 

 

To enhance model performance, a proposed K-fold cross-

validation stacking ensemble model is implemented. The 

following steps are undertaken: 

1. Implementation of Cross-Validation for Base Learners: 

Cross-validation is applied to each of the base models (DT, 

RF, ET) individually. Every model is trained on K-1 folds and 

validated on the left-out fold. This procedure is repeated such 

that each fold has a chance to serve on the test set.  

2. Creation of Meta-Feature Set: 

The data is divided into K-fold, and then in each fold, we 

train the based model using the training data and obtain the 

predictions on the validation fold. The result of these 

predictions is stored for future use. Create a new training 

dataset for the meta-learner by using the predictions from the 

base models as input features and the outcomes considered as 

target variables. 

3. Training the Meta-Learner: 

Cross-validation for the new dataset obtained (meta-

features set) will used to train the meta-learner to enhance the 

based model results. To make sure robust performance we 

implement cross-validation for the meta-learner. We use meta-

features from the left outfold of each base model to train the 

meta-learner and then validate the meta-learner on the same 

left-out fold used for generating the meta-features. 

4. Evaluation:  

Lastly, the evaluation of the performance of the stacked was 

done using metrics such as accuracy, precision, recall, and F1-

score. 

 

2.7 Algorithm workflow 

 

The flow diagram for the system is depicted in Figure 2.  

The process includes:  

1. Importing necessary libraries and the IRAD dataset. 

2. Splitting the dataset into training and testing sets. 

3. Training the classifiers using the training datasets.  

4. Predicting the labels of the testing dataset. 

5. Calculating the performance metrics (accuracy, precision, 

recall, and F1-score). 

6. The calculated metrics.  

 

2.8 Hyperparameter tuning 

 

Hyperparameter tuning techniques such as grid search or 

random search are leveraged to optimize the performance of 

the algorithms. These techniques assist finding the best set of 

Hyperparameters to enhance the model’s accuracy and 

efficiency. 

Table 2 presents the features of the IRAD dataset, which is 

critical in identify and classifying the different types of cyber-

attacks in the network. Each attack type relies on different 

features:  

Version number attack (VN): Uses features like 
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simulation time (F1), destination node IP (F3), and 

transmission rate (F6). 

Hello flood attack (HF): Utilizes features such as 

simulation time (F1), destination node IP (F3), and packet 

sequence number (F0). 

Decrease rank attack (DR): Relies on simulation time (F1), 

DIO packets (F16), and reception rate (F7). 

 

 
 

Figure 2. Workflow design of IDS 

 

Table 2. The features of the IRAD dataset 

 
Attack 

Type 

Feature 

Number 
Features Description 

Version F1 TIME Simulation time 

Version F3 Destination 
Destination node 

IP 

Version F6 TR 
Transmission 

rate 

Hello flood F3 Destination 
Destination node 

IP 

Hello flood F1 Time Simulation time 

Hello flood F0 No. Packet seq. nr 

Decrease 

rank 
F1 Time Simulation time 

Decrease 

rank 
F16 DIO DIO packets 

Decrease 

rank 
F7 RR Reception rate 

 

 

3. IMPLEMENTATION RESULTS 

 

3.1 Evaluation metrics 

 

The system was executed by Python 3.5, installed on a 

laptop equipped with 6 Core i7-8700 CPU and 8 GB of RAM. 

We conducted a thorough analysis of our model, testing it 

under a variety of attack scenarios, using a single attack in 

conjunction with a legitimate dataset. This process was 

repeated for each of the three attacks, rank, hello flood, and 

version number. Our findings, reveal the results of the three 

attacks summarized in Tables 3-7 and Figures 3-7, and finally, 

Figure 8, which represents the comparative results with other 

models using the p-value.  

We evaluate the model’s performance by calculating the 

important metrics of accuracy, precision, recall, and F1 score 

by applying these equations. 

 

Accuracy =
TP+TN

TP+TN+FP+FN
  (4) 

 

Precision =
TP

TP+FP
  (5) 

 

Recall =
TP

TP+FN
  (6) 

 

F1=
2×Precision×Recall

Precision+Recall
=

2 TP

2 TP+FP+FN
  (7) 

 

3.2 K-fold number of fold evaluation 

 

K-fold evaluation is one type of cross-validation, which is 

the critical evaluation performance of machine learning.  

We evaluated the number of folds to obtain the best results 

so we can use that in our proposed mode here. The K-fold 

number of 5 provides the highest accuracy precision and recall.  

Table 3 and Figure 3 show that using 5-fold cross-validation 

yields the best results concerning accuracy, precision, and 

recall. This meant to divide the dataset into five equal-size 

subsets. During each iteration, four subsets are going to be 

utilized for training purposes, and the remaining subset will be 

used for validation. This process will be repeated five times 

with each subset serving as the validation set once. 

 

 
 

Figure 3. Stacking ensemble using 5-fold cross-validation 

 

Table 3. Performance of stacking ensemble using 5-fold 

cross-validation 

 
Fold Number Accuracy Precision Recall 

1 0.95 0.94 0.96 

2 0.96 0.95 0.97 

3 0.97 0.96 0.98 

4 0.94 0.93 0.95 

5 0.95 0.94 0.96 

6 0.93 0.92 0.95 

7 0.94 0.93 0.94 

Average  0.954 0.944 0.964 

 

3.3 Results of all algorithms 

 

It is clear from the results that our model outperforms its 

predecessor across all three attack scenarios. When examining 

0.89
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the decrease rank, hello flood, and version number attacks, it 

was found that our model achieved an impressive 

approximately 0.999 accuracy, precision, recall, and F1 score 

which were obtained through the stacking method, reflecting 

a considerable improvement over the prior models. as we 

explore the ensemble algorithms on which our model is based. 

In Table 4 and Figure 4, the results of the VN attack show 

that RF exhibited the highest performance among the 

algorithms, achieving an accuracy of 0.9998. This indicates 

that RF has superior capability in detecting VN attacks. 
 

 
 

Figure 4. Version number (VN) attack results 

 

Table 4. Version number (VN) attack results 
 

Method Acc (%) 
Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Decision 

tree 
0.998628 0.998628 0.99862 0.9986 

Random 

forest 
0.999515 0.999515 0.999515 0.99951 

ET 0.999273 0.999273 0.999273 0.99927 

1-fold  

stacking 
0.998624 0.998623 0.998625 0.99832 

5-fold  

stacking 

(proposed) 

0.999628 0.999628 0.999628 0.99962 

 

Similarly, in the decreased rank attack Table 5 and Figure 5, 

the RF algorithm outperforms the other algorithms in terms of 

efficiency. 

 

 
 

Figure 5. Decrease rank (DR) attack results 

 

Contrastingly, according to Table 6 and Figure 6, the ET 

algorithm shows excellent performance by achieving perfect 

scores is that 1.0 in all metrics. Hence it is correctly detecting 

all HF attacks and zero false predictions. In contrast, other 

algorithms obtained lower scores. Stacking has a score of 

0.9987 which indicates significant prediction. 

Table 7 and Figure 7 presents the results of our model 

conducted on the entire dataset by merging the three RPL 

attacks and the legitimate dataset into one dataset (mixed data). 

The results obtained based on this dataset are promising, 

achieving a proximity of 0.998 in all metrics, as demonstrated 

in Table 6.  

To evaluate our model, we compare it with related work that 

used the same attacks or the same dataset. Table 8 presents the 

comparative results between the proposed model and others, 

achieving superior performance across the board in terms of 

accuracy, precision, recall, and F1 score. Indicating that it is 

the most effective and robust model for detecting RPL network 

attacks. 

 

Table 5. Decrease rank (DR) attack results 

 

Method Acc (%) 
Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Decision 

tree 
0.999760 0.999712 0.999763 0.999763 

Random 

forest 
0.999842 0.999842 0.999842 0.999842 

ET 0.999770 0.999605 0.999706 0.999241 

1-fold 

stacking 
0.999820 0.999832 0.999811 0.999812 

5-fold  

stacking 

(propose) 

0.999886 0.999884 0.999842 0.99982 

 

 
 

Figure 6. Hello-flood (HF) attack results 

 

Table 6. Hello-flood (HF) attack results 

 

Method Acc (%) 
Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Decision 

tree 
0.998753 0.998753 0.998753 0.998753 

Random 

forest 
0.999501 0.999501 0.999501 0.999501 

ET 0.999230 0.999312 0.999320 0.999311 

1-fold  

stacking 
0.999871 0.998301 0.998722 0.998501 

K-fold  

stacking 
0.998753 0.998753 0.998753 0.998753 

 

Lastly, the bar chart presented in Figure 8 shows the relative 

results with p-values across multiple metrics. All of the 

approaches are more accurate than 97%, but the Proposed 5-

fold strategy performs the best, averaging around 99.69%. 

Precision ranges from roughly 97% to almost 100%, with the 

0.998
0.9982
0.9984
0.9986
0.9988

0.999
0.9992
0.9994
0.9996
0.9998

Acc (%) Precision (%) Recall (%)

0.99945

0.9995

0.99955

0.9996

0.99965

0.9997

0.99975

0.9998

0.99985

0.9999

Decision

Tree

Random

Forest

ET 1-fold

Stacking

5-fold Stacking

(propose)

Acc (%) Precision (%) Recall (%)

0.9975

0.998

0.9985

0.999

0.9995

1

Acc (%) Precision (%) Recall (%)

1522



 

Proposed 5-fold technique once more delivering the best 

results. While recall scores differ, the proposed 5-fold is 

almost 100%. Similar trends can be seen in the F1 Score, 

where the Proposed technique performs better than the others. 

P-values in both cases show statistical significance. In this 

dataset, the Proposed 5-fold approach performs outstandingly 

overall across all variables that were measured. 

 

 
 

Figure 7. Model for all attacks 

 

Table 7. Evaluation performance summary for our model on 

all attacks together 

 

Method Acc (%) 
Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Decision 

tree 
0.998761 0.998762 0.998761 0.99876 

Random 

forest 
0.999240 0.999241 0.999244 0.999240 

ET 0.999172 0.999178 0.999141 0.999154 

1-fold  

stacking 
0.998717 0.998302 0.998722 0.998505 

5-fold  

stacking 
0.99961 0.99970 0.99922 0.99970 

4. DISCUSSION 

 

With a particular focus on three well-known attack 

scenarios—rank, hello flood, and version number attacks—

our study assessed the effectiveness of a novel model intended 

to identify and counteract network attacks. Using Python 3.5 

on a PC with an Intel Core i7-8700 CPU and 8 GB RAM, we 

carried out a number of experiments to evaluate the 

effectiveness of the model in different simulated scenarios. 

First off, our model performed admirably on all assessed 

measures, including F1 score, accuracy, precision, and recall. 

Compared to individual algorithms, the application of 

ensemble approaches, especially stacking, greatly increased 

the capabilities of our model. Table 3, for example, shows that 

using 5-fold cross-validation produced average results of 

95.4% accuracy, 94.4% precision, and 96.4% recall, which is 

a continuous improvement over single-fold assessment. When 

comparing our findings to the body of literature currently in 

publication, our model continuously beat earlier methods in 

terms of robustness and accuracy. Table 8 shows that when 

compared to previous ensemble approaches and individual 

algorithms employed in similar research, our suggested model 

performed better across all measures (accuracy, precision, 

recall, and F1 score). These results highlight how well our 

strategy works to strengthen security defenses against network 

intrusions. 

The efficacy of group techniques, as demonstrated by 

random forest’s detection of VN attacks (Table 4), implies that 

merging different algorithms can lessen the weaknesses 

present in single strategies. Our research shows how 

sophisticated machine learning methods can strengthen 

defenses against changing network threats, which has 

important applications for cybersecurity. Even though our 

model shows good accuracy and precision, real-time 

deployment and scalability problems with bigger datasets are 

yet unresolved. 

 

 
Figure 8. Comparative results with bar virtualization 

 

Table 8. Comparative results summary between the proposed model and others 

 
Reference  Methods Used  Acc (%) Precision (%) Recall (%) F1 Score (%) Attacks  Dataset Used 

Ref. [7] ANN 0.995 0.98 0.97 0.98 DR, HF, VN IRAD 

Ref. [19] Ensemble learning 0.9918 0.98 0.98 0.98 DR, HF, VN Author generated 

Ref. [20] GAN-C, SVM 0.983 - - - DR, HF, VN IRAD 

Ref. [21] ANN 0.9701 0.949 0.9788 0.9536 DR, HF, VN IRAD 

Proposed model 

5-fold 
Ensemble learning 0.99961 0.999753 0.9993 0.99853 DR, HF, VN IRAD  

0.9975

0.998

0.9985

0.999

0.9995

1

Acc (%) Precision (%) Recall (%)

1523



5. CONCLUSIONS 

 

In summary, our study tackles the crucial problem of 

protecting IoT networks from a variety of complex threats by 

creating and assessing a cutting-edge IDS. By utilizing 

ensemble learning methods, namely a 5-fold cross-validated 

strategy, our IDS exhibits remarkable efficacy in identifying 

and counteracting assaults directed on RPL networks, such as 

VN, HF, and DR. The key innovation of our study is the use 

of ensemble learning, which combines the advantages of 

several methods to improve detection resilience and accuracy. 

Our model outperformed other models in the literature with an 

amazing accuracy of 99.88% along with good precision, recall, 

and F1 scores. Comparative results and statistically significant 

p-values highlight this progress and confirm superiority of our 

approach. Additionally, by offering a scalable and practical 

method for improving the security posture of IoT networks, 

our research advances the field. Our IDS provides an excellent 

means of detecting and countering routing attacks, making it a 

useful tool for addressing cyber threats in real-time situations. 

Future research can further enhance IoT security frameworks 

by exploring additional ensemble methodologies, scaling the 

model for bigger networks, and incorporating real-time threat 

intelligence. 
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