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Elliptic Curve Cryptography (ECC) and the related cryptographic systems have become 

widespread alternatives to provide secure channels of communication within our ever-

expanding networked universe. Cryptosystems play an important role in keeping the 

privacy of information when it is sent over the network or stored. But as threats and 

resources grow exponentially higher the only solution is to constantly develop and make 

more complex systems to remain safe. The Menezes-Vanstone Elliptic Curve 

Cryptosystem (MVECC) is a cryptographic scheme based on elliptic curve 

mathematics, designed for data encryption and transmission. A linear Bézier curve is a 

mathematical construct used in computer graphics, and it’s defined by a set of control 

points. This paper presents an extension to MVECC with a linear Bézier curve equation. 

This is implemented using a modification of the linear Bézier curve equation to propose 

the encryption/decryption equations. Also, define a new secret key 𝜅, with u (where 

𝑢 ∈ [0,1]) and create it with scalar multiplication in ECC by the public key 𝑅𝑘  of

MVECC. The purpose of this paper is to enhance the general complexity of the MVECC 

for key generation, encryption, and decryption operations. This research paper aims to 

increase the complexity of MVECC by incorporating the behavior of the linear Bézier 

curve equation. The test of randomness of the ciphertext of the proposed method is 

depends on several tests issued by the National Institute of Standards and Technology 

(NIST). The timing of the proposed method has been tested, and the required processes 

have been calculated. Results show that the proposed modification has the complexity 

and randomness to provide higher security levels. 
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1. INTRODUCTION

Networks have become ubiquitous to all aspects of life and 
particularly because of fast technical progress. They help us 
obtain information, talk to each other, do business online, and 
benefit from many other online activities. However, networks 
also create some threats and risks to protecting and privacy of 
our data. So, there is the requirement of secure methods to 
shield our data from unauthorized access. Cryptography is the 
science concerned with hiding and verifying information. It 
includes protocols, algorithms and techniques to encrypt and 
decrypt data in a secure method and letting each element of the 
data be validated. 

Cryptography is mention to protocols, algorithms and 
techniques that can encode a message or decode a ciphertext 
in such a way as to protect the privacy of the message during 
its digital transmission. The Bézier curve is one of the basic 
mathematical concepts common to both computer graphics 
and design. In the field of automobile design invented between 
1958 and 1960 by French scientists Pierre Bézier and Paul de 
Casteljau, who took advantage of the polynomial properties 
that is convenient to manipulate, control or analyze [1]. 

The theory of asymmetric cryptography began to appear in 
1986, the year that Miller [2] and Koblitz [3] introduced the 
idea of elliptic curves (EC) [4], where EC has become the basis 

for offering novel methods of improved data protection, 
encryption and secure transmission. It was Miller’s seminal 
paper back in 1987 [2], and Koblitz’s paper a year earlier in 
1986 [3], that saw elliptic curves introduced into cryptography 
at its birth. Since then, elliptic curves have been subjected to 
intense research in the field of cryptography, resulting in many 
encryption algorithms that provide stronger security. ECC is 
dependent on the discrete logarithm issue and has the potential 
to be applied using elliptic curves in EC protocols such as 
Diffie-Hellman key exchange [5]. 

Central to the discussion of elliptic curve cryptosystems is 
the challenge posed by the Elliptic Curve Discrete Logarithm 
Problem (ECDLP) including the MVECC. The security of 
ECC is based on the assumption that it is computationally 
infeasible to find the discrete logarithm of a point on an elliptic 
curve with respect to a publicly known base point that is the 
attacker attempts to discover the private key by trying all 
possible values. The difficulty of solving ECDLP is directly 
depend on size of the key of the EC. Therefore, larger key sizes 
are needed to keep the level of security. Mathematically, given 
two points 𝑃 and 𝐵 on the curve, finding an integer '𝑛' such 
that 𝐵 = 𝑛𝑃 is believed to be computationally hard. To break 
an ECC system, an attacker would need to find the private key 
(the integer 𝑛 ) from point 𝑃  to perform unauthorized 
decryption [6]. 
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Understanding the impacts of ECDLP were efficiently 

savable, it could make ECC cryptosystems unsafe. This 

research paper introduces a novel approach by incorporating 

MVECC with a linear Bézier curve to create a highly intricate 

cryptosystem and against evolving threats. The primary aim of 

this paper is to enhance the complexity of an elliptic curve 

cryptosystem. The proposed modification hinges on the 

generation of a new key and modifying the encryption and 

decryption procedures. By doing so, it significantly elevates 

the difficulty level for potential attackers attempting to solve 

DLP. This heightened complexity arises from the utilization of 

two private keys, the first generated by MVECC and the 

second created secretly through 𝑢 ∈ [0,1]  and scalar 

multiplication between the sender and receiver, further 

increasing the cryptosystem's security. 
 

 

2. RELATED WORKS 
 

Many researchers have developed new methods and 

improvements to many cryptosystems. Some of them 

developed Bézier-curve-based cryptosystems. These studies 

have used Bézier curves with some cryptosystems, as in our 

research paper, where we use a linear Bézier curve with one of 

elliptic curve cryptosystems, which is MVECC. We present 

some of them, such as in our previous work in 2020 [7], where 

we presented an improvement of MVECC based on the 

quadratic Bézier curves, which is dependent on the quadratic 

Bézier equation in encryption and decryption processes. 

Srividya and Akhila [8] presented a cryptography technique 

based on the quartic Bézier curve over Galois field GF (Pm) 

to improve security data while maintaining low computational 

complexity. To modify ElGamal ECC, Ghadi [9] has used a 

quadratic Bézier curve for encrypting key and sending it with 

ciphertext to the receiver side based on PGP behaviour. In the 

study conducted by Abd El-Latif et al. [10], to enhance the 

chaotic key sequence, an expanded sequence employing a 

chaotic map and Bernstein-Bézier curve is shown. The 

scrambling is performed in the DCT domain using changeable 

control parameters. To increase safety, image pixels' gray 

values are widely used by applying a keystream derived from 

the chaotic map and plain image's enlarged key sequence. 

For researchers who modified and developed the MVECC, 

we present some of them, one of which was our previous work 

in 2020 [7], which has been mentioned in the paragraph above. 

Rahouma [11] proposed a modified variant of the MVECC 

using multiple curves with corresponding keys. Messages are 

divided into blocks and protected through encryption with a 

random sequence generator and modulus calculation. The 

system keys include encryption and decryption keys and 

random sequence generator coefficients. Sagheer [12] 

introduced Elliptic Curves Cryptography (ECC) as a recent 

public key cryptosystem and proposes three modified 

techniques based on elliptic curves for the ElGamal 

cryptosystem. These techniques demonstrate a significant 

reduction in calculation time and increased ciphertext 

confusion compared to the original methods. ECC offers 

comparable security to RSA with shorter keys, improves 

storage and performance, and outperforms other secure 

ciphers like RSA, ElGamal encryption and decryption, and 

MVECC techniques by eliminating the need for inverse 

operations and plaintext embedding. Sadiq and Kadhim [13] 

proposed a new variation of the MVECC to enhance 

encryption efficiency and security. Unlike the original 

ElGamal scheme, MVECC avoids encoding plaintext in the 

elliptic curve, but it requires computing inverses, affecting 

efficiency. The proposed variation mixes plaintext units, 

increasing confusion, and only requires one inverse operation, 

making it more efficient and secure than MVECC. 

These studies affirm the effectiveness of employing Bézier 

curves in cryptographic applications and modifying MVECC 

schemes. In our paper, we apply the linear Bézier curve 

equation to the encryption and decryption processes of 

MVECC. Additionally, we introduce a new secure key for 

encrypting and decrypting data. 

 

 

3. LINEAR BÉZIER CURVES 

 

Bézier curves of degree 𝑚 is regarded as having a control 

point sequence of 𝑚+ 1  [1]. These points describe Bézier 

curves [14]. 𝐵𝑗
𝑚(𝑢) symbolizes a Bézier curve of degree 𝑚 

that has 𝑚 + 1 control points with mixture functions. 

 

𝐵𝑗
𝑚(𝑢) = (𝑚

𝑗
) (1 − 𝑢)𝑚−𝑗𝑢𝑗,  𝑗 = 0,1,2, … ,𝑚 

 

Such that (𝑚
𝑗
) =

𝑚!

𝑗!(𝑚−𝑗)!
, for 𝐵𝑗

𝑚(𝑢)  is a 𝑗𝑡ℎ  Bernstein 

polynomial with degree 𝑚. Then, the Bezier curve equation is 

[1]: 

 

𝑞(𝑢) =∑(
𝑚

𝑗
)

𝑚

𝑗=0

(1 − 𝑢)𝑚−𝑗𝑢𝑗𝐿𝑗 

𝑞(𝑢) =∑𝐵𝑗
𝑚(𝑢)

𝑚

𝑗=0

𝐿𝑗 ,       0 ≤ 𝑢 ≤ 1 

𝑞(𝑢) = 𝐵0
𝑚(𝑢)𝐿0 + 𝐵1

𝑚(𝑢)𝐿1 + 𝐵2
𝑚(𝑢)𝐿2 +⋯+𝐵𝑗

𝑚(𝑢)𝐿𝑗 

 

Therefore, the linear Bezier curve is identified with two 

control points, 𝐿0 and 𝐿1, and its equation is: 

 

𝑞(𝑢) = (1 − 𝑢) 𝐿0 + 𝑢𝐿1, for  𝑢 ∈ [0,1] (1) 

 

In the interval [0, 1], the linear Bezier curve is recognized. 

So, the starting point is 𝑞(0) = 𝐿0  and the ending point is 

𝑞(1) = 𝐿1 , assuming the Bezier curve interpolates between 

the first and last control points [14]. 

In general, Bézier curves provide suitable performance in 

cryptography, based on some of the research that has been 

mentioned in Section 2. Its simplicity can contribute to 

computational efficiency and complexity, which enhances the 

overall security of the MVECC. In short, the importance of 

linear Bézier curves lies in their mathematical simplicity and 

their ability to provide a new approach to cryptosystem 

processes. As mentioned earlier, ECC including MVECC, 

depend on the difficulty of solving ECDLP. In this paper, the 

proposed modification can increase the complexity of these 

problems, making them more computationally difficult for 

attackers. 

 

 

4. ELLIPTIC CURVE CRYPTOGRAPHY 

 

Miller [2] and Koblitz [3] presented Elliptic Curve 

Cryptography (ECC). This cryptographic technique allows the 

implementation of various systems such as Diffie-Hellman 

key exchange, the ElGamal public key encryption, and 

signature systems. 
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ECC can provide security similar to existing public-key 

techniques while using shorter key lengths [15]. RSA and ECC 

are the most well-known cryptosystems in public key 

cryptography, and they get the same security protections, with 

the exception that ECC works with shorter keys than RSA 

(160-256 bit vs. 1024-3072 bit). It depends on the (DLP), 

which could be implemented in EC methodologies such as 

Diffie-Hellman key exchange using elliptic curve. ECC 

systems have benefits over RSA and discrete logarithm 

systems in terms of fewer calculations and smaller signatures 

and keys. Elliptic curves have a stronger mathematical 

connection than RSA and discrete logarithm schemes [5, 7]. 

By Eq. (2), elliptic curve 𝐸 over finite prime field 𝐹𝑝 and it 

symbolize 𝐸(𝐹𝑝), can be defined and arithmetic operations on 

its points can be performed as follows [9, 16, 17]: 

 

𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏      𝑚𝑜𝑑 𝑝 (2) 

 

Consider the following: 𝑝 is an odd prime that means that 

( 𝑝 > 2,3 ), 𝑎  and 𝑏  must satisfy the formula (4𝑎3 +
27𝑏2) 𝑚𝑜𝑑 𝑝 ≠ 0 in 𝐹𝑝, and each point 𝑃 = (𝑥, 𝑦) in 𝐸. The 

mathematical operations on the points of 𝐸 are summarized 

below: 

 

1) The Addition Operation: If 𝑃 = (𝑥₁, 𝑦₁)  and 𝑄 =
(𝑥₂, 𝑦₂) are points on 𝐸, then 𝑃 + 𝑄 = (𝑥₃, 𝑦₃) and 

calculated as below: 

 

𝜆 =
(𝑦₂ − 𝑦₁)

(𝑥₂ − 𝑥₁)
 (3) 

 

𝑥₃ = (𝜆2 − 𝑥₁ − 𝑥₂)𝑚𝑜𝑑 𝑝 (4) 

 

𝑦3 = [𝜆(𝑥₁ − 𝑥₃) − 𝑦1]𝑚𝑜𝑑 𝑝 (5) 

 

2) Doubling Operation: If 𝑃 = (𝑥₁, 𝑦₁) is a point on 𝐸, 

the doubling 𝑃  is calculated as: 2𝑃 = 𝑃 + 𝑃 =
(𝑥₃, 𝑦3), such that: 

 

𝜆 =
(3 𝑥₁2 + 𝑎)

(2 𝑦₁)
𝑚𝑜𝑑 𝑝 (6) 

 

𝑥₃ = (𝜆2 − 2 𝑥₁)𝑚𝑜𝑑 𝑝 (7) 

 

𝑦3 = [𝜆(𝑥₁ − 𝑥₃) − 𝑦₁]𝑚𝑜𝑑 𝑝 (8) 

 

3) Scalar Multiplication Operation: If 𝑃 = (𝑥, 𝑦)  is a 

point on 𝐸 and let 𝑛 be a positive integer, the scalar 

multiplication of 𝑃 is the repeated addition to 𝑃 itself, 

as shown: 𝑛𝑃 = 𝑃 + 𝑃⏟        
𝑛-times

+⋯+ 𝑃. 

 

4.1 Menezes-Vanstone Elliptic Curve Cryptosystem  

 

This cryptosystem employs ECC to ensure secure data 

transmission between transmitters and receivers [7, 15]. The 

MVECC does not work with discrete logarithms. Users will 

very certainly succeed in embedding data once a curve has a 

point on it [13]. MVECC messages 𝑀 = (𝑚1, 𝑚2)  and 

ciphertexts 𝐶 = (𝑐1, 𝑐2) can alternatively be randomized 

ordered pairs of nonzero elements (they just don't have to 

contain points in E) [18]. The MVECC algorithm is designed 

as below: 

Setting Up the Cryptosystem Between Sender and Receiver: 

 

1) Public 𝐸: 𝑦² = 𝑥³ + 𝑎𝑥 + 𝑏  𝑚𝑜𝑑 𝑝 , where  𝑎 , 𝑏 , 

and 𝑝 satisfy: (4𝑎³ + 27𝑏²) 𝑚𝑜𝑑 𝑝 ≠ 0. 

2) Public base point 𝑃 ∈ 𝐸(𝐹𝑝). 

 

Algorithm 1: Key Production 

 

Receiver’s Keys Production 

Inputs: 𝑃 ∈ 𝐸(𝐹𝑝). 

Outputs: Public Key 𝑅𝑘. 

1) Randomly, choose a private integer 𝑛. 

2) Generate a public key 𝑅𝑘 by calculating: 

𝑛𝑃 = 𝑅𝑘. 

 

Sender’s Keys Production 

Inputs: Public Key 𝑅𝑘. 

Outputs: Secret Key 𝑆𝑘 = (𝑠1, 𝑠2). 
1) Randomly, choose a private integer 𝑒. 

2) Generate the key 𝑆𝑘 = (𝑠1, 𝑠2)  using 𝑒  and 𝑅𝑘 : 

𝑆𝑘 = 𝑒𝑅𝑘. 

 

Algorithm 2: Encryption (The Sender) 

 

Inputs: Message 𝑀 = (𝑚₁,𝑚₂), 𝑆𝑘, 𝑃 ∈ 𝐸(𝐹𝑝). 

Outputs: Ciphertext 𝐶 = (𝑐₁, 𝑐₂), 𝑒𝑃. 

1) Choose message 𝑀 = (𝑚₁, 𝑚₂). 
2) Encrypt 𝑀 with 𝑆𝑘 by: 

𝑐₁ =  𝑚₁ ∗ 𝑠1 𝑚𝑜𝑑 𝑝 

𝑐₂ =  𝑚₂ ∗ 𝑠2 𝑚𝑜𝑑 𝑝 

3) Calculate 𝑒𝑃. 

4) Send {𝐶, 𝑒𝑃} to the receiver. 

 

Algorithm 3: Decryption (The Receiver) 

 

Inputs: Ciphertext 𝐶 = (𝑐₁, 𝑐₂), 𝑒𝑃, Private Key 𝑛. 

Outputs: Message 𝑀 = (𝑚₁,𝑚₂). 
1) Receive {𝐶, 𝑒𝑃} from the sender. 

2) Generate 𝑆𝑘 =  𝑛(𝑒𝑃). 
3) Decrypt 𝐶 with 𝑆𝑘 by:  

𝑚₁ =  𝑐₁ ∗  𝑠1 ̄¹ 𝑚𝑜𝑑 𝑝 
𝑚₂ =  𝑐₂ ∗  𝑠2 ̄¹ 𝑚𝑜𝑑 𝑝 

4) The message 𝑀 =  (𝑚₁,𝑚₂). 
 

 

5. THE PROPOSED METHOD OF MVECC 

 

The algorithm below performs the proposed technique for 

MVECC encryption and decryption using the Eq. (1). Through 

Eq. (1), a cryptographic equation for enhancing MVECC is 

created and used in encrypting messages and decrypting 

ciphertext with the generated secret key 𝑆𝑘 = (𝑠1, 𝑠2) and 𝑢 ∈
[0,1] which is considered to be an agreed-upon random secret 

key by sender and receiver. 

In proposed algorithm, we used 𝑆𝑘 as a control point instead 

of a Bézier point. We only chose 𝑢 ∈ [0,1] and computed it 

using module 𝑝, then used scalar multiplication with public 

key 𝑅𝑘  and 𝑢 ∈ [0,1] 𝑚𝑜𝑑 𝑝 = 𝛺  to generate the new key 

𝜅 = (𝜅1, 𝜅2) and keep it secret. The process of encrypting and 

decrypting messages is only done through these two secret 

keys. 

The algorithm below explains the proposed encryption and 

decryption technique as well as how to use the keys 𝑆𝑘 =
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(𝑠1, 𝑠2)  and 𝜅 = (𝜅1, 𝜅2)  encrypting and decrypting 

procedures. 

 

Setting Up the Proposed Cryptosystem Between Sender and 

Receiver 

 

1) Public 𝐸: 𝑦² = 𝑥³ + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝 , where  𝑎 , 𝑏 , 

and 𝑝 satisfy: (4𝑎³ + 27𝑏²) 𝑚𝑜𝑑 𝑝 ≠ 0. 

2) Public base point 𝑃 ∈ 𝐸(𝐹𝑝). 

3) Random secret 𝑢 ∈ [0,1]. 
 

Algorithm 4: Proposed Key Production 

Receiver’s Keys Production 

Inputs: 𝑃 ∈ 𝐸(𝐹𝑝). 

Outputs: Public Key 𝑅𝑘, Secret number 𝛺, Secret key 

𝜅 = (𝜅1, 𝜅2). 
1) Randomly, choose a private integer 𝑛. 

2) Generate a public key 𝑅𝑘  by calculating: 𝑛𝑃 =
𝑅𝑘. 

3) Compute secret number by 𝑢 ∈ [0,1] 𝑚𝑜𝑑 𝑝 = 𝛺. 

4) Generate a secret key 𝜅 using his public key 𝑅𝑘 by 

calculating: 𝛺𝑅𝑘 = 𝜅 = (𝜅1, 𝜅2). 
Sender’s Keys Production 

Inputs: Public key 𝑅𝑘. 

Outputs: Secret key 𝑆𝑘 = (𝑠1, 𝑠2) , Secret number 𝛺 , 

Secret key 𝜅 = (𝜅1, 𝜅2). 
1) Randomly, choose a private integer 𝑒. 

2) Generate the key 𝑆𝑘 = (𝑠1, 𝑠2), using 𝑒 and 𝑅𝑘: 

𝑆𝑘 = 𝑒𝑅𝑘. 

3) Compute secret number by 𝑢 ∈ [0,1] 𝑚𝑜𝑑 𝑝 = 𝛺. 

4) Generate a secret key 𝜅 using his public key 𝑅𝑘 by 

calculating: 𝛺𝑅𝑘 = 𝜅 = (𝜅1, 𝜅2). 
 

Algorithm 5: Proposed Encryption (The Sender) 

Inputs: Message 𝑀 = (𝑚₁,𝑚₂) , 𝑆𝑘 , 𝜅 , 𝑃 ∈ 𝐸(𝐹𝑝) , 

private integer 𝑒. 

Outputs: Ciphertext 𝐶 = (𝑐1, 𝑐2), 𝑒𝑃. 

1) Choose message 𝑀 = (𝑚₁,𝑚₂). 
2) Encrypt 𝑀 with 𝑆𝑘 and 𝜅 by: 

𝑐1 = (𝑚1– 𝜅1) ∗ 𝑠1 + 𝑠2 ∗  𝜅2  𝑚𝑜𝑑 𝑝 
𝑐2 = (𝑚2– 𝜅2) ∗ 𝑠2 + 𝑠1 ∗  𝜅1  𝑚𝑜𝑑 𝑝 

3) Calculate 𝑒𝑃. 

4) Send {𝐶, 𝑒𝑃} to the receiver. 

 

Algorithm 6: Proposed Decryption (The Receiver) 

Inputs: Ciphertext 𝐶 = (𝑐₁, 𝑐₂), 𝑒𝑃, Private key 𝑛, κ. 

Outputs: Message 𝑀 = (𝑚₁,𝑚₂). 
1) Receive {𝐶, 𝑒𝑃} from the sender. 

2) Generate 𝑆𝑘 =  𝑛(𝑒𝑃). 
3) Decrypt 𝐶 with 𝑆𝑘 and 𝜅 by: 

𝑚1 = (𝑐1– 𝑠2 ∗ 𝜅2) ∗ 𝑠1
−1 + 𝜅1  𝑚𝑜𝑑 𝑝 

𝑚2 = (𝑐2– 𝑠1 ∗ 𝜅1) ∗ 𝑠2
−1 + 𝜅2  𝑚𝑜𝑑 𝑝 

4) The message 𝑀 = (𝑚₁,𝑚₂). 
 

5.1 Analyzing encryption and decryption 

 

As in Section 3, the linear Bézier curve is described in Eq. 

(1), and based on this equation, we created equations for 

encryption and decryption processes. The following explains 

how they created these equations, which exist in the proposed 

algorithms 5 and 6. 

Depending on the behavior of Eq. (1), we use the message 

point 𝑀 = (𝑚₁,𝑚₂) , the secret keys 𝑆𝑘 = (𝑠1, 𝑠2)  and 𝜅 =
(𝜅1, 𝜅2) to get the equations of encryption as follows: 𝑐1 =
(𝑚1– 𝜅1) ∗ 𝑠1 + 𝑠2 ∗ 𝜅2    𝑚𝑜𝑑 𝑝. 

Similarly, we get 𝑐2 = (𝑚2– 𝜅2) ∗ 𝑠2 + 𝑠1 ∗ 𝜅1    𝑚𝑜𝑑 𝑝. 

We developed equations for decryption processes and used 

Eq. (1) to find message point 𝑀 = (𝑚1, 𝑚2): 
 

𝑐1 = (𝑚1– 𝜅1) ∗ 𝑠1 + 𝑠2 ∗ 𝜅2   𝑚𝑜𝑑 𝑝 

 

By simplification: 

 

𝑐₁– 𝑠2 ∗ 𝜅2 = (𝑚₁– 𝜅1) ∗ 𝑠1 

[𝑐₁– 𝑠2 ∗ 𝜅2 = (𝑚₁– 𝜅1) ∗ 𝑠1] ∗ 𝑠1
−1 

𝑐1 ∗ 𝑠1
−1– 𝑠2 ∗ 𝜅2 ∗ 𝑠1

−1 = 𝑚₁–𝜅1 

𝑚1 = (𝑐1– 𝑠2 ∗ 𝜅2) ∗ 𝑠1
−1 + 𝜅1 

 

We get the equations of decryption: 

 

𝑚1 = (𝑐1– 𝑠2 ∗ 𝜅2) ∗ 𝑠1
−1 + 𝜅1    𝑚𝑜𝑑 𝑝 

 

Similarly, in case 𝑐2 = (𝑚2– 𝜅2) ∗ 𝑠2 + 𝑠1 ∗ 𝜅1, we get 

 

𝑚2 = (𝑐2– 𝑠1 ∗ 𝜅1) ∗ 𝑠2
−1 + 𝜅2    𝑚𝑜𝑑 𝑝 

 

The theorem below proves that these encryption and 

decryption equations work: 

 

Theorem: Let 𝑀 = (𝑚1, 𝑚2) be the message point, 𝑆𝑘 =
(𝑠1, 𝑠2) and 𝜅 = (𝜅1, 𝜅2) be keys, then 

 

𝑐1 = (𝑚1– 𝜅1) ∗ 𝑠1 + 𝑠2 ∗ 𝜅2    𝑚𝑜𝑑 𝑝 

𝑐2 = (𝑚2– 𝜅2) ∗ 𝑠2 + 𝑠1 ∗ 𝜅1   𝑚𝑜𝑑 𝑝 

 

If and only if 

 

𝑚1 = (𝑐1– 𝑠2 ∗ 𝜅2) ∗ 𝑠1
−1 + 𝜅1    𝑚𝑜𝑑 𝑝 

𝑚2 = (𝑐2– 𝑠1 ∗ 𝜅1) ∗ 𝑠2
−1 + 𝜅2    𝑚𝑜𝑑 𝑝 

 

Proof: Suppose that 𝑚1 = (𝑐1– 𝑠2 ∗ 𝜅2) ∗ 𝑠1
−1 +

𝜅1 𝑚𝑜𝑑 𝑝 

By substitution, we get 

 

𝑚1 = ((𝑚1– 𝜅1) ∗ 𝑠1 + 𝑠2 ∗ 𝜅2– 𝑠2 ∗ 𝜅2) ∗ 𝑠1
−1 + 𝜅1   𝑚𝑜𝑑 𝑝 

 

Simplifying, 

 

𝑚1 = (𝑚1 ∗ 𝑠1– 𝜅1 ∗ 𝑠1 + 𝑠2 ∗ 𝜅2– 𝑠2 ∗ 𝜅2) ∗ 𝑠1
−1

+ 𝜅1   𝑚𝑜𝑑 𝑝 

𝑚1 = 𝑚1 ∗ 𝑠1 ∗ 𝑠1
−1– 𝜅1 ∗ 𝑠1 ∗ 𝑠1

−1 + 𝜅1        𝑚𝑜𝑑 𝑝 

𝑚1 = 𝑚1 ∗ 1– 𝜅1 ∗ 1 + 𝜅1        𝑚𝑜𝑑 𝑝 

𝑚1 = 𝑚1    𝑚𝑜𝑑 𝑝 

 

Also, suppose that 𝑐1 = (𝑚1– 𝜅1) ∗ 𝑠1 + 𝑠2 ∗ 𝜅2    𝑚𝑜𝑑 𝑝 

Simplifying, 

 

𝑐1 = ((𝑐1– 𝑠2 ∗ 𝜅2) ∗ 𝑠1
−1 + 𝜅1 – 𝜅1) ∗ 𝑠1 + 𝑠2 ∗ 𝜅2    𝑚𝑜𝑑 𝑝 

𝑐1 = (𝑐1 ∗ 𝑠1
−1– 𝑠2 ∗ 𝜅2 ∗ 𝑠1

−1) ∗ 𝑠1 + 𝑠2 ∗ 𝜅2    𝑚𝑜𝑑 𝑝 

𝑐1 = 𝑐1 ∗ 𝑠1
−1 ∗ 𝑠1– 𝑠2 ∗ 𝜅2 ∗ 𝑠1

−1 ∗ 𝑠1 + 𝑠2 ∗ 𝜅2    𝑚𝑜𝑑 𝑝 

𝑐1 = 𝑐1 ∗ 1– 𝑠2 ∗ 𝜅2 ∗ 1 + 𝑠2 ∗ 𝜅2    𝑚𝑜𝑑 𝑝 

𝑐1 = 𝑐1    𝑚𝑜𝑑 𝑝 

 

In the same way, in case of 𝑐2 and 𝑚2. 
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5.2 Implementation 

 

We demonstrate how the proposed method can be used 

between sender and receiver by generating keys and 

encrypting and decrypting data, as illustrated below: 

 
Setting Up the Proposed Cryptosystem Between Sender and 

Receiver 

 

1) Public 𝐸(𝐹313): 𝑦² = 𝑥³ + 71𝑥 + 203 𝑚𝑜𝑑 313 , 

where 71, 203, and 313 satisfy: 

 

(4(71)3 + 27(203)2) mod 313 = 223 ≠ 0. 

 

2) Public base point 𝑃 = (300, 250) ∈ 𝐸(𝐹313). 
3) Random secret 𝑢 = 0.85 ∈ [0,1]. 

 
Algorithm 7: Implementation of Proposed Key 

Production 

Receiver’s Keys Production 

Inputs: 𝑃 = (300, 250) ∈ 𝐸(𝐹313). 
Outputs: Public key 𝑅𝑘 = (53, 259), Secret number 

              𝛺 = 173, Secret key 𝜅 = (235, 161). 
 

1) Randomly, choose a private integer 𝑛 = 180. 

2) Generate a public key Rk  by calculating: 𝑅𝑘 =
𝑛𝑃 = 180(300,250) = (53,259). 

3) Compute secret number by 𝑢 ∈ [0,1]  𝑚𝑜𝑑 𝑝 =
𝛺: 

         𝛺 = 0.85 𝑚𝑜𝑑 313 = 85 ∗ 100−1 𝑚𝑜𝑑 313 =
173. 

4) Generate a secret key 𝜅  using 𝑅𝑘  by calculating 

𝛺𝑅𝑘 = 𝜅: 𝜅 = 173(53, 259) = (235, 161). 
 

Sender’s Keys Production 

Inputs: Public key 𝑅𝑘 = (53, 259). 
Outputs: Secret key 𝑆𝑘 = (53, 54), Secret number 

              𝛺 = 173, Secret key 𝜅 = (235, 161). 
1) Randomly, choose a private integer 𝑒 = 223. 

2) Generate the key 𝑆𝑘 = (𝑠1, 𝑠2), using 𝑒 and 𝑅𝑘: 

𝑆𝑘 = 𝑒𝑅𝑘 = 223(53, 259) = (53, 54). 
3) Compute secret number by 𝑢 ∈ [0,1] 𝑚𝑜𝑑 𝑝 = 𝛺: 

         𝛺 = 0.85 𝑚𝑜𝑑 313 = 85 ∗ 100−1 𝑚𝑜𝑑 313 =
173. 

4) Generate a secret key 𝜅 using 𝑅𝑘  by calculating: 

𝛺𝑅𝑘 = 𝜅: 𝜅 = 173(53, 259) = (235,161). 
 

Algorithm 8: Implementation of Proposed Encryption 

(The Sender) 

Inputs: 𝑆𝑘 = (53, 54) , 𝜅 = (235, 161) , 𝑃 =
(300, 250), 

            𝑒 = 223. 

Outputs: Ciphertext 𝐶 = (226, 242), 𝑒𝑃 = (115, 267). 
1) Choose message 𝑀 = (200, 300). 
2) Encrypt 𝑀 with 𝑆𝑘 and 𝜅 by: 

            𝑐1 = (𝑚1– 𝜅1) ∗ 𝑠1 + 𝑠2 ∗  𝜅2 𝑚𝑜𝑑 𝑝 

                 = (200– 235) ∗ 53 + 54 ∗ 161  𝑚𝑜𝑑 313 

                 = 266. 

            𝑐2 = (𝑚2– 𝜅2) ∗ 𝑠2 + 𝑠1 ∗  𝜅1  𝑚𝑜𝑑 𝑝 

                 = (300– 161) ∗ 54 + 53 ∗ 235  𝑚𝑜𝑑 313 

                 = 242. 

3) Calculate 𝑒𝑃 = 223(300, 250) = (115, 267). 
4) Send {𝐶, 𝑒𝑃} to the receiver. 

Algorithm 9: Implementation of Proposed Decryption 

(The Receiver) 

Inputs: Ciphertext 𝐶 = (266,242), 𝑒𝑃 = (115, 267), 
            𝑛 = 180, 𝜅 = (235, 161). 
Outputs: Message 𝑀 = (200, 300). 

1) Receive {𝐶, 𝑒𝑃} from the sender. 

2) Generate 𝑆𝑘 = 𝑛(𝑒𝑃): 
                    = 180(115, 267) = (53, 54). 

3) Decrypt 𝐶 with 𝑆𝑘 and 𝜅 by: 

            𝑚1 = (𝑐1– 𝑠2 ∗ 𝜅2) ∗ 𝑠1
−1 + 𝜅1  𝑚𝑜𝑑 𝑝 

                  = (266– 54 ∗ 161) ∗ 53−1 + 235 𝑚𝑜𝑑 313 

                  = (266– 54 ∗ 161) ∗ 189 + 235 𝑚𝑜𝑑 313 

                  = 200. 

            𝑚2 = (𝑐2– 𝑠1 ∗ 𝜅1) ∗ 𝑠2
−1 + 𝜅2 𝑚𝑜𝑑 𝑝 

                  = (242– 53 ∗ 235) ∗ 54−1 + 161 𝑚𝑜𝑑 313 

                  = (242– 53 ∗ 235) ∗ 29 + 161 𝑚𝑜𝑑 313 

                  = 300. 

4) The message 𝑀 = (200, 300). 
 

 

6. RESULTS AND DISCUSSION 

 

The proposed method has been applied to the software 

MATLAB R2018b (version 9.5.0.944444), designed for 64-

bit systems on a Core i3 PC with a CPU speed of 2.00GHz and 

4GB of RAM. The timing in seconds for 1000 and 3000 

characters of encryption and decryption procedures for the 

proposed method has been compared with the original 

MVECC, as illustrated in Table 1. 
 

Table 1. The processing times for MVECC and proposed 

algorithm in seconds 
 

The 

Method 
Encryption Decryption 

 
1000 

Character 

3000 

Character 

1000 

Character 

3000 

Character 

MVECC 0.002992 0.006163 0.095308 0.316671 

Proposed 

Method 
0.003684 0.023156 0.097800  0.341695 

 

Table 2. The required processes are in encryption and 

decryption procedures for proposed algorithm 

 
The Method Encryption Decryption 

Proposed 

 Method 

Mult. 4 Mult. 4 

Add. 2 Add. 2 

Sub. 2 Sub. 2 

Inv. None Inv. 2 

 

Table 3. The required processes are in encryption and 

decryption procedures for MVECC 

 
The 

Method 
Encryption Decryption 

MVECC 

Mult. 2 Mult. 2 

Add. None Add. None 

Sub. None Sub. None 

Inv. None Inv. 2 

 

The research paper presents an analysis of the number of 

required processes of the proposed algorithms, with a 

comparison to the original MVECC, and summarizes them in 

Tables 2 and 3. By counting the number of required processes 

for encrypting and decrypting procedures, (Mult.) was used for 

multiplication processing, (Add.) for addition processing, 

2767



 

(Sub.) for subtraction processing, and (Inv.) for inverse 

processing. 

Each individual operation (Mult., Add., Sub., and Inv.) 

takes a certain amount of time to compute. The proposed 

method requires more of these operations than MVECC, 

inherently increasing the total processing time. Encryption 

involves processing the entire message. As message size 

grows, the time difference between performing a few 

additional operations and many additional operations becomes 

more noticeable. This explains why the disparity in processing 

times increases significantly for the 3000-character message 

compared to the 1000-character message, as shown in Table 1. 

To assess the proposed method's performance in terms of 

randomness, we exposed it to the randomness tests outlined by 

NIST [19]. We selected these tests based on the length of the 

encrypted message (1000 bits). According to established 

standards in randomness testing, a p-value equal to or 

exceeding 0.01 signifies randomness; otherwise, the test is 

considered failed. Analyzing the results of this randomness 

revealed that the proposed method produced randomness, 

indicating that it generated a highly random sequence of 

numbers, as illustrated in Table 4. 

 

Table 4. The randomness tests of an encrypted message 

 

Test Results 

Frequency 0.447884478264112 

Block Frequency 0.814985131123346 

Runs 0.737900261941727 

Longest Run of Ones in Block 0.0943445489438835 

Discrete Fourier Transform 0.561657715013042 

Non-Overlapping Template Matching 0.987271934931365 

Serial 0.138877328519302 

Approximate Entropy 0.722639614775567 

Cumulative Sums 0.589897787755803 

 

6.1 Computational complexity 

 

In this subsection of exploratory results, Encryption and 

decryption procedures for the proposed algorithm are 

computed by computational complexity and compared with 

the MVECC. The O-notation has proved particularly effective 

in assisting analysts in classifying methods according to their 

efficiency and in leading algorithm developers in their hunt for 

the "best" algorithms for major difficulties [20]. 

Therefore, the addition of two s-bit numbers demands s-bit 

operations. that illustrate as follow: 

 

𝑂(𝑠) = 𝑇(𝑠 − 𝑏𝑖𝑡 + 𝑠 − 𝑏𝑖𝑡) 

 

Decimal digits are used for input of magnitude 𝑛: 𝑇(𝑛 +
𝑛) = 𝑂(log 𝑛), and log2 𝑛 equals the number of bits in 𝑛. 

Because 𝑠 addition operations are required, multiplying two 

𝑠-bit binary numbers require 𝑠2(𝑠 ∗ 𝑠). It is to say: 

 

𝑇(𝑠 − 𝑏𝑖𝑡 ∗ 𝑠 − 𝑏𝑖𝑡) = 𝑂(𝑠2) 
 

Decimal digits are used for input of magnitude 𝑛: 𝑇(𝑛 ∗
𝑛) = 𝑂(log 𝑛)2, and log2 𝑛 equals the number of bits in 𝑛. 

The following is the computational complexity of MVECC 

and the proposed algorithms: 

1) The MVECC Complexity 

i. Encryption Process: 

𝑐₁ = 𝑚₁ ∗ 𝑠1 𝑚𝑜𝑑 𝑝 

𝑐₂ = 𝑚₂ ∗ 𝑠2 𝑚𝑜𝑑 𝑝 

Then 

 

𝑇(𝑐₁) = 𝑂(log𝑛)2   bit operation 

𝑇(𝑐₂) = 𝑂(log𝑛)2   bit operation 

 

Due to modular multiplication of encryption process. 

 

ii. Decryption Process: 

𝑐₁ = 𝑚₁ ∗ 𝑠1
−1 𝑚𝑜𝑑 𝑝 

𝑐₂ = 𝑚₂ ∗ 𝑠2
−1 𝑚𝑜𝑑 𝑝 

Then 

 

𝑇(𝑐₁) = 𝑂(log𝑛)2 + 𝑂(log 𝑛)³   bit operation 

𝑇(𝑐₂) = 𝑂(log𝑛)2 + 𝑂(log 𝑛)³   bit operation 

 

Due to modular multiplication and modular inverse 

calculation of decryption process. 

𝑇(𝑠₁⁻¹) and 𝑇(𝑠₂⁻¹) equal 𝑂(log 𝑛)³ through an extension 

of Euclid's method. 

 

2) The Proposed Method Complexity 

iii. Encryption Process: 

𝑐1 = (𝑚1– 𝜅1) ∗ 𝑠1 + 𝑠2 ∗ 𝜅2  𝑚𝑜𝑑 𝑝 
𝑐2 = (𝑚2– 𝜅2) ∗ 𝑠2 + 𝑠1 ∗ 𝜅1  𝑚𝑜𝑑 𝑝 

 

Then 

 

𝑇(𝑐1) = 𝑂(2(log 𝑛)
2) + 𝑂(2 log𝑛)   bit operation 

𝑇(𝑐2) = 𝑂(2(log𝑛)
2) + 𝑂(2 log 𝑛)   bit operation 

 

Due to more modular multiplication and additions of 

encryption process. 

 

iv. Decryption Process: 

𝑚1 = (𝑐1– 𝑠2 ∗ 𝜅2) ∗ 𝑠1
−1 + 𝜅1  𝑚𝑜𝑑 𝑝 

𝑚2 = (𝑐2– 𝑠1 ∗ 𝜅1) ∗ 𝑠2
−1 + 𝜅2  𝑚𝑜𝑑 𝑝 

 

Then 

 

𝑇(𝑐1) = 𝑂(2(log 𝑛)
2) + 𝑂(2 log𝑛) + 𝑂(log𝑛)3 bit 

operation 

𝑇(𝑐2) = 𝑂(2(log𝑛)
2) + 𝑂(2 log 𝑛) + 𝑂(log 𝑛)³ bit 

operation 

 

Similar to encryption, plus modular inverse calculation of 

decryption process. 

Because of the computational complexity, the proposed 

algorithms has a slightly higher complexity than MVECC due 

to the additional operations. 

 

 

7. CONCLUSIONS 

 

In conclusion, this research paper introduces a pioneering 

and enhanced algorithm designed to bolster the security and 

intricacy of the MVECC cryptosystem through the 

implementation of a two-key encryption approach. By 

modifying the key production, encryption, and decryption 

procedures of the MVECC system with the utilization of the 

linear Bézier equation, the proposed method successfully 

achieves heightened complexity and randomness according to 

the randomness tests and computational complexity. The 

proposed method has an increased the processing time due to 

its higher number of operations than MVECC. The research 
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paper contributes substantially to the field of cryptographic 

systems by presenting an algorithm that offers an innovative 

avenue for enhancing both the security and complexity of the 

MVECC cryptosystem. 
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