
Optimal Design of Helical Springs Using Metaheuristic Techniques 

Miguel Rodriguez Cabal1* , Luis Grisales Noreña2 , Oscar Danilo Montoya3 , Diego Hincapie1 , 

Brandon Cortes Caicedo4  

1 Department of Mechatronics and Electromechanics, Instituto Tecnologico Metropolitano, Medellín 050036, Colombia 
2 Department of Electrical Engineering, Faculty of Engineering, Universidad de Talca, Curicó 3340000, Chile 
3 Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia 
4 Facultad de Ingeniería, Institución Universitaria Pascual Bravo, Medellín 050036, Colombia 

Corresponding Author Email: miguelrodriguez@itm.edu.co

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.111001 ABSTRACT 

Received: 18 July 2024 

Revised: 8 September 2024 

Accepted: 14 September 2024 

Available online: 31 October 2024 

The manufacturing industry's energy demands and the need for continuous 

improvement in compact, lightweight machines with mechanical resistance 

requirements require improvements in design. The objective is to obtain designs that 

occupy a smaller volume and have acceptable physical characteristics for the required 

function. This is achieved by implementing optimization techniques that yield the 

minimum value of an objective function constrained by the physical requirements of 

the problem. This work proposes the use of metaheuristic optimization techniques to 

find the dimensions that determine the smallest volume of a closed coil helical spring, 

which is found in industrial and automotive applications, respecting the physical and 

technical criteria that describe the design of these elements. The results demonstrate 

that the VSA identifies the optimal solution to the problem in a significantly shorter 

processing time than other techniques, with a volume reduction of 0.1% to 0.54%. The 

Inventor® software is used as a validation method of the solution, where a finite element 

analysis is carried out to verify that the mathematical model proposed adequately 

represents the problem and complies with the restrictions described in the mathematical 

model. Optimization algorithms together with simulation techniques are a useful tool in 

the design of machine elements, as they reduce computation and processing times, 

allowing solutions to be found that minimize production costs without neglecting the 

technical constraints of each problem. 
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1. INTRODUCTION

The design of machine elements is essential in the industry 

in general because, in addition to safe and reliable, these 

elements should be manufactured at a low cost and designed 

in a short time. This improves process efficiency (because less 

material is used) and guarantees that the final design of the 

element meets physical and technical requirements to work 

properly in the machine where it is installed. Many studies 

have investigated the minimization of production costs, 

weights, stresses, volume, and other aspects [1, 2]. Some of 

them have explored simulation techniques such as finite 

element analysis (FEA), which uses computer aided software 

engineering to simulate several mechanical elements in order 

to analyze the effects of their loads [3, 4] and the alteration that 

they might experience due to changes in the material or the 

shapes of the design [5, 6].  

Such is the case presented by Yetgin et al. [7], where a 

failure analysis was carried out on a premature crack formation 

that occur in a helical spring. Authors employed 

nondestructive tests and simulations to determine the 

geometrical factors that have influence in the performance of 

the element in order to make the corrections in the design and 

avoid future failure product of the stresses presented. This case 

is a classical analytical method used to improve the 

mechanical properties of machine elements based on a real 

base case of study, where it is necessary to have the testing 

machines. In automotive industry helical springs are widely 

used and studied via simulation, as presented by Arslan and 

Genel [8], where a coil spring fractured is analyzed, authors 

used microscopy studies and FEA to determine the stress 

distribution and make a correction in the design. In this work 

authors found that the main cause of the failure was attained 

to the painting process which change the microstructure of the 

spring as a result of the simulation analysis carried out in 

ABAQUS software. To reduce the weight of springs, 

specialized literature includes studies on various composite 

materials. These studies employ finite element analysis to 

evaluate the stresses and deformations that these materials 

may experience, with the objective of optimizing the design 

geometry. In the work presented by Ke et al. [9], an 

experimental design is developed for a fatigue resistant helical 

spring. The geometry is initially analyzed using Abaqus 

software to characterize the material properties, followed by 

mechanical testing to validate the hypothesis. The authors 

describe the methodology for designing springs using 
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composite materials. 

Simulation techniques provide data on the stresses and 

deformations that machine elements might suffer, as well as 

their lifespan and where failures that prevent their proper 

operation might occur. However, to run the simulations, the 

dimensions of the elements under analysis should be known. 

These dimensions are usually calculated based on the design 

theory established mostly by Norton [10] and Mott [11], 

according to which elements are modeled using a manual 

iterative process and considerations that depend on the 

designer’s expertise. This results in a slow process that 

presents failures due to human error [12]. 

For this reason, optimization algorithms have been recently 

implemented in mechanical design. The purpose of these 

algorithms is to minimize or maximize an objective function 

to find the best values of the variables that solve the problem 

under analysis [13]. This is possible by using models of 

constraints that represent the physical and technical aspects of 

the design to ensure that the dimensions provided by the 

algorithms fulfill their purpose [14]. As the specialized 

literature includes multiple solution techniques, designers 

should explore the types of algorithms that best fit the 

mathematical models of their mechanical designs [15]. Since 

the main equations of the mathematical models that represent 

machine elements are nonlinear and non-convex, optimization 

algorithms are used to solve this type of problems. Currently, 

the solution methods most reported in the literature are 

metaheuristic optimization techniques because they focus on 

the exploration and exploitation of the solution space using 

different moving strategies (that prevent them from falling into 

local optima within the solution space) in order to obtain high 

quality solutions for the machine or part design [16-18]. 

In the specialized literature, various studies implement 

metaheuristic algorithms to solve optimization problems 

applied to mechanical design are reported. Among these is the 

work presented by Rodriguez-Cabal et al. [19], where the 

optimization of the weight of a drive shaft is achieved through 

the implementation of a Vortex Search Algorithm. This 

approach utilizes a nonlinear, non-convex mathematical 

model to properly size the shaft, with validation performed 

using simulation software. Another case is presented by 

Parouha and Tiwari [20], where two engineering problems, 

characterized by nonlinear mathematical models, are 

optimized by implementing an improved version of the 

Particle Swarm Optimization (PSO) algorithm. In this article, 

the authors demonstrate that, despite being a classical 

technique, this algorithm continues to yield good results for 

engineering optimization problems. Within the family of 

population-based algorithms, genetic algorithms are also 

found, which have been used to optimize complex 

mathematical models [21]. Additionally, there are studies 

where various algorithms are implemented to solve 

engineering problems using population-based algorithms [22, 

23]. 

Helical springs are machine elements that consist of a wire 

curved in a cylindrical shape with a constant pitch. The cross-

section of helical springs determines if they are cylindrical or 

square [24]. Helical springs can also be open coil or closed coil 

depending on the angle between the coil and the vertical axis. 

Open coil springs have a longer pitch and therefore fewer turns 

in the same length [25]. Helical springs have multiple 

applications: absorbing shocks, applying forces to brakes and 

clutches, controlling movements when they act as stabilizers, 

and storing energy in toys, clocks, etc. [26]. Therefore, the 

operation and safety of equipment that incorporates helical 

springs depend on the appropriate sizing of these elements.  

Based on the review of specialized literature, it is found that 

simulation techniques are often separate from optimization 

techniques. The former is typically chosen for performing 

parametric simulations aimed at finding suitable dimensions 

for helical springs, leading to solutions that meet the 

requirements but may not be optimal in terms of volume or 

weight. This is why optimization techniques emerge as a tool 

that should be included in the design process, as they can 

reduce the computational cost of simulations by providing a 

design that meets the technical requirements established in 

design manuals. It is for the above that this paper proposes a 

novel helical spring design that minimizes the volume of this 

element by considering a set of constraints imposed by 

technical and physical criteria. Four solution methods were 

used here to optimize the design: Particle Swarm Optimization 

(PSO), the Continuous Genetic Algorithm (CGA), the Sine 

Cosine Algorithm (SCA), and the Vortex Search Algorithm 

(VSA). The latter has been employed in the specialized 

literature to solve this type of problems [17, 19, 27]. The 

selection of the solution algorithms is based on the literature 

review where these methods have been shown as an effective 

tool to optimize nonlinear non-convex mathematical models 

as the one who represent the design of helical springs.  

The final result of this study is an optimal helical spring 

design that guarantees that the technical constraints associated 

with the element under analysis are respected. Inventor® 

software implementing FEA was used to simulate and validate 

the optimization results. 

The objective of this work is to evaluate different 

optimization techniques for the problem at hand, while also 

demonstrating the validity of both the mathematical model and 

the optimization technique through simulation. This will 

establish a proper design procedure that will help reduce 

design time and computational cost when performing the 

correct sizing of such elements. 

The following section outlines the structure of the 

remaining document. Section 1 presents the mathematical 

modelling to optimize the design of a closed coil helical spring. 

Section 2 provides a detailed account of the optimization 

techniques that have been implemented, accompanied by the 

relevant equations or parameters that are to be employed in 

order to solve the problem. Section 3 presents the results of the 

algorithms and its analysis and discussion. Subsequently, 

Section 4 demonstrates the manner in which the results were 

validated using Inventor Autodesk software. Finally, Section 

5 presents the findings and proposes avenues for future 

research. 

 

 

2. MATHEMATICAL MODEL  

 

To design a helical spring, the physical characteristics of 

this element should be considered. The stresses that the spring 

will withstand are evaluated based on its geometry. The 

mathematical model of a helical spring is established by 

defining the spring volume based on wire diameter (d), mean 

coil diameter (D), and number of active coils (Nc) (see Eq. (1)). 

Figure 1 shows the variables in Eq. (1), which is the objective 

function. 

 

𝑉 = (
π

2
)

2

(𝑁𝑐 + 2)𝐷𝑑2 (1) 
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Figure 1. Identification of the variables considered in the 

helical spring design 

 

2.1 Set of constraints 

 

The geometrical parameters that define the volume in Eq. 

(1) satisfy the physical characteristics of the spring, i.e., it is 

able to withstand the load that it will be subjected to without 

exceeding the maximum allowable stresses and the 

geometrical values given by the available space and technical 

conditions of the design. The stress produced by the maximum 

applied force may not exceed the maximum allowable stress, 

which defines the first constraint (g1). Eq. (2) establishes the 

relationship between applied stress, maximum applied force, 

and the geometrical parameters of the spring. 

 

𝑔1 = 𝜋𝑑3𝑆 − 8𝐶𝑓𝐹𝑚𝑎𝑥𝐷 ≥ 0 (2) 

 

where, Fmax is the maximum applied force and Cf is the 

geometric parameter defined by Eq. (3). 

 

𝐶𝑓 =
4𝐶2 + 1.46𝐶 − 2.46

4𝐶(𝐶 − 1)
, 𝐶 =

𝐷

𝑑
 (3) 

 

Note that the free length (lf) of the spring should be shorter 

than the maximum length available in the space in which it 

will be installed, which defines the second constraint (see Eq. 

(4)). 

 

𝑔2 = 𝑙𝑚𝑎𝑥 − 𝑙𝑓  ≥ 0 (4) 

 

It is assumed that the free length is α times the solid length 

(see Eq. (5)). 

 

𝑙𝑓 = 𝛿𝑙 + 𝛼(𝑁𝑐 + 2)𝑑 (5) 

 

where, δl denotes the deflection under maximum load, which 

is calculated using Eq. (6). 

 

𝛿𝑙 =
𝐹𝑚𝑎𝑥

𝐾
 (6) 

 

where, K is the spring constant, which is expressed in Eq. (7), 

where G is the shear modulus. 

 

𝐾 =
𝐺𝑑4

8𝑁𝑐𝐷3
 (7) 

 

The third constraint establishes that the diameter of the 

spring wire should not be smaller than the specified minimum 

value, dmin, which is expressed in Eq. (8). 

 

𝑔3 = 𝑑 − 𝑑𝑚𝑖𝑛  ≥ 0 (8) 

In addition, the outer diameter of the coil should not surpass 

the specified maximum value (fourth constraint), which is 

expressed in Eq. (9). 

 

𝑔4 = 𝐷𝑚𝑎𝑥 − 𝐷 − 𝑑 ≥ 0 (9) 

 

In order to prevent the spring from becoming too tight, it is 

necessary to ensure that the coil diameter is at least β times the 

spring diameter. This constraint is formulated in Eq. (10). 

 

𝑔5 = 𝐶 − 𝛽 ≥ 0 (10) 

 

Under load, the deflection of the spring should be less than 

a specific value. This constraint is expressed in Eq. (11). 

 

𝛿𝑝 =
𝐹𝑝

𝑘
 ≥ 0 (11) 

 

This leads to the sixth constraint: 

 

𝑔6 = 𝛿𝑝𝑚𝑎𝑥 − 𝛿𝑝  ≥ 0 (12) 

 

The seventh constraint establishes that the combined 

deflection should be consistent with the length. This is 

formulated in Eq. (13). 

 

𝑔7 = 𝑙𝑓 −  𝑑𝑛 ≥ 0 (13) 

 

Finally, the preload deflection under maximum load should 

be equivalent to the value specified in the design, which is 

defined in Eq. (14), where δw is a constant value. 

 

𝑔8 = 𝐹𝑚𝑎𝑥 − 𝐹𝑃−𝐿𝛿𝑤 ≥ 0 (14) 

 

After these constraints have been presented and interpreted, 

below are Eqs. (15) to (22), which compose the set of penalties 

to be used in Eq. (31). Eqs. (15) to (22) are associated with 

each one of the previously mentioned constraints and defined 

by the maximum value function. When each constraint is 

analyzed, it takes the maximum value of the function. It takes 

g if the constraint is violated or 0 if it is respected. 

 

𝑝1 = max {0, 𝑔1} (15) 

 

𝑝2 = max {0, 𝑔2} (16) 

 

𝑝3 = max {0, 𝑔3} (17) 

 

𝑝4 = max {0, 𝑔4} (18) 

 

𝑝5 = max {0, 𝑔5} (19) 

 

𝑝6 = max {0, 𝑔6} (20) 

 

𝑝7 = max {0, 𝑔7} (21) 

 

𝑝8 = max {0, 𝑔8} (22) 

 

 

3. SOLUTION METHODS 

 

Four optimization algorithms are proposed here to solve the 

problem of minimizing a helical spring’s volume. These 

algorithms are selected based on a review of specialized 
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literature, as they are used to solve optimization problems 

related to the minimization of non-linear, non-convex 

mathematical models such as the one addressed here. 

Additionally, some particularities of each algorithm are 

mentioned, which contributed to the selection of these specific 

methods, as detailed below. The first method, i.e., Particle 

Swarm Optimization (PSO), was implemented in this study 

because it has been used in the literature to solve nonlinear 

mathematical models, highlighting it as one of the most widely 

used classical optimization technique in the literature [28-33]. 

The Continuous Genetic Algorithm (CGA) and the Sine 

Cosine Algorithm (SCA) were also employed here because of 

their short processing times [34-38]. Finally, the Vortex 

Search Algorithm (VSA), which has been implemented in 

mechanical design problems [17, 19], was adopted here 

because of its short processing time and the repeatability of its 

solutions. The following subsections provide an overall 

explanation of these four techniques. 

 

3.1 Particle Swarm Optimization 

 

PSO is a type of bioinspired algorithm based on the 

behavior of bird flocks when they forage [39, 40]. The 

algorithm starts with the generation of a population within an 

n-dimensional space that directly depends on the number of 

variables that are associated with the objective function. Then, 

the function and the set of constraints are evaluated to find the 

individual with the best position. Based on this position, a 

social and cognitive component and a velocity are introduced. 

This allows the algorithm to move randomly around the point 

with the best previous position. At each iteration, the objective 

function and the set of constraints are evaluated, the particle 

with the best position is updated, and, after exploring and 

exploiting the solution space, the algorithm converges to an 

optimal solution. Algorithm 1 describes the programming of 

PSO. 

 

Algorithm 1. PSO pseudocode 

Data: PSO Parameters, Parameters of the mathematical    

model. 

for t = 1: tmax do 

         if t = 1 then 

 Generate the particle swarm; 

Evaluate the objective function and the 

constraints for each    individual; 

Select the best solution with its position; 

             else 

Update the velocity vector; 

Update the position of the particles; 

Generate the particle swarm; 

Evaluate the objective function and the 

constraints for each    individual; 

Evaluate the fitness function; 

Update the best solution with its position; 

   if t = tmax then 

      Result: Print results 

      Break 

  else 

      Continue 

  end 

             end 

     end 
 

 

3.2 Continuous genetic algorithm 

 

This algorithm is based on a classical optimization 

technique that starts with an initial population organized in an 

a×s matrix, where a denotes the number of individuals or 

potential solutions, and s is the number of variables associated 

with the problem. After the creation of the initial population, 

the objective function is evaluated. Importantly, the CGA 

solves optimization problems by turning to a conditional 

problem a constrained problem. Therefore, at each iteration, 

the set of constraints is analyzed, and, if a solution violates any 

of the conditions proposed in the mathematical model, the 

algorithm penalizes the value of its objective function and said 

solution is considered inviable. 

After the evaluation of the initial population, the descendant 

population is created. In this step, new potential solutions are 

generated so that the algorithm moves over the solution space. 

Mutation and crossover operators are adopted to generate this 

new set of individuals. Besides, classical selection is 

implemented so that the best solutions remain in the set of 

individuals to improve their position. 

Finally, applying methods of combination, selection and 

mutation, the descendant populations are generated. This 

method allows to ensure that the potential solutions are 

different. The resulting list of potential solutions is sorted in 

ascending order based on the objective function of all the 

individuals, and the main potential solutions are selected as the 

new population to move to the next iterative cycle. The 

algorithm ends the process when the convergence criterion is 

achieved, or the total number of iterations is reached. 

Algorithm 2 shows the pseudocode that describes the 

programming of the CGA. 

 

Algorithm 2. CGA pseudocode 

Data: CGA Parameters, Parameters of the mathematical 

model. 

for t = 1: tmax do 

 m = 0; 

if t = 1 then 

Generate the initial population; 

for i = 1: a do 

Evaluate the objective function and the 

constraints for each    individual; 

Select the best solution with its position; 

 end 

else 

 Generate the descending population; 

    for i = 1: a do 

Evaluate the objective function and the 

constraints for each individual; 

Select the best solution with its position; 

    end 

    Determine the new population; 

    if t = tmax then 

      Result: Print results 

      Break 

   else 

      Continue 

   end 

                end 

     end 
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3.3 Sine cosine algorithm 

 

The SCA is a metaheuristic optimization technique based 

on population methods. This technique employs the 

trigonometric sine and cosine functions to improve the 

exploration and exploitation of the solution space [32, 33]. Its 

most important characteristic is a fitness function that allows 

the algorithm to move over the infeasible region of the solution 

space. The purpose of this is that the algorithm can explore the 

solution space better by considering unfeasible solutions that 

may not comply with the problem physics. At each iteration, 

the positions of the particles are evaluated in relation to the 

fitness function and the set of constraints. Subsequently, each 

particle advances based on trigonometric rules. To do this, it 

is assumed that all the individuals has been evaluated in the 

mathematical model. Then, the best individual in the 

population is named xbest. Based on the current best solution, a 

new candidate 𝑦𝑡+1  or 𝑥𝑡+1  is selected to replace Xt if the 

following conditions are satisfied (see Eqs. (23) and (24)). 

 

𝑦𝑖
𝑡+1 = 𝑦𝑖

𝑡 + 𝑟2 sin(𝑟3) |𝑟4𝑥𝑏𝑒𝑠𝑡−𝑥𝑖
𝑡|, 

𝑖 = 1,2, … , 𝑛, 𝑖𝑓 𝛿 ≥
1

2
 

(23) 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑟2 sin(𝑟3) |𝑟4𝑥𝑏𝑒𝑠𝑡−𝑥𝑖
𝑡|, 

𝑖 = 1,2, … , 𝑛, 𝑖𝑓 𝛿 ≥
1

2
 

(24) 

 

where, r3 and r4 are random numbers between 0 and 1 and −π 

and π, respectively; and r2 is ensures the algorithm 

convergence, which can be computed using Eq. (25), where 

tmax is the maximum number of iterations. 

 

𝑟2 = 1 − 
𝑡

𝑡𝑚𝑎𝑥

 (25) 

 

Note that 𝑦𝑡+1 and 𝑥𝑡+1 are the potential individuals who 

will replace 𝑋𝑖
𝑡 . This switch can be carried out as follows: 

selecting 𝑦𝑖
𝑡+1 as a potential solution if 𝑧𝑓(𝑦𝑖

𝑡+1) < 𝑧𝑓(𝑋𝑖
𝑡+1); 

selecting 𝑋𝑖
𝑡+1 as a potential solution if 𝑧𝑓(𝑥𝑖

𝑡+1) < 𝑧𝑓(𝑋𝑖
𝑡+1); 

or, otherwise, 𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡. Also, note that, if a component of 

𝑋𝑖
𝑡+1 does not satisfy the boundary constraint defined for each 

decision variable, this solution is adjusted employing Eq. (26) 

to sustain the feasibility of the current population during the 

optimization process. where ij represents the spaces assign to 

each individual and its variables. 

 

𝑥𝑖𝑗 = 𝑥𝑚𝑖𝑛 + 𝑟1(𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛) (26) 

 

Finally, the algorithm’s search process ends if the 

convergence criterion is fulfilled. Algorithm 3 shows the 

pseudocode of the SCA. 

 

Algorithm 3. SCA pseudocode 

Data: Adjust the SCA parameters; 

Generate the initial population Xt; 

Evaluate all the individuals 𝑥𝑖
𝑡 and find 𝑥𝑏𝑒𝑠𝑡; 

for t = tmax do 

      for i = 1: n do 

 Generate the initial population 𝑦𝑖
𝑡+1 and 𝑥𝑖

𝑡+1; 

 Evaluate 𝑦𝑖
𝑡+1 and 𝑥𝑖

𝑡+1 in the fitness function; 

Evaluate by replacing the condition of each 

individual and create the descending population 

Xt+1; 

      end  

      Evaluate the number of non-consecutive improvements 

of zf; 

       if k ≥ kmax then 

 Select the best solution contained in Xt+1; 

Return the decision variables and the value of the 

objective function; 

Result: Print results; 

Break; 

     end 

end 

 

3.4 Vortex search algorithm 

 

This algorithm is inspired by the vortex pattern of stirred 

fluids. Where the solution space is represented by a set of 

multiple, nonconcentric hyperspherical coordinates, with the 

first diameter being centered on the solution space which is 

defined by the minimum and maximum value of each variable 

(see Eq. (27)). 

 

𝜇0 =  
𝑥𝑚𝑎𝑥 + 𝑥𝑚𝑖𝑛

2
 (27) 

 

where, xmax and xmin denote the range limits of each variable, 

and 𝜇0 is the hypersphere radius, generating a d-dimensional 

space. To generate the possible solution a Gaussian 

distribution is implemented in the solution space (see Eq. (28)). 

 

𝑠𝑖
𝑡 =  𝑝(𝜁𝑖

𝑡 , 𝜇𝑡, 𝑣) = 

((2𝜋)𝑑|𝑣|)(1/2)𝑒
(−

1
2

(𝜁𝑖
𝑡−𝜇𝑡)𝑇(𝜁𝑖

𝑡−𝜇𝑡)
𝑣

)
 

(28) 

 

where, ζt is the random variables vector; µt, the actual center 

of the hypersphere at each iteration t; and v, a matrix of 

covariances. The radius of the hypersphere in VSA limits the 

random vector ζt. The matrix of covariances can be simplified 

as is formulated in Eq. (29) [41]. 

 

𝜎0 =  
max{𝑥𝑚𝑎𝑥} − min {𝑥𝑚𝑖𝑛}

2
 (29) 

 

In the next step, the possible solutions are evaluated. Then 

the new center of the hypersphere is updated by selecting the 

best solution found in the previous iteration. Where the best 

overall solution is found by reducing the radius in each 

iteration (see Eq. (30)) achieving the convergence [17]. 

 

𝑟𝑡+1 =  𝜎0 (1 −
𝑡

𝑡𝑚𝑎𝑥

) 𝑒
(𝛼−

𝑡
𝑡𝑚𝑎𝑥

)
 (30) 

 

where, α is a constant parameter that controls the stepdown 

speed of the hyper-sphere radius that represents the solution 

space. 

Finally, Algorithm 4 presents the pseudocode that describes 

the iteration process of the VSA. 

 

Algorithm 4. VSA pseudocode 

Data: Define 𝜇𝑡 and 𝑟𝑡 for the hypersphere; 

Generate each potential solution candidate 𝑠𝑖
𝑡; 

Verify the lower and upper bounds of each 𝑠𝑖
𝑡; 

Evaluate 𝑠𝑖
𝑡 in the fitness function; 
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Find the best current solution 𝑠𝑏𝑒𝑠𝑡
𝑡 ; 

for t =1: tmax do 

      Update the center 𝜇𝑡+1 = 𝑠𝑏𝑒𝑠𝑡
𝑡 ; 

      Calculate the new radius 𝑟𝑡+1; 

      Generate new solution candidate 𝑠𝑖
𝑡+1; 

      Verify the boundaries of each 𝑠𝑖
𝑡+1; 

      Evaluate 𝑠𝑖
𝑡+1 in the fitness function; 

      Find the best current solution 𝑠𝑏𝑒𝑠𝑡
𝑡+1 ; 

      if k ≥ kmax then 

 Select 𝜇𝑡+1 the solution; 

Result: Print results; 

Break; 

     end 

end 

 

3.5 Fitness function  

 

In metaheuristic optimization techniques, the FF is 

implemented to force the algorithm to operate in the infeasible 

regions of the solution space. That is, the FF considers 

unviable or penalized solutions to be correct to avoid falling 

into local optima and allow the search algorithm to explore and 

exploit the entire solution space. In this study (about 

minimizing the volume of a helical spring), the FF is defined 

by the sum of the volume and the set of penalties associated 

with the problem in Eq. (31). 

 

𝐹𝐹 =  𝑉 + 𝑃𝑒𝑛 (31) 

 

𝑃𝑒𝑛 = (𝑝1+𝑝2 + 𝑝3 + 𝑝4 + 𝑝5 + 𝑝6 + 𝑝7 + 𝑝8)𝜗 (32) 

 

where, Eq. (32) represents the sum of the penalties associated 

with the constraints, and ϑ is the penalty factor, whose value is 

100 in this case. 

 

3.6 Coding  

 

The coding of the problem addressed here uses a vector of 

1 row and 3 columns (1×3). The first column stores the 

diameter of the spring wire (d); the second, the mean diameter 

of the spring coil (D); and the third, the number of coils of the 

wire (Nc). 

Furthermore, to ensure a fair comparison between the 

implemented algorithms, each one was tuned to maximize its 

performance. For the tuning a PSO algorithm was employed 

as is purposed by Grisales-Noreña et al. [42].  

 

3.7 Study case 
 

The study case described in the reference [35] is used here 

to evaluate the proposed mathematical model. This paper 

presents the optimization of the design of a closed coil helical 

spring subjected to a compressive load, which is the common 

type of spring used in automotive industry. The maximum 

possible length is 35.56 cm (lmax), the mean diameter should 

not exceed 7.62 cm (Dmax), and the wire’s diameter should not 

be greater than 1.016 cm (dmax). The spring will withstand a 

maximum force of 453.6 kg (Fmax); therefore, the stress 

should not exceed the allowable maximum of S = 13288.02 

kgf/cm2. Table 1 lists the parameters needed to implement the 

algorithm, and Table 2 presents study case parameters. Figure 

1 shows a schematic representation of the spring and the 

variables to be optimized. 

Table 1. The tuned parameters along with their value and 

selected range 

 
Algorithm Parameter Value Range 

CGA 

Number of individuals 

(Ni) 
50 [1-200] 

Number of iterations 

(tmax) 
1221 [1-2000] 

Mutation parameter 0.5 [0-5] 

Number of random 

mutations (nM) 
2 [0-Nv] 

PSO 

Number of individuals 

(Ni) 
120 [1-200] 

Number of iterations 

(tmax) 
1682 [1-2000] 

Cognitive component 

(C1) 
1.1773 [0-2] 

Social component (C2) 1.564 [0-2] 

Maximum inertia 

(Wmax) 
0.5549 [0-1] 

Minimum inertia 

(Wmin) 
0.4377 [0-1] 

VSA 

Number of individuals 

(Ni) 
105 [1-200] 

Number of iterations 

(tmax) 
1123 [1-2000] 

Radius reduction 

interval (x) 
0.00655 [0-0.1] 

SCA 

Number of individuals 

(Ni) 
156 [1-200] 

Number of iterations 

(tmax) 
1658 [1-2000] 

 

Table 2. Study case parameters 

 
Parameter Value Unit 

G 808543.6 kgf/cm2 

δ 3.175 cm 

Ncmax 25 - 

α 1.05 - 

β 3 - 

dmin 0.508 cm 

Dmin 1.270 cm 

Ncmin 15 - 

 

 
4. RESULTS AND DISCUSSION 

 

This section presents the results of the solution methods 

applied to minimize the volume of a helical spring. These 

methods were compared in terms of solution quality and 

solution times. The solution found by the techniques described 

above was simulated employing Inventor® software. Said 

simulation was used to validate the main constraint associated 

with the strength of the element in terms of deflections and the 

volume of the element. 

The four techniques (i.e., CGA, SCA, PSO, and VSA) were 

programmed in Matlab® running on an HP Z600 computer 

with 8 GB of RAM and 4 cores. All the algorithms were run 

one thousand times, with the same mathematical models and 

under the same conditions, to determine the variation of the 

solution from the maximum, mean, and minimum values and 

the mean calculation time. The standard deviation, which 

expresses the repeatability of the solution, was evaluated based 

on these values. 

Table 3 shows that the minimum values found by the four 

techniques are very similar. Nevertheless, in terms of d and D, 

PSO exhibited the highest values; and the VSA, the lowest. 
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For a deeper analysis, Table 4 compares the minimum, 

maximum, and mean values of the objective function (i.e., the 

spring’s volume), as well as its standard deviation and the 

mean processing time. 
 

Table 3. Minimum values of the variables found by the four 

optimization techniques 

 
Method d D NC 

CGA 0.6739 2.4048 15.0012 

SCA 0.6743 2.4085 15.0057 

PSO 0.6746 2.4117 15.0000 

VSA 0.6739 2.4042 15.0000 

 

Table 4. Comparison of the volumes found by each one of 

the four algorithms 

 

Method 
Minimum 

[cm3] 

Mean 

[cm3] 

Maximum 

[cm3] 

Standard 

deviation [%] 

Mean 

time [s] 

CGA 45.8257 46.6423 50.4851 0.6363 0.9956 

SCA 45.9243 46.7141 47.7937 0.3269 2.7607 

PSO 46.0478 58.7404 87.1919 6.8557 0.7951 

VSA 45.8002 46.0018 48.8888 0.3797 0.1560 
 

Figure 2 shows the minimum solutions found by the four 

techniques implemented in this study to solve the sizing of a 

helical spring. The VSA found the lowest solution, i.e., a 

volume of 45.8002 cm3, which is 0.1%, 0.27%, and 0.54% 

lower than the solutions of the CGA, SCA, and PSO, 

respectively. Therefore, the VSA is considered the best 

solution so far. 

 

 
 

Figure 2. Minimum solution provided by the four 

optimization techniques implemented 

 

 
 

Figure 3. Average volume values found by the four 

optimization techniques 

 

Figure 3 shows the average volume values found by the four 

optimization techniques. Note that the VSA still presents the 

lowest value, followed by CGA and SCA. In this case, the 

solution of PSO exhibits an increase of 27.5%, moving away 

from the minimum desired value and suggesting a high 

variation in the solutions found by this technique. 

Figure 4 shows the maximum volume values found by the 

optimization techniques. The maximum value found by the 

SCA, the lowest among the four techniques, is 2.4% and 

5.63% lower than those of the solutions provided by the VSA 

and the CGA, respectively.  

 

 
 

Figure 4. Maximum volume values found by the 

optimization techniques 

 

The standard deviation was calculated based on the 

maximum and minimum values. The standard deviation of the 

SCA was 0.327%; and that of VSA, 0.379% (i.e., a difference 

of 0.052%). In this regard, the difference between these two 

techniques is minimal; however, the minimum value is the 

most important factor because it represents the most adequate 

solution provided by the optimization techniques. Thus, the 

VSA is the best technique in terms of solution quality. 

Although this technique did not exhibit the lowest standard 

deviation, it was still below 1, which guarantees the 

repeatability of the solution and proves that even the worst 

solution found by the VSA competes with those provided by 

the other techniques in terms of quality. 

 

 
 

Figure 5. Boxplot fitness function for each optimization 

technique 

 

In Figure 5, a boxplot is shown, in which the statistical 

comparison of the implemented algorithms is made. Where 

VSA stands out as the best-performing algorithm, exhibiting 

highly consistent results with minimal variability, showing 

volumes tightly concentrated within a narrow range of 

approximately 47 to 49 cm³, and only a few outliers. SCA and 

CGA also demonstrate consistency but to a slightly lesser 

extent. In contrast, PSO shows significantly higher variability, 

with a broader range of volumes (approximately 50 to 65 cm³) 
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and several notable outliers. This highlights VSA as the most 

reliable algorithm for achieving consistent and minimal 

volumes. 

Regarding processing times, the VSA presented the fastest 

response, with an average of 0.156 s, followed by PSO, the 

CGA, and the SCA, in that order. The time difference between 

the SCA and the VSA was more than 1,000%, which means 

that the VSA outperforms the SCA in terms of processing time. 

However, the SCA provided an adequate solution with high 

repeatability and an acceptable minimum value; therefore, its 

implementation as a solution method for the problem 

addressed here is viable. 

In general, these results suggest that the VSA exhibits the 

best response because it presents the minimum solution in 

terms of volume and complies with the set of constraints of the 

mathematical model, which represents a viable solution. 

Furthermore, in terms of processing time, the VSA is the 

fastest to provide a solution with high repeatability, and, 

although its standard deviation is not the lowest, it is still close 

to zero. 

 

 

5. SOLUTION VALIDATION 

 

A helical spring was designed in Inventor®, based on the 

data provided by the VSA technique, to verify that the value 

of the objective function found by the optimization algorithm 

matched the volume of the resulting element (see Figure 6). 

 

 
 

Figure 6. Verification of the volume of the helical spring 

 

Once the dimensions and volume are confirmed to 

correspond with the output from the optimization algorithm, a 

deflection analysis is conducted to guarantee that the designed 

spring meets the specified conditions. This simulation is 

configured in Inventor's stress analysis environment. Where 

two plate-type elements are added to secure the component, 

and a fixed support constraint is applied to the lower plate to 

prevent axial displacement. The maximum force to which the 

spring will be subjected, 4445.28 N (453.6 kg), as mentioned 

in the problem statement, is also configured. Furthermore, the 

material properties, including the established stiffness 

modulus, are set up to ensure the design meets the conditions 

specified in the problem formulation. 

The mesh configuration is refined, resulting in an average 

element size of 0.05 and a minimum element size of 0.1. These 

values are selected after running simulations with various 

parameters using an iterative convergence method. Figure 7 

shows the location of the load, the movement restriction, and 

the mesh resulting from the parameters mentioned above. 

 

 
 

Figure 7. Configuration of the contact points and forces 

 

Afterward, the element under the applied force was 

simulated to obtain the maximum deflection of the spring. 

Figure 8 shows this situation, where the deflection is equal to 

4.54 cm; in the mathematical model, the value was 4.536 cm. 

This result shows that the mathematical model really 

represents the problem addressed, because the difference 

between the model and the simulation was 0.11%. Then, it was 

demonstrated that the element complies with the physical 

characteristics needed to serve its function. 

 

 
 

Figure 8. Validation of the deformation of the spring 

subjected to compression 
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6. CONCLUSIONS 

 

In this study, the volume of a helical spring was minimized 

while meeting physical and technical requirements of the 

element, which were considered the set of constraints. This 

guarantees an adequate performance of the designed element 

under specific testing scenarios. The numerical simulations 

carried out in Matlab® showed that the mathematical models 

satisfactorily represented the element studied here; hence, they 

can be replicated to design elements under the conditions 

required by the industry (different forces, materials, and space 

requirements). 

The implementation of the optimization algorithms proved 

that they are useful tools to solve this type of problems because 

they find an adequate solution in a short processing time and 

provide reliable designs. This means lower weights and 

volumes; therefore, the elements require less material for their 

manufacturing and implementation. Additionally, safety is 

guaranteed since the stresses and deformation constraints are 

respected, which means that the technical requirements are 

satisfied. Compared to the other techniques, the VSA provided 

the best solution in both scenarios due to the way in which it 

explores and exploits the solution space, which enables it to 

solve nonlinear non-convex optimization problems such as 

those addressed here. On the other hand, PSO found the worst 

solution to the problem due to the nature of the mathematical 

model, which needs more variation and independence between 

the decision variables. Therefore, PSO would need a different 

tuning for each mathematical model, which means longer 

preparation and testing times to provide an adequate solution 

in minimum processing times. Taken together, these results 

suggest that the VSA is the best technique to solve the 

mechanical design problems addressed in this paper. 

Finally, the simulations performed in the specialized 

software provided an additional validation of the solution 

found by the VSA, verifying that it respected the set of 

constraints and met the physical and technical criteria, which 

demonstrated the quality of said solution. Additionally, the 

simulation of the applied loads proved the safety of the 

component. These additional results can be used to define the 

feasibility of designs and their improvement. 

The combination of optimization techniques and 

simulations produces safe and reliable designs faster than 

conventional design methods. These tools that can be 

incorporated into pro- duction and manufacturing processes to 

improve their efficiency; avoid rework and early failures; and 

deliver lighter, safer, and more reliable designs. Such designs 

have a direct impact because they improve the efficiency of 

the machinery and equipment where the elements are installed 

and reduce their energy consumption as there are less energy 

losses related to power transmission. 

The findings from this study provide a foundation for 

several avenues of future research. One area for further 

exploration is the refinement of the optimization algorithm to 

improve computational efficiency and accuracy. Moreover, 

expanding this research to include real-world case studies 

would provide valuable insights into the practical applications 

and limitations of the proposed methods. Where the 

mathematical models can be improved to consider additional 

physical constraints. In conclusion, the continued exploration 

of these topics has the potential to significantly advance the 

field and lead to the development of more effective 

optimization strategies in both academic and industrial 

settings. 
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