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The objective of this study is to predict the quantity of ANFO required for bench 

blasting in an open pit mine in Peru, through the application of advanced machine 

learning techniques. Six models were selected: Artificial Neural Networks (ANN-

MLP), Random Forests (RF), Support Vector Machines for Regression (SVR), Extreme 

Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Bayesian Regression 

(BR), due to their ability to handle complex multidimensional data and their success in 

similar applications, such as rock fragmentation prediction. The methodology included 

the collection of data from 208 drill holes, which were divided into training (70%), 

validation (15%), and testing (15%) sets. The models were evaluated using RMSE, 

MSE, MAE, and R2. The KNN model showed the best performance, with an R2 of 

0.84, RMSE of 2.37, MSE of 5.60, and MAE of 1.35, standing out in predictive 

accuracy. This study contributes to the accurate prediction of the ANFO quantity 

required for bench blasting in open-pit mining, providing a useful tool for improving 

explosives management based on the specific characteristics of the terrain and 

operational conditions. 
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1. INTRODUCTION

The technique of rock fragmentation by blasting is widely 

recognized for its efficiency and cost-effectiveness in open-pit 

mines, civil excavations, and tunnel construction [1, 2]. This 

method relies on using the chemical energy stored in 

explosives to apply pressure on rock masses, eventually 

leading to their breakage [3]. In both underground and open-

pit mining, the most common explosives are ANFO, emulsion 

explosives, and dynamite [4]. ANFO, which is a mixture of 

approximately 94% ammonium nitrate (AN) and 6% fuel oil 

(FO), is one of the most widely used explosives globally [5, 

6]. Furthermore, according to an analysis carried out by S&P 

Global (Standard and Poor's), the primary purchasers of 

explosives in industrial settings are China, the United States, 

the Commonwealth of Independent States, and Central and 

South America. In addition, a substantial quantity of 

explosives is utilized in civil engineering endeavors that are 

not related to the mining sector [7]. 

Rock fragmentation by blasting is not only effective but also 

widely used across different sectors. Coal mining is 

responsible for 40% of total explosives consumption [7]. 

Moreover, 33% of the world’s explosives consumption is 

attributed to ore mining, and this sector is projected to grow 

during the forecast period from 2019 to 2024 [7]. Sixteen 

percent of global explosives consumption is attributed to stone 

mining for cement production and construction. For instance, 

in 2020, Biegańska and Barański [8] reported that the usage of 

emulsion explosives and ANFO in Polish open-pit mining was 

approximately 7.02 million kg and 17.88 million kg, 

respectively. 

ANFO, as a commonly used explosive is preferred in 

blasting operations due to several key advantages. Firstly, 

ANFO is highly cost-effective, being one of the cheapest 

explosives available on the market, making it an attractive 

option for large-scale operations that require a significant 

volume of explosives [1]. Secondly, ANFO is easy to mix and 

handle, which simplifies its application in the field, especially 

under mass production conditions [9]. Thirdly, ANFO has a 

low density, allowing for good gas expansion during blasting, 

resulting in efficient rock fragmentation [10]. However, it is 

important to note that ANFO also presents certain challenges 

and disadvantages. One of the main issues is its lack of water 

resistance, which limits its use in wet conditions or in 

underground environments where water presence is common 

[11]. Additionally, due to its low density, ANFO has lower 
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energy per unit volume compared to denser explosives, which 

may require larger quantities to achieve the same effect. 

Lastly, ANFO is more susceptible to desensitization if not 

handled properly, particularly in the presence of oils other than 

fuel oil [12]. 

Given the widespread use and significance of ANFO in 

mining, the problem arises in an open pit mine where there are 

blasting fronts or benches, which are composed of many 

drilled holes, these holes for blasting need a specific quantity 

of ANFO (kg), the miscalculation of the quantity of explosive 

used can lead to blasting with very high fragmentation and 

more costs in explosive material, affecting the profitability of 

the company. Some scholars have conducted research on 

calculations of the number of explosives used for a blast. Chen 

et al. [13] presented a calculation of charge quantity for 

blasting shafts, using data from a blasting bench No. 918 of an 

open pit coal mine called Shengli in Inner Mongolia, used the 

C++ programming language for their respective calculations, 

in this mine there were a total of 260 drillings with a total 

volume of 1244521 m3, being the final charge quantity of the 

bench of 214275 kg. Similarly, Duranović et al. [14] indicated 

that the parameters describing the operation in sublevels are 

optimal fragmentation and low damage of the rock mass 

around the stopes, proposed new blasting with a slightly larger 

quantity, but with a reduced hole diameter, obtained a 

reduction of explosive use of 174.97 kg where the total charge 

length was 57.26 m, in a total of 11 boreholes. Likewise, 

Adhikari et al. [15] designed and executed controlled blasting 

for plug removal in the same manner for tunnel blasting, the 

charge per blast round was 60.75 kg, the actual number of 

perforations varied from 95 to 110. Also, the charge varied 

according to the face condition by 55 to 65 kg. 

In recent years, the application of machine learning (ML) 

and artificial intelligence (AI) techniques in mining has seen 

significant advancements. Bui et al. [16] demonstrated that the 

integration of AI algorithms in the prediction of blast-induced 

vibrations in open-pit mines can not only enhance operational 

safety but also significantly reduce costs. Additionally, 

research by Bakhtavar et al. [17] shows a 23% decrease in 

operational costs associated with drilling and blasting through 

the implementation of ML techniques. Bayat et al. [18] 

conducted in 2020 and 2022, reported reductions in delay costs 

of 88% and 89%, respectively, by optimizing blasting patterns 

with ML algorithms [19]. Munagala et al. [20] conducted a 

comprehensive analysis of current practices in the 

development of ML to improve drilling and blasting operation. 

Finally, El Wahab et al. [21] highlighted an increase in the 

adoption of highly sophisticated hybrid and ensemble ML 

methods to address key challenges in blasting, with a 72% 

implementation in surface operations and 38% in underground 

environments. 

Despite the growing body of research on ML applications 

in mining, it is observed that there is no research that predicts 

the quantity of ANFO needed for blasting a bench using 

machine learning. This gap in the literature led to the present 

study, which aims to predict the quantity of explosive (ANFO) 

needed to blast rocks in an open pit mine bench using different 

machine learning methods, such as the Advanced Artificial 

Neural Networks Multilayer Perceptron Model (ANN-MLP) 

[22, 23], Random Forests (RF) [24], Support Vector 

Regression (SVR) [25], Extreme Gradient Boosting 

(XGBoost) [26], Kernel Nearest Neighbor (KNN) [27], and 

Bayesian Regression (RB) [28]. These models include crucial 

spatial data such as east, north, and altitude coordinates, as 

well as drilled hole height (m), burden (m), spacing (m), 

stemming (m), booster (kg), and theoretical ANFO (kg). The 

output variable of the model is the quantity of ANFO (in 

kilograms) that is needed. 

Finally, to guide the reader through the structure of this 

paper, the essay is organized as follows: section 2 presents an 

elaborate account of the dataset, the methodology employed, 

and the data pretreatment procedures carried out. The 

outcomes generated by the suggested artificial intelligence 

models are showcased and analyzed in section 3. Section 4 

provides a final overview of the study, summarizing the main 

findings and contributions.  

 

 

2. MATERIALS AND METHODS 

 

This section presents the dataset, machine learning 

techniques, and their performance in estimating the quantity of 

ANFO required for blasting a bench in an open pit mine. 

 

2.1 Data preparation and analysis 

 

The data used in this study were obtained from a blasting 

bench in an open pit mine located in northern Peru. Data 

collection was systematically conducted by a specialized 

technical team, who performed precise measurements of the 

spatial coordinates of each drill hole (east, north, and 

elevation) and meticulously recorded the relevant physical 

characteristics, such as drill hole height, burden, spacing, 

stemming, booster, and the theoretical amount of ANFO 

required. This field data collection process was crucial to 

ensure the accuracy and representativeness of the data, 

allowing the subsequent analysis to faithfully reflect the actual 

conditions of the mining operation. Figure 1 shows the 

graphical representation of the blast bench in its 2D 

dimensions (East-North).  

 

 
 

Figure 1. Blasting bench in an open pit mine 

 

The statistical analysis of the data indicated that the mean 

height of the drilled holes was 8.37 meters, with a variation of 

0.13 and a standard deviation of 0.35. Additionally, there are 

characteristics that remain constant throughout, each with a 

singular value. These include a burden of 4.10 m, spacing of 

4.61 m, stemming of 3.00 m, and booster of 0.45 kg. Table 1 

displays the statistical properties of the data. 
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Table 1. Statistics of the variables used 

 

Variable Mean Var Std Min Max 

East (m) 9133866.34 524.9 22.91 9133819.1 9133905.24 

North (m) 829938.21 906.3 30.11 829874.8 829987.91 

Elevation (m) 3347.87 0.13 0.35 3347.1 3348.66 

Hole height (m) 8.37 0.13 0.36 7.60 9.20 

Burden (m) 4.10 0.00 0.00 4.10 4.10 

Spacing (m) 4.61 0.00 0.00 4.61 4.61 

Steaming (m) 3.00 0.00 0.00 3.00 3.00 

Booster (kg) 0.45 0.00 0.00 0.45 0.45 

Theoretical ANFO (kg) 67.30 19.95 4.47 57.00 77.00 

Actual ANFO (kg) 64.34 25.18 5.02 54.00 90.00 

East (m) 9133866.34 524.9 22.91 9133819.2 9133905.24 

 

 
 

Figure 2. Frequency histograms of the variables used in the prediction 

 

Figure 2 presents the frequency histograms of the variables 

used in the prediction, showing the variation of drill hole 

height (m), theoretical ANFO (kg), and actual ANFO (kg), 

while burden (m), spacing (m), and stemming (m) remain 

unique and constant values. The distribution of ANFO 

quantity shows higher amounts in the range of 60 to 70 kg per 

borehole, and the borehole height is predominantly in the 

range of 8.0 to 8.5 meters. 

Figure 3 illustrates a correlation matrix depicting the linear 

relationships between geographic and operational variables 

within the dataset. A coefficient ranging from -1 to 1 is used 

to quantify correlation. Strong negative linear associations are 

indicated by coefficients close to -1, and strong positive linear 

links are indicated by coefficients close to 1. The lack of a 

linear association is shown by coefficients close to 0. ANFO 

content (kg) shows a strong correlation with borehole height 

(m) with a coefficient of 0.78, and with theoretical ANFO, 

with a coefficient of 0.79. This indicates that the higher the 

drill height and the theoretical ANFO quantity calculation, the 

greater the quantity of ANFO required. 

During the feature engineering phase, key variables such as 

drill hole height and theoretical ANFO charge were identified, 
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showing a strong correlation with the amount of ANFO used. 

These features were normalized using standardization 

techniques to ensure equitable contribution to the model. 

Additionally, feature selection techniques such as Principal 

Component Analysis (PCA) and Feature Importance were 

applied, allowing for the reduction of data dimensionality and 

elimination of redundancies, resulting in significant 

improvements in model accuracy. 

 

 
 

Figure 3. Correlation matrix 

 

To account for the many data types and ranges present in 

the dataset, including geographic coordinates, bore height (m), 

burden (m), spacing (m), stemming (m), booster (kg), and 

theoretical ANFO (kg), the values of each feature were 

standardized using the mean and standard deviation. The 

process of normalization was utilized to normalize the values 

of many attributes to a uniform scale [29]. After dividing by 

the standard deviation, we subtracted the feature's mean from 

each data point to regenerate it [30]. Each individual data 

point, denoted as 𝑥𝑖,𝑛 was converted into a transformed value, 

represented as 𝑥′𝑖,𝑛 using the following procedure: 

 

𝑥′𝑖,𝑛 =
𝑥′𝑖,𝑛 − 𝜇𝑖

𝜎𝑖

 (1) 

 

Here, 𝜇 and σ represent the average and variability of the i-

th characteristic, respectively [31]. 

Subsequently, the dataset was randomly divided into three 

subsets: 70% for training, 15% for validation, and 15% for 

testing. This partitioning was strategically designed to 

maximize the model's ability to generalize to new data, 

allowing for robust training, precise tuning during validation, 

and objective evaluation using independent data. The rationale 

behind this partitioning lies in ensuring that all critical 

variables, especially drill hole height and theoretical ANFO 

charge, were equitably represented in each subset, thus 

guaranteeing the integrity and representativeness of the 

modeling process. 

Cross-validation was not employed in this study due to the 

adequate size and representativeness of the dataset, which 

allowed for a clear division into training, validation, and test 

subsets. This strategy was sufficient to assess the model's 

generalization capability, as each subset maintained the 

distribution of key features. Since the results on the validation 

set were consistent and reflected the expected performance, 

cross-validation was deemed unnecessary, which also allowed 

for greater computational efficiency. 

2.2 Artificial Neural Network Multilayer Perceptron 

(ANN-MLP) 

 

The mining industry has extensively employed artificial 

neural networks [22]. The multilayer perceptron (MLP) is a 

neural network that is composed of one or more hidden layers. 

MLPs have the remarkable ability to approximate any 

arbitrary function, provided that there is an enough number of 

nodes in the hidden layers [32]. The computation of the output 

for a Multi-Layer Perceptron (MLP) with a single hidden layer 

of H nodes is performed as follows, using an input vector x: 

 

�̂�(𝑥) = ∑ 𝑣𝑗𝑓(𝑤𝑗
𝑇𝑥 + 𝑤𝑏𝑗) + 𝑣𝑏

𝐻

𝑗=1

 (2) 

 

The weight matrix W = ( 𝑤1 , 𝑤2, … , 𝑤𝐻)  represents the 

connections between the input layer nodes and the hidden 

layer in the neural network. The elements of this matrix are 

denoted as {𝑤𝑏𝑗}
𝑗=1

𝐻
. The biases of the hidden layer neurons 

are marked by {𝑣𝑖}𝑗=1
𝐻 . The weights of the connections 

between the hidden layer and the output node are denoted by 

{𝑣𝑖}𝑗=1
𝐻 . The output's bias weight is denoted as 𝑣𝑏 . The 

function f is a non-linear activation function. The Rectified 

Linear Unit (ReLU) function was used as the activation 

function for the hidden layers in this research. 

After evaluating several configurations of artificial neural 

networks, the most optimal outcomes with the lowest margin 

of error were obtained by employing a neural network 

structure with only one input and one output. The 

configuration consisted of an input layer including 8 neurons, 

succeeded by four hidden layers consisting of 100, 50, 20, and 

10 neurons correspondingly, and an output layer comprising a 

single neuron (Figure 4). The model was constructed using the 

TensorFlow 2.15.0 machine learning library and Python 

version 3.11.7. 

 

 
 

Figure 4. The architecture of ANN-MLP 

 

2.3 Random Forest (RF) 

 

Random Forest (RF) is an ensemble approach that 

aggregates the results of several random decision trees to 

formulate a comprehensive prediction. It is applicable to both 

classification and regression problems of practical interest [33, 

34]. Each tree makes binary decisions at its internal nodes 

based on Boolean tests. For example, if an ordinal attribute is 

chosen for splitting, the test determines whether the value of 

that attribute exceeds a given threshold [35]. Instances that 
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meet the test criteria (i.e., having an attribute value above the 

threshold) are directed to one child node, while those that do 

not meet the criteria are directed to the other node. This 

approach segments the training data into more homogeneous 

subsets. The purpose of this division is to enhance the 

differentiation between classes in classification issues or 

decrease the error in predictions for regression projects. In 

random trees, the Boolean test at each internal node is picked 

as the most beneficial split, based on a randomly chosen subset 

of properties [36]. The growth of the tree persists until further 

division ceases to enhance the uniformity of the nodes or until 

a predetermined pruning condition is met, such as a minimum 

number of occurrences per node or the maximum depth of the 

tree. Every tree in the forest is built using a Bootstrap sample, 

which is done independently of the data. This process is 

comparable to the bagging approach [37]. 

Using the training examples assigned to each node, the 

predictions are generated at the tree's terminal nodes, also 

called leaves. To do this, a sequence of tests is executed 

beginning at the main node and progressing via intermediate 

nodes to the appropriate terminal node. To make a prediction 

in a regression problem, we take the training examples at the 

leaf node and average their response variables. The final group 

prediction in classification is determined by a simple majority 

vote. Regression uses the average of the ensemble's 

predictions from the random trees to get an ensemble result 

with a magnitude of 𝑇:  

 

�̂�(𝑥) =
1

𝑇
∑ �̂�(𝑡)(𝑥)

𝑇

𝑡=1

 (3) 

 

The symbol�̂�(𝑡)(𝑥) represents the result produced by the t-

th regression tree. 

 

2.4 Support Vector Regression (SVR) 

 

Support Vector Regression (SVR) is a supervised learning 

technique that relies significantly on the quality and 

composition of the training and testing datasets to provide 

accurate results. It is crucial for the model to be effective that 

both sets have similar distributions [38]. T-statistics are 

utilized for the analysis of data distribution. The objective of 

Support Vector Regression (SVR) is to identify a function that 

minimizes the deviation of all training patterns or datasets 

from the target values, under a tolerance of ε, while 

simultaneously maximizing the linearity of the function. 

Usually, all data points used for training are contained within 

the range of (−𝜀 𝑎 + 𝜀). The study utilized Support Vector 

Regression (SVR) and is defined by the equation [39]: 

 

𝐾(𝑥, 𝑥′) = 𝑒𝑥𝑝 (−
‖𝑥 − 𝑥′‖2

2𝜎2
) (4) 

 

Sigma (σ) represents the dispersion of the distribution used 

in the kernel function, whereas ‖𝑥 − 𝑥′‖2  signifies the 

squared Euclidean distance between two feature vectors. 

 

2.5 Extreme Gradient Boosting (XGBoost) 

 

The described technique refers to a classification or 

regression method that develops decision trees sequentially. 

Each generated tree seeks to correct the errors of the previous 

tree, thus building a sequence of models that gradually 

minimize the errors and increase the efficiency of the 

predictions from the beginning of the decision tree algorithm. 

Such an iterative process continues with the aim of refining the 

results towards the highest possible accuracy [40]. 

Considering a data set 𝐷 = {(𝑥𝑖  , 𝑦𝑖)}, where 𝑥𝑖 belongs to 

a multidimensional input space 𝑅𝑚  and 𝑦𝑖  represents the 

corresponding labels or output values in the real domain 𝑅. 

Within this framework, the tree space is defined such that 𝑤𝑖  

corresponds to the weight assigned to the i-th leaf of the tree, 

𝑞  symbolizes the tree structure, and 𝑇  indicates the total 

number of leaves. 

The output function, denoted by ý𝑖 , is modeled as a 

weighted sum of functions 𝑓𝑘, each belonging to the functional 

space F.  

 

ý𝑖 = ∅(𝑥𝑖) = ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹

𝐾

𝑘=1

 (5) 

 

where, F is defined as the set of all possible functions of the 

form.  

 

𝐹 = {𝑓(𝑥) = 𝑤𝑞(𝑥)}(𝑞: 𝑅𝑚 → 𝑇, 𝑤 ∈ 𝑅𝑇) (6) 

 

2.6 K-Nearest Neighbors (KNN) 

 

A nonparametric supervised learning classifier, the K-

Nearest Neighbor (KNN) or K-NN approach makes 

predictions or classifications based on how close together data 

points are. It relies on the clustering of a single data point to 

determine its categorization [41]. The distance metric used in 

nearest neighbor methods is the simple Euclidean distance. 

Specifically, the distance between two patterns 

(𝑥11, 𝑥12, … , 𝑥1𝑛)  and (𝑥21, 𝑥22, … , 𝑥2𝑛)  is calculated as 

follows: 

 

𝐷𝐸 = √∑ (𝑥1𝑗 − 𝑥2𝑗)2
𝑛

𝑗=1
 (7) 

 

2.7 Bayesian Regression 

 

The Bayesian approach, a model for the observed data, 

provides a vector of unknown parameters usually in the form 

of conditional density, assuming that it is random and that it 

has a prior density making use of hyperparameters for its 

development [42]. 

 

2.8 Model evaluation 

 

The Root Mean Square Error (RMSE) would be zero for a 

model with perfect accuracy. It is computed by taking the 

square root of the mean squared error between the model's 

predictions and the observed values [38]: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛𝑡𝑠

∑(𝑜𝑖 − 𝑝𝑖)2

𝑖

 (8) 

 
To calculate the Mean Absolute Error (MAE), the absolute 

disparities between the actual and anticipated values are 

averaged, irrespective of the direction in which they vary. It 

provides an idea of how large the errors are on average, with a 

low value being indicative of better model performance [43]. 
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𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − �̂�

𝑁

𝑖=1

| (9) 

 

The Mean Squared Error (MSE) is computed by averaging 

the squared discrepancies between the projected values and the 

actual values. Unlike RMSE, it does not take the square root 

at the end [43]. 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − �̂�)2

𝑁

𝑖=1

 (10) 

 

The R-squared number, sometimes referred to as the 

coefficient of determination, measures the amount of variation 

in the observed and predicted values that can be attributed to 

the model. An R-squared value above 55% is deemed 

satisfactory, values below 30% are considered questionable, 

and values exceeding 75% are regarded as excellent [44]. It is 

calculated as follows: 

 

𝑅2 =
(∑(𝑜𝑖 − 𝑜�̅�)(𝑝𝑖 − 𝑝�̅�))2

∑(𝑜𝑖 − 𝑜�̅�)
2 ∑(𝑝𝑖 − 𝑝�̅�)

2
 (11) 

2.9 Selection of methods and hyperparameters 

 

The selection of machine learning methods was based on 

previous studies that have demonstrated their effectiveness in 

mining applications. Bui et al. [16] used artificial neural 

networks to predict vibrations in open-pit mines, highlighting 

the ability of these networks to handle complex nonlinear 

relationships, which motivated our choice of an ANN-MLP 

architecture in this study. Similarly, Ohadi et al. [24] validated 

the use of Random Forests (RF) in predicting blast-induced 

outcomes, emphasizing their robustness and generalization 

capability, which aligns with our implementation. The use of 

Support Vector Regression (SVR) with a kernel has been 

supported by Mahmoodzadeh et al. [45] who demonstrated its 

effectiveness in geotechnical predictions of rock fracture 

toughness. Sun et al. [46] showed that XGBoost performs well 

in predicting PPV (peak particle velocity) in an open pit mine. 

The K-Nearest Neighbors (KNN) and Bayesian Regression 

(BR) models have also been validated in mining contexts, 

justifying their inclusion in our study [27]. 

Table 2 presents the hyperparameters associated with each 

model, optimized to ensure the best possible performance in 

predicting the quantity of ANFO required. 

 

Table 2. Hyperparameters of machine learning models 

 
Model Hyperparameters Value Description 

Multilayer 

perceptron 

artificial neural 

network (ANN-

MLP) 

Input layers 1 These are the input layers. 

Hidden layers 4 Determines the complexity of the model pattern. 

Neurons in hidden layers 100, 50, 20, 10 
Number of neurons per layer, defines how complex the model 

should be. 

Output layer 1 Prediction by one output layer. 

Activation function ReLU Layers’ weighted input is transformed using a non-linear function. 

Optimizer Adam Works well for improving a neural network's biases and weights. 

Epochs 500 Total number of training times during the process. 

Batch size 100 Number of training sessions in an epoch. 

Rando Forest 

(RF) 

Regressor estimators 200 Estimator that fits multiple decision trees. 

Maximum depth 10 Limits the complexity of the tree. 

Minimum samples 4 Minimum samples to form a sheet. 

Minimum division of samples 10 It is the reproductivity of a seed. 

Random state 42 Guarantees results when playing. 

Verbose 0 Provides a lot of details or information about the model. 

Support Vector 

Regression 

(SVR) 

c 1.0 Trade-off between margin and error. 

Core rbf Determines the data in SVR. 

Gamma scale Defines the form of the function based on the kernel. 

Epsilon 0.1 Determines the tolerance of the loss function. 

Grade 3 Reduce the number of support vectors. 

Tolerance 1e-3 Tolerance Controls the training tolerance. 

Cache size 200 Specifies the memory size during the process. 

Extreme 

Gradient 

Boosting 

(XGBoost) 

Booster Gbtree Uses decision trees as a base. 

Learning rate 0.1 Measures or controls the learning rate. 

Maximum depth 1 Controls the depth of the trees. 

Minimum weight 5 Controls the weight of the sheets. 

N° of estimators 1000 Indicates the number of trees in the set. 

Random state 42 Generate random data process. 

Positive weight 1 Used in a balanced manner. 

K-Nearest 

Neighbor 

(KNN) 

Number of neighbors 5 Defines the number of neighbors. 

Weights uniform Weigh neighbors when making a prediction. 

Algorithm ball_tree Algorithm for determining nearest neighbors. 

Metric euclidean Determines similarities between points based on distance. 

P 2 Parameter detailing a metric. 

Bayesian 

Regression 

(RB) 

N° iterations 300 Number of model iterations to train. 

Tol 1e-3 
Tolerance or value that determines the adjustment process 

(Converged). 

Alfa 1e-6 
Regularization applied to the model, generating a penalty to the 

models. 

Lambda 1e-6 Regularization used for ridge regression type model. 

Intercept Fit True True Includes an intercept term in the model fit. 
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3. RESULTS AND DISCUSSION 

 

Figure 5 depicts the trajectory of the loss function 

minimization during the training of the Multilayer Perceptron 

Artificial Neural Network (MLP). The data indicates a decline 

from initially high values to a consistently lower level as the 

number of epochs increases. This pattern suggests that the 

model is a good fit, as the loss function shows a substantial 

decrease within the initial 50 epochs and then stabilizes around 

a value of approximately 4.9. This exemplifies the model’s 

capacity to efficiently acquire knowledge from the data 

without succumbing to overfitting. 

 

3.1 Validation and testing of the machine learning 

 

Figure 6 presents a comparison analysis of anticipated and 

actual values using the ANN-MLP model. The analysis is 

partitioned into separate datasets for training, testing, and 

validation. The training dataset had a correlation value of 0.91, 

indicating the model's high level of competency in acquiring 

knowledge from the training data. Similarly, the testing dataset 

demonstrated a correlation coefficient of 0.84, reflecting a 

robust correspondence between the model's predictions and 

the actual ANFO values. The validation dataset showed a 

correlation value of 0.85, further supporting the model's high 

capacity to generalize beyond the training data. 

Figure 7 illustrates the comparison between the anticipated 

outcomes and the actual values using the Random Forest (RF) 

model. The training set demonstrated a correlation coefficient 

of 0.86, suggesting good accuracy within that dataset. The test 

and validation datasets showed correlations of 0.89 and 0.96, 

respectively, indicating excellent predictive performance 

across different datasets. 

 

 
 

Figure 5. Training and validation curve 

 

 
 

Figure 6. Assessment of expected and actual values with ANN-MLP 

 

 
 

Figure 7. Assessment of expected and actual values with RF 
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Figure 8 shows the correlation between the values projected 

by the SVR model and the actual values. The training dataset 

demonstrated a correlation coefficient of 0.81, indicating 

significant accuracy. The test and validation datasets exhibited 

correlation coefficients of 0.74 and 0.98, respectively, 

reflecting strong predictive capability on the test data and 

outstanding performance on previously unreported data. 

By contrasting the projected values with the actual values in 

the training, test, and validation datasets, Figure 9 

demonstrates the XGBoost model's predictive capability. 

Correlations of 0.93 on the training set, 0.85 on the test set, 

and 0.94 on the validation set indicate a robust model capable 

of accurately predicting the amount of ANFO required for 

bench blasting. 

 

 
 

Figure 8. Assessment of expected and actual values with SVR 

 

 
 

Figure 9. Assessment of expected and actual values with XGBoost 

 

 
 

Figure 10. Assessment of expected and actual values with KNN 
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Figure 11. Assessment of expected and actual values with RB 

 

 
 

Figure 12. Model prediction results on a test data set 
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Figure 13. Actual ANFO (kg) vs. predicted ANFO (kg) on 

the test set for each machine learning model 

 

Figure 10 highlights the K-Nearest Neighbor (KNN) 

model's prediction accuracy by comparing the actual values 

with the predicted values across the training, test, and 

validation datasets. The model accurately predicted the 

required amount of ANFO for bench blasting, as shown by the 

correlations of 1.0 for the training set, 0.93 for the test set, and 

0.94 for the validation set. 

Figure 11 presents the relationship between the predicted 

and actual values using the Bayesian Regression (BR) model, 

with datasets broken down into training, test, and validation 

sets. The model provides accurate predictions for the required 

amount of ANFO for bench blasting, as the correlations for the 

training, testing, and validation sets were all 0.93. 

 
3.2 Comparison and evaluation of machine learning 

models 

 
Figures 12 and 13 depict the results of the machine learning 

models’ predictions on a separate test dataset, facilitating 

direct comparison. A synopsis of the predicted outcomes is 

provided in Table 3. The KNN model achieved an R2 value of 

0.84 and an RMSE (Root Mean Square Error) of 2.37, making 

it the most accurate and reliable model for predicting the 

amount of ANFO, thereby optimizing efficiency and reducing 

costs in blasting operations. The Random Forest (RF) model 

achieved an R2 value of 0.78 and an RMSE of 2.77. XGBoost’s 

RMSE was 3.17, with an R2 of 0.72, while the ANN-MLP 

model had corresponding values of 3.25 and 0.70. The 

Bayesian Regression (RB) model also performed well, with an 

R2 value of 0.65 and an RMSE of 3.52. Finally, the SVR model 

had the lowest performance with an RMSE of 4.01 and an R2 

of 0.55. 

 
Table 3. Performance of machine learning methods 

 

Metric 
ANN-

MLP 
RF SVR XGBoost KNN RB 

RMSE 3.25 2.77 4.01 3.17 2.37 3.52 

MSE 10.55 7.68 16.12 10.06 5.60 12.41 

MAE 1.85 1.02 1.66 1.35 1.35 1.33 

R2 0.70 0.78 0.55 0.72 0.84 0.65 

 
The performance metrics such as RMSE, MSE, MAE, and 

R2 have significant practical implications in operational 

environments. KNN, with the lowest RMSE (2.37) and a high 

R2 (0.84), stands out as the most accurate and reliable model 

for predicting the amount of ANFO, optimizing efficiency, 

and reducing costs in blasting operations. The low MAE of RF 

(1.02) suggests consistent predictions, while a low MSE in 

KNN (5.60) reinforces its ability to minimize severe errors, 

directly impacting operational safety and effectiveness. 

 

Table 4. Confidence intervals for error metrics 

 

Model Mean RMSE Confidence Interval (95%) 

ANN-MLP 2.97 [1.04 – 5.32] 

RF 2.47 [0.58 – 4.64] 

SVR 3.70 [1.35 – 6.51] 

XGBoost 2.88 [0.91 – 5.28] 

KNN 2.21 [1.01 – 3.75] 

RB 3.09 [0.71 – 5.88] 

 

Table 4 presents the 95% confidence intervals for the mean 

RMSE of each model. These intervals reflect the variability in 

prediction error and provide a measure of each model's 

precision. The results indicate that the K-Nearest Neighbors 

(KNN) model achieved the lowest mean RMSE (2.21) with a 

relatively narrow confidence interval [1.01 – 3.75], suggesting 

consistent and reliable performance. Conversely, the SVR 

model exhibited the highest mean RMSE (3.70) and the widest 

confidence interval [1.35 – 6.51], indicating greater variability 

and lower accuracy in its predictions. 
 

Table 5. Student’s t-test for model comparison 

 

Model Comparison t-Statistic p-Value Significance 

RF vs. SVR -19.59 2.60e-78 Significant 

RF vs. XGBoost -6.89 7.62e-12 Significant 

RF vs. KNN 5.51 4.07e-08 Significant 

RF vs. RB -9.37 1.86e-20 Significant 

RF vs. ANN -8.85 1.91e-18 Significant 

SVR vs. XGBoost 12.28 1.81e-33 Significant 

SVR vs. KNN 26.87 5.49e-136 Significant 

SVR vs. RB 8.55 2.51e-17 Significant 

SVR vs. ANN 11.29 1.06e-28 Significant 

XGboost vs. KNN 12.89 1.36e-36 Significant 

XGBoost vs. RB -2.93 0.0034 Significant 

XGBoost vs. ANN -1.52 0.128 Not significant 

KNN vs. RB -14.91 9.30e-48 Significant 

KNN vs. ANN -15.62 5.44e-52 Significant 

RB vs. ANN 1.64 0.101 Not significant 

 

Table 5 presents the results of the student’s t-test, used to 

assess whether the differences in performance between pairs 

of models are statistically significant. P-values less than 0.05 

indicate that the observed differences are not due to chance 

and are therefore significant. The comparison between RF and 

SVR revealed a highly significant difference (t=-19.59, 

p=2.60e-78), confirming that RF has significantly better 

performance than SVR. Similarly, significant differences were 

observed in comparisons between RF and XGBoost, RF and 

RB, and RF and ANN-MLP. Comparisons between SVR and 

KNN (t=26.87, p=5.49e-136) and SVR and RB (t=8.55, 

p=2.51e-17) were also highly significant, indicating that KNN 

and RB outperform SVR in terms of accuracy. 

Based on the results obtained, KNN stands out as the 

optimal model for predicting the amount of ANFO, as shown 

by a comprehensive analysis of performance metrics, 

confidence intervals, and statistical tests. KNN achieved the 

lowest RMSE (2.37) and MSE (5.60), along with the highest 

R2 (0.84), demonstrating its high accuracy and predictive 
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capability. Additionally, its confidence interval for RMSE 

[1.01 – 3.75] is relatively narrow, indicating consistency in 

predictions. The student’s t-tests also support this choice, 

showing statistically significant differences between KNN and 

other models, thus consolidating KNN as the best option for 

this task. 

 
3.3 Data sensitization test 

 
Figure 14 shows the results of a sensitivity analysis for 

ANFO predicted using the KNN model, focusing on two 

independent variables: borehole height (m) and theoretical 

ANFO. In the first plot (left), corresponding to borehole height 

(m), it is observed that the quantity of ANFO remains almost 

constant around 63.95 kg for borehole heights up to 10 meters, 

but experiences a significant increase to 64.01 kg when the 

borehole height reaches 12 meters. This suggests a threshold 

beyond which more ANFO is required to maintain blasting 

efficiency. In contrast, the relationship between theoretical 

ANFO and the quantity of ANFO used shows a clearly linear 

and ascending pattern, where the increase is almost 

proportional, starting at 62.11 kg ANFO for 50 kg theoretical 

ANFO and increasing to 65.36 kg ANFO for 74 kg theoretical 

ANFO. This trend indicates a strong positive correlation 

between the calculated theoretical ANFO and the actual 

ANFO quantity. These variables have a significant influence 

on the prediction of the quantity of ANFO needed, as 

increasing the drill hole height significantly increases the 

required ANFO. 

 

3.4 Quantity of ANFO required for bench blasting 

 

Figure 15 presents a comparative analysis of various 

machine learning models regarding the total amount of ANFO 

required for bench blasting and their respective coefficients of 

determination, which assess how well the models fit the data. 

It is observed that the models differ both in the predicted 

quantity of ANFO and in their accuracy of fit. With an R2 of 

0.78, the Random Forest (RF) model shows an excellent match 

to the observed data and predicts the largest amount of ANFO 

required, with a value of 13,385.87 kg. In contrast, the Support 

Vector Regression (SVR) model estimates the lowest quantity 

of ANFO required, at 13,307.16 kg, but with an R2 of 0.55, 

suggesting a less accurate fit. Among the models compared, 

the K-Nearest Neighbors (KNN) model stands out with the 

highest R2 of 0.84, indicating excellent predictive capability, 

and it predicts an ANFO requirement of 13,322.6 kg. 

 

 
 

Figure 14. Sensitization test of the quantity of ANFO used 

 

 
 

Figure 15. Quantity of ANFO required for bench blasting 

 

Taking into consideration that the KNN model is the most 

accurate, the total quantity of ANFO required to blast the 

bench with 208 drilled holes is 13,322.6 kg. In comparison, 

Chen et al. [13] required a total of 214,275 kg of explosives 

for blasting their study bench (260 holes), with a total volume 

of 1,244,521 m3. There is a significant difference in the 

quantity of explosives used, but Chen et al.'s [13] study 

involved various types of explosives, not just ANFO. 

Similarly, Duranović et al. [14] used a total of 174.97 kg of 

explosives for optimal fragmentation in a total charge length 

of 57.26 m, with only 11 drilled holes in their study. Adhikari 

[2], in his research on controlled blasting in tunnels, used 

60.75 kg of explosives, with the number of drilled holes 

varying from 95 to 110, and the charge quantity varied 

according to the face condition, ranging from 55 to 65 kg. 

 
3.5 Study limitations 

 

Each of the evaluated models presents limitations that must 

be considered in practical applications. KNN, while 

demonstrating excellent overall performance, can be affected 

by the quality and size of the dataset, as its performance 
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declines in the presence of large volumes of noisy or 

unbalanced data. RF, on the other hand, may encounter 

overfitting issues when too many trees are applied, especially 

if hyperparameters are not properly tuned. SVR is sensitive to 

the selection of parameters such as C and gamma, and its 

performance may degrade if these are not optimized for the 

specific data. XGBoost, though powerful, can be prone to 

overfitting if model complexity is not controlled. RB may 

struggle in contexts with high collinearity among the predictor 

variables. Finally, ANN-MLP requires careful tuning of the 

architecture and a large dataset to avoid convergence issues 

and overfitting, making it less suitable for small or noisy 

datasets.  

 
3.6 Comparison with existing methods 

 
Recent literature has seen the development of several 

innovative approaches to improve the accuracy of predicting 

explosive use in mining operations. For example, Dennis, and 

Rigby [47] proposed the Direction-Encoded Neural Network 

(DeNN), an artificial neural network designed to quickly 

predict explosive charges in obstructed scenarios. This 

approach achieved an R² of 0.97, demonstrating high accuracy 

in predicting blast pressure using 1 kg TNT charges. On the 

other hand, Majid et al. [48] utilized the hybrid RUN-XGBoost 

model, which combines the XGBoost algorithm with Runge-

Kutta (RUN) optimization to enhance parameter selection and 

the accuracy of predicting peak particle velocity (PPV) 

induced by blast vibrations in an open-pit mine. This model 

achieved an R2 of 0.96, showcasing its effectiveness in the 

blasting context.  

When comparing the results of this research with the study 

conducted by Mishra et al. [3], it is evident that Mishra 

achieved superior performance with the XGBoost model, 

obtaining an R2 of 0.978, MAE of 0.779, and RMSE of 1.066. 

In contrast, the XGBoost model in this study obtained 

R2=0.72, MAE=1.35, and RMSE=3.17. Similarly, Mishra 

obtained R2=0.874, MAE=1.528, and RMSE=2.543 for the 

KNN model. Compared to Mishra's model, the suggested 

KNN model in this study performed better in predicting the 

amount of ANFO (kg), with an R2 value of 0.84, MAE value 

of 1.35, and RMSE value of 2.37. 

In comparison, the models developed in the present study, 

such as KNN, which obtained an R2 of 0.84, and RF, with an 

R2 of 0.78, demonstrate competitive performance, although 

slightly lower than the DeNN and RUN-XGBoost approaches. 

However, the results obtained with KNN and RF represent a 

significant improvement and highlight the applicability of 

these techniques in predicting the amount of ANFO in bench 

blasting (see Table 6).  

 
Table 6. Comparison with existing models 

 

Model 
Previous 

Studies (R2) 

Current 

Study (R2) 
Reference 

ANN-MLP - 0.70 - 

RF - 0.78 - 

SVR - 0.55 - 

XGBoost 0.98 0.72 [3] 

KNN 0.87 0.84 [3] 

RB - 0.65 - 

Direction-Encoded 

Neural Network 

(DeNN) 

0.97 - [47] 

RUN-XGBoost 0.96 - [48] 

4. CONCLUSIONS 

 

This research successfully employed various machine 

learning models, including ANN-MLP, RF, SVR, XGBoost, 

KNN, and BR, to predict the required ANFO quantity for 

bench blasting in an open-pit mine. The results demonstrated 

that KNN and RF models are particularly effective for ANFO 

quantity prediction. While the XGBoost, ANN-MLP, and BR 

models also performed well, there remains potential for further 

improvement through hyperparameter optimization. 

Among the models tested, all six regression-based models 

exhibited satisfactory accuracy levels, with R2 values above 

0.55. The KNN model outperformed the others, achieving the 

highest accuracy with an R2 of 0.84, an RMSE of 2.37, and an 

MAE of 1.35. The RF model followed closely, with an R2 of 

0.78, an RMSE of 2.77, and an MAE of 1.02. The XGBoost 

model recorded an R2 of 0.72, an RMSE of 3.17, and an MAE 

of 1.35. Both ANN-MLP and BR models obtained very similar 

results, with R2 values of 0.70 and 0.65, RMSE of 3.25 and 

3.52, and MAE of 1.85 and 1.33, respectively. The SVR 

model, while still viable, had the lowest prediction accuracy, 

with an R2 of 0.55, an RMSE of 4.01, and an MAE of 1.66. 

It was identified that variables such as the height of the drill 

hole and the theoretical ANFO are critical determinants in the 

prediction of the quantity of ANFO required. The analysis 

established a direct relationship, showing that an increase in 

the height of the drill hole leads to an increase in the ANFO 

required. According to the KNN model, which proved to be 

the most accurate in this study, the quantity of ANFO required 

for bench blasting is estimated to be 13,322.6 kg. 

The application of accurate models such as KNN and RF to 

predict the amount of ANFO can lead to cost savings by 

reducing explosive waste and preventing over-fragmentation 

of the rock. Additionally, these models enhance operational 

efficiency by ensuring more uniform fragmentation, which 

optimizes cycle times and reduces machinery wear. In terms 

of safety, precise prediction minimizes the risks associated 

with improper blasting, protecting both workers and nearby 

infrastructure. These combined benefits enhance profitability 

and safety in mining operations. 

For future improvements, it is recommended to integrate 

additional geological and environmental data, apply more 

complex models such as deep neural networks, and explore 

ensemble methods like stacking to improve prediction 

accuracy. Additionally, automated hyperparameter 

optimization could further refine model performance across 

different operational contexts. 
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