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Image denoising is crucial for enhancing image quality, especially in medical 

applications where noise can significantly impact the accuracy of analysis and 

interpretation. This paper presents the development of an adaptive Gaussian filter-based 

denoising technique that effectively enhances images corrupted by various types of 

noise. By incorporating the adaptive adjustment of filter parameters based on local 

image characteristics, the proposed method achieves superior denoising performance. 

The algorithm analyzes the noisy image to estimate the noise characteristics, 

dynamically adjusting the Gaussian filter parameters to ensure optimal preservation of 

image details while effectively suppressing noise artifacts. Optimized strategies for 

parameter selection and filtering operations are employed to ensure computational 

efficiency. A comparative analysis demonstrates that the adaptive Gaussian filter 

outperforms traditional methods, achieving a higher Peak Signal-to-Noise Ratio 

(PSNR) and a lower Root Mean Square Error (RMSE). The technique also exhibits 

robustness against different noise distributions, making it a versatile solution for various 

image enhancement applications. These findings highlight the potential of the adaptive 

Gaussian filter to significantly improve image quality, facilitating more accurate and 

reliable analysis across diverse domains. 
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1. INTRODUCTION

Medical imaging is indispensable in modern healthcare, 

offering non-invasive insights into internal structures for 

clinical analysis and intervention. It facilitates detailed 

visualization and monitoring of organs and tissues, aiding 

accurate diagnoses and treatment plans. The continual 

evolution of imaging technology significantly contributes to 

enhanced patient care and treatment outcomes, making 

medical imaging integral part of modern medicine. 

The synergy between mathematics and the medical field is 

a powerful force, leveraging abstract analytical tools to 

address practical healthcare challenges. Quantitative methods, 

including statistical analysis and mathematical modeling, are 

crucial for understanding disease patterns, predicting 

outcomes, and optimizing healthcare processes. This 

symbiotic relationship not only deepens our understanding of 

biological systems but also drives innovation in diagnostic 

techniques, treatment strategies, and overall healthcare 

delivery. 

Image processing, situated at the crossroads of computer 

science, mathematics, and engineering, plays a pivotal role in 

medical imaging by applying algorithms for tasks like 

reconstruction, segmentation, and feature extraction. 

Denoising [1], a critical technique within image processing, 

aims to reduce unwanted noise and enhance image quality. In 

medical imaging, denoising [2] directly influences diagnostic 

accuracy and treatment planning, contributing to more reliable 

clinical assessments. The continuous development of 

denoising methods ensures the production of high-fidelity 

images across various applications, from healthcare to 

computer vision and scientific research. Fuzzy logic [3] plays 

a significant role in image processing, providing a framework 

for handling uncertainty and imprecision inherent in image 

data. In image processing, fuzzy logic [4] allows for the 

development of algorithms that can effectively deal with 

vague or subjective information, such as edge detection, 

segmentation, and pattern recognition. By incorporating fuzzy 

sets, fuzzy inference systems, and fuzzy clustering techniques, 

image processing tasks can be performed with greater 

robustness and flexibility, enabling the extraction of 

meaningful information from complex and noisy image 

datasets. Fuzzy logic-based [5, 6] image processing techniques 

have been successfully applied in various fields, including 

medical imaging, remote sensing, object recognition, and 

computer vision, contributing to advancement in automated 

image analysis and decision-making systems. 
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2. LITERATURE SURVEY 

 

Zaynidinov et al. [7] described a technique that uses two-

dimensional Haar wavelets to digitally compress an image, to 

find the recovery coefficients, and show the modified image in 

a higher quality than the original. One of the most common 

issues with image compression is figuring out and 

implementing a workable solution that enables you to display 

every kind of pixel (dot) in a condensed form. This issue was 

resolved by using a two-dimensional Haar wavelet [8] 

modification, which led to the compression of the image and 

improved quality of the processed image over the original. 

Also, Zhu [9] investigation delves into a total variation-based 

image denoising model aimed at addressing the staircasing 

phenomenon inherent in the Rudin-Osher-Fatemi model. This 

variational model is optimized through the Augmented 

Lagrangian Method (ALM). A convergence analysis of the 

proposed algorithm is provided, demonstrating the 

characteristics of the model and the efficiency of the suggested 

numerical technique through numerical experiments. Siddig et 

al. [10], suggested a fourth order image denoising model such 

that on applying the fixed-point theorem an entropy solution 

exists and is unique. Also, numerical experiments based on the 

fast explicit diffusion scheme (FED) demonstrates the 

efficiency of the proposed method in image denoising. The 

proposed method was compared with three other models 

namely, modern mean curvature (MC) model, the You and 

Kaveh (YK) model, and the Lysaker, Lundervold, and Tai 

(LLT) model. Their performance was analyzed and is more 

efficient in reducing noise and maintaining image.  

Evaluation by Palma et al. [11] provides a comprehensive 

overview of anisotropic diffusion filtering, a popular 

technique used for image denoising and enhancement. The 

focus on MRI evaluation suggests that the method examines 

the effectiveness of anisotropic diffusion filtering specifically 

in the context of MRI images. This valuable contribution on 

MRI images often suffers from noise and artifacts, and the 

performance of denoising techniques can vary depending on 

the characteristics of MRI data. But there is no optimize 

parameters to address specific artifacts and to validate the 

technique in clinical practice. Yuan and He [12] explored the 

use of an anisotropic diffusion-based preprocessing filtering 

algorithm for segmenting high-resolution remote sensing 

images. The authors introduce anisotropic diffusion filtering, 

a technique used for image enhancement and noise reduction 

while preserving edges and features. 

Shahin et al. [13] introduced a novel enhancement 

technique for improving the quality of pathological 

microscopic images by employing neutrosophic similarity 

score scaling. It provides an introduction to neutrosophic 

similarity score scaling, a method used for image enhancement 

that considers the neutrosophic similarity between pixels. 

Neutrosophic logic deals with uncertainty, indeterminacy, and 

inconsistency, making it suitable for handling the complexities 

of pathological microscopic images. 

Khan et.al. [14] emphasized on denoising in complex fuzzy 

environments suggests that it explores scenarios where signals 

are affected by multiple sources of uncertainty, ambiguity, or 

imprecision. This could include environments with uncertain 

noise characteristics, fuzzy boundaries between signal and 

noise, or imprecise measurement conditions. But fails in 

adaptation of denoising techniques to dynamic or evolving 

environments. In many real-world applications, signal 

characteristics and noise properties may change over time, 

requiring adaptive denoising algorithms that can dynamically 

adjust to changing conditions. Ali [15] investigated the 

performance of three different completely filtering methods 

tested with different noises on Magnetic Resonance Imaging 

(MRI) images. The median filter algorithm is modified, and 

Gaussian noise and salt-and-pepper noise are added to the MRI 

image. The proposed Median Filter (MF), Adaptive Median 

Filter (AMF), and Adaptive Wiener Filter (AWF) are 

implemented. 

The existing literature highlights various image 

compression and denoising techniques but lacks a robust 

solution that adapts effectively to varying noise types and 

image conditions. While methods like anisotropic diffusion 

and neutrosophic scaling show promise, they often fall short 

in dynamic or complex environments. This research gap 

underscores the need for an adaptive Gaussian filter, which 

can dynamically adjust to different noise characteristics, 

offering a more versatile and reliable solution for image 

denoising. 

 

 

3. IMAGE 

 

An image [16] can be assumed to be an encoded form of 

matrix with grey-level or color pixel intensity values as its 

elements. In case of grey scale images, it can be referred to as 

pixel value in two-dimension (x, u(x)) where u(x) is the pixel 

intensity value at location x. An image noise model can 

roughly be approximated as: 

 

𝑓(𝑥) = 𝑢(𝑥) + 𝑛(𝑥), 𝑥 ⊂ 𝑋, 𝑋 ⊂ 𝑍2 

 

where, u(x) denotes the original pixel matrix and n(x) denotes 

noise at location x. The image used is an MRI brain image 

(Figure 1). 

 

 
(a) Original image     (b) Salt and pepper 

 

 
(c) Gaussian noise       (d) Speckle noise 

With Noise Density 0.06 

 

Figure 1. MRI image displaying original image and noised 

images 
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4. GAUSSIAN MEMBERSHIP FUNCTION 

 

The Gaussian membership function is a bell-shaped curve 

used in fuzzy logic to determine the degree of membership of 

an element in a fuzzy set. Its formula is given by: 

 

𝜇(𝑥) = 𝑒𝑥𝑝 (−
(𝑥−𝑐)2

2𝜎2 )  

 

where, μ(x) is the membership value for an element x, c is the 

centre or peak of the curve, σ is the standard deviation 

controlling the spread of the curve. 

In the context of image processing, particularly denoising 

of pixel matrices, the Gaussian membership function can be 

applied to assign membership values [17] to pixel intensities. 

The peak of the Gaussian curve represents the intensity value 

with full membership, while values farther from the peak have 

lower membership. This function is useful for capturing the 

gradual transition between different intensity levels, allowing 

for a smooth representation of uncertainties in pixel values. 

When denoising an image, the Gaussian membership function 

helps in preserving important details while smoothing out 

noise, providing a balanced and effective approach to enhance 

image quality. 

 

 

5. METHODOLOGY 

 

Filtering techniques are essential tools in image processing 

that play a crucial role in enhancing image quality and 

extracting relevant information. These techniques involve the 

application of filters, which are mathematical operations 

applied to pixel values in an image. Filtering techniques [18, 

19] find widespread use in various fields, including medical 

imaging, computer vision, and remote sensing. They are 

employed for tasks such as noise reduction [20], edge 

enhancement, and feature extraction. The choice of a filtering 

technique depends on the specific characteristics of the image 

and the objectives of the image processing task. While some 

filters are designed to smoothen the image and reduce noise, 

others are tailored for edge detection or sharpening details. 

The continuous evolution of filtering techniques contributes to 

advancements in image processing, facilitating improved 

analysis and interpretation of visual data in diverse 

applications.  

Gaussian filters, both 1D and 2D, are vital for medical 

image processing, particularly MRI, since they effectively 

reduce noise while maintaining important imagine 

characteristics. By using fuzzy logic to address uncertainties 

in picture data, the fuzzy Gaussian filters improve this 

capability even more. Standard and fuzzy Gaussian filters 

smooth images while maintaining edges, providing a balanced 

approach to noise reduction. They are computationally 

efficient, can tolerate a wide range of noise kinds, and serve as 

the foundation for numerous sophisticated image processing 

methods. While traditional filters such as wiener and median 

filters have their advantages, Gaussian filters are often more 

versatile, computationally efficient, and able to handle a wider 

range of noise types.  

When it comes to context-aware smoothing, adaptive filters 

are excellent at distinguishing between different kinds of 

image regions and applying the right amount of smoothing to 

improve overall image quality and minimize abnormalities. 

Adaptive Gaussian filters are particularly helpful in situations 

where preserving minute structural details is crucial, such 

medical imaging, is required for accurate diagnosis and 

analysis, due to their versatility and effectiveness. 

This paper presents four types of adaptive gaussian filter [21, 

22] and their performance analysis. 

 

5.1 Adaptive gaussian filter 1D and derivative of gaussian 

1D (AGD-1D) 

 

It is a filter whose impulse response is gaussian function. A 

Gaussian filter [23] is a popular image processing technique 

used for smoothening and reducing noise in images. It is based 

on the Gaussian distribution [24, 25] and operates by 

convolving the image with a Gaussian kernel. The 

mathematical formula for a one-dimensional Gaussian 

function is given by: 

 

𝐺(𝑥) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

𝑥2

2𝜎2)  (1) 

 

where, G(x) is the value of the Gaussian function at position x, 

σ is the standard deviation, determining the width of the 

gaussian curve. The standard deviation and the constant value 

are given by: 

 

𝜎 = √
1

𝑚𝑛
∑ ∑ (𝐴(𝑖, 𝑗) − 𝑚)2𝑛

𝑗=1
𝑚
𝑖=1  ;∝=

𝐴

max(|𝐴|)
 (2) 

 

where, max(|A|) is the maximum absolute value of any element 

in the matrix. Derivative [26, 27] of Gaussian 1D filter can 

indirectly contribute to denoising by emphasizing edges and 

suppressing noise. The steep response of the filter to intensity 

changes can help highlight significant structures in the image 

while minimizing the influence of random noise. The one-

dimensional mathematical formula for the derivative of 

Gaussian 1D filter is given by: 

 
𝜕𝐺(𝑥)

𝜕𝑥
= −

𝑥

𝜎3 𝑒𝑥𝑝 (−
𝑥2

2𝜎2)  (3) 

 

where, 
𝜕𝐺(𝑥)

𝜕𝑥
 is the derivative of the Gaussian function with 

respect to x, x is the spatial coordinate, σ is the standard 

deviation, controlling the width of the Gaussian distribution. 

 

𝐹(𝑥, 𝜎) = 𝐺(𝑥) + 𝛼.
𝜕𝐺(𝑥)

𝜕𝑥
  (4) 

 

where, α is a constant multiplier for the derivative term. The 

combine equation represents a linear combination of a 

Gaussian Function and its derivative.  

 

𝐹(𝑥, 𝜎) =
1

√2𝜋𝜎
𝑒𝑥𝑝 (

−𝑥2

2𝜎2) + 𝛼. [−
𝑥

𝜎2

1

√2𝜋𝜎
𝑒𝑥𝑝 (

−𝑥2

2𝜎2)]  

=
1

√2𝜋𝜎
[1 − 𝛼.

𝑥

𝜎2] 𝑒𝑥𝑝 (
−𝑥2

2𝜎2)  
(5) 

 

5.2 Adaptive gaussian 2D filter and derivative of 2D filter 

(AGD-2D) 
 

A two-dimensional Gaussian filter, the formula is the 

product of two one-dimensional Gaussians along the rows and 

columns, forming a 2D kernel. The filter effectively reduces 

high-frequency noise in the image while preserving its overall 

structure. It is based on the mathematical formulation of a two-

dimensional Gaussian distribution and operates by convolving 

the image with a Gaussian kernel. The mathematical formula 

for a two-dimensional Gaussian function is given by: 
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𝐺(𝑥, 𝑦, 𝜎𝑥 , 𝜎𝑦) =
1

2𝜋𝜎𝑥𝜎𝑦
𝑒𝑥𝑝 (−

𝑥2

2𝜎𝑥
2 −

𝑦2

2𝜎𝑦
2) (6) 

where, G(x, y, σx, σy) is the value of the two-dimensional 

Gaussian function at positions x and y, σ is the standard 

deviation determining the width of the Gaussian distribution. 

Also, the two-dimensional Gaussian derivative filter is given 

by: 

𝐺𝑥(𝑥, 𝑦, 𝜎𝑥, 𝜎𝑦) = −
𝑥

𝜎𝑥
2

1

2𝜋𝜎𝑥𝜎𝑦
𝑒𝑥𝑝 (−

𝑥2

2𝜎𝑥
2 −

𝑦2

2𝜎𝑦
2) (7) 

𝐺𝑦(𝑥, 𝑦, 𝜎𝑥, 𝜎𝑦) = −
𝑦

𝜎𝑦
2

1

2𝜋𝜎𝑥𝜎𝑦
𝑒𝑥𝑝 (−

𝑥2

2𝜎𝑥
2 −

𝑦2

2𝜎𝑦
2) (8) 

where, Gx(x, y, σx, σy) represents 
𝜕𝐺(𝑥,𝑦)

𝜕𝑥
, Gy(x, y, σx, σy) 

represents 
𝜕𝐺(𝑥,𝑦)

𝜕𝑦
 are the partial derivatives of the Gaussian 

function with respect to x and y, σ is the standard deviation 

controlling the width of the Gaussian distribution, x and y are 

the spatial coordinates. 

𝐹(𝑥, 𝑦, 𝜎𝑥, 𝜎𝑦 , 𝛼, 𝛽) = 𝐺(𝑥, 𝑦, 𝜎𝑥 , 𝜎𝑦)

+𝛼. 𝐺𝑥(𝑥, 𝑦, 𝜎𝑥 , 𝜎𝑦) + 𝛽. 𝐺𝑦(𝑥, 𝑦, 𝜎𝑥 , 𝜎𝑦)
(9) 

where, α, β are constant multiplier for the partial derivative in 

the x and y directions respectively. The final combined 

equation is: 

𝐹(𝑥, 𝑦, 𝜎𝑥 , 𝜎𝑦 , 𝛼, 𝛽) =
1

2𝜋𝜎𝑥𝜎𝑦
𝑒𝑥𝑝 (−

𝑥2

2𝜎𝑥
2
−

𝑦2

2𝜎𝑦
2
) 

+𝛼. [−
𝑥

𝜎𝑥
2

1

2𝜋𝜎𝑥𝜎𝑦

𝑒𝑥𝑝 (−
𝑥2

2𝜎𝑥
2
−

𝑦2

2𝜎𝑦
2
)] 

+𝛽 [−
𝑦

𝜎𝑦
2

1

2𝜋𝜎𝑥𝜎𝑦
𝑒𝑥𝑝 (−

𝑥2

2𝜎𝑥
2 −

𝑦2

2𝜎𝑦
2)] 

𝐹(𝑥, 𝑦, 𝜎𝑥 , 𝜎𝑦 , 𝛼, 𝛽)

=
1

2𝜋𝜎𝑥𝜎𝑦
[1 − 𝛼.

𝑥

𝜎𝑥
2 − 𝛽.

𝑦

𝜎𝑦
2] 𝑒𝑥𝑝 (−

𝑥2

2𝜎𝑥
2 −

𝑦2

2𝜎𝑦
2) 

(10) 

where, 

𝜎𝑥 = √
1

𝑛
∑ (𝐴(𝑖, 𝑗) − 𝑚𝑥)

2𝑛
𝑗=1 for each i;  

𝜎𝑦 = √
1

𝑚
∑ (𝐴(𝑖, 𝑗) − 𝑚𝑦)2𝑚

𝑖=1 for each j; 

∝=
𝐴(𝑖,𝑗)

max(|𝐴(𝑖,𝑗)|)𝑟𝑜𝑤
for each i, j; 

𝛽 =
𝐴(𝑖,𝑗)

max(|𝐴(𝑖,𝑗)|)𝑐𝑜𝑙𝑢𝑚𝑛
 for each i, j. 

5.3 Adaptive fuzzy gaussian 1D filter and derivative fuzzy 

gaussian 1D filter (AFGD-1D) 

Let the function be represented as: 

𝐹(𝑥, 𝜎,𝑚) =
1

√2𝜋𝜎
𝑒𝑥𝑝 (−

(𝑥−𝑚)2

2𝜎2 ) (11) 

where, F(x, σ, m) is Fuzzy Gaussian 1D, x is a variable, σ is 

the standard deviation and m is a fuzziness parameter. Also, 

the derivative of Eq. (11) (i.e.) fuzzy gaussian function with 

respect to x. The derivative is given as: 

𝐹′(𝑥, 𝜎,𝑚) = −(
𝑥−𝑚

𝜎2 )
1

√2𝜋𝜎
𝑒𝑥𝑝 (−

(𝑥−𝑚)2

2𝜎2 ) (12) 

The final combination function is given by: 

𝐺(𝑥, 𝜎,𝑚, 𝛼) = 𝐹(𝑥, 𝜎,𝑚) + 𝛼. 𝐹′(𝑥, 𝜎,𝑚)

where, σ is a constant multiplier and is calculated using (2): 

𝐺(𝑥, 𝜎,𝑚, 𝛼) =
1

√2𝜋𝜎
𝑒𝑥𝑝 (−

(𝑥 − 𝑚)2

2𝜎2
) 

+𝛼. [− (
𝑥−𝑚

𝜎2 )
1

√2𝜋𝜎
𝑒𝑥𝑝 (−

(𝑥−𝑚)2

2𝜎2 )] 

𝐺(𝑥, 𝜎,𝑚, 𝛼) =
1

√2𝜋𝜎
𝑒𝑥𝑝 (−

(𝑥−𝑚)2

2𝜎2 ) [1 − 𝛼. (
𝑥−𝑚

𝜎2 )] 

(13) 

where, 𝑚 =
1

𝑚𝑛
∑ ∑ 𝐴(𝑖, 𝑗)𝑛

𝑗=1
𝑚
𝑖=1 . 

5.4 Adaptive fuzzy gaussian 2D filter and derivative of 

fuzzy gaussian 2D (AFGD-2D) 

Consider a 2D fuzzy Gaussian function 

𝐹(𝑥, 𝑦, 𝜎𝑥 , 𝜎𝑦 , 𝑚𝑥, 𝑚𝑦)  where x and y are the variables

𝜎𝑥 , 𝜎𝑦, 𝑚𝑥 , 𝑚𝑦 are the standard deviation and mean along the

respective axis. The function is given by: 

𝐹(𝑥, 𝑦, 𝜎𝑥, 𝜎𝑦 , 𝑚𝑥, 𝑚𝑦)

=
1

2𝜋𝜎𝑥𝜎𝑦
𝑒𝑥𝑝 [−

(𝑥−𝑚𝑥)2

2𝜎𝑥
2 −

(𝑦−𝑚𝑦)
2

2𝜎𝑥
2 ] 

(14) 

The fuzzy partial derivative of this 2D fuzzy gaussian 

function with respect to x and y. The partial derivatives 

are given by: 

𝐹𝑥(𝑥, 𝑦, 𝜎𝑥, 𝜎𝑦 , 𝑚𝑥, 𝑚𝑦)

= − (
𝑥−𝑚𝑥

𝜎𝑥
2 )

1

2𝜋𝜎𝑥𝜎𝑦
𝑒𝑥𝑝 [−

(𝑥−𝑚𝑥)2

2𝜎𝑥
2 −

(𝑦−𝑚𝑦)
2

2𝜎𝑦
2 ] 

(15) 

𝐹𝑦(𝑥, 𝑦, 𝜎𝑥, 𝜎𝑦 , 𝑚𝑥 , 𝑚𝑦)

= − (
𝑦−𝑚𝑦

𝜎𝑦
2 )

1

2𝜋𝜎𝑥𝜎𝑦
𝑒𝑥𝑝 [−

(𝑥−𝑚𝑥)2

2𝜎𝑥
2 −

(𝑦−𝑚𝑦)
2

2𝜎𝑦
2 ] 

(16) 

Combining all above equations, we get: 

𝐺(𝑥, 𝑦, 𝜎𝑥, 𝜎𝑦 , 𝑚𝑥 , 𝑚𝑦, 𝛼, 𝛽)

= 𝐹(𝑥, 𝑦, 𝜎𝑥 , 𝜎𝑦 , 𝑚𝑥, 𝑚𝑦)

+𝛼. 𝐹𝑥(𝑥, 𝑦, 𝜎𝑥 , 𝜎𝑦 , 𝑚𝑥, 𝑚𝑦)

+𝛽. 𝐹𝑦(𝑥, 𝑦, 𝜎𝑥 , 𝜎𝑦, 𝑚𝑥 , 𝑚𝑦)

𝐺(𝑥, 𝑦, 𝜎𝑥, 𝜎𝑦 , 𝑚𝑥 , 𝑚𝑦, 𝛼, 𝛽)

=
1

2𝜋𝜎𝑥𝜎𝑦

𝑒𝑥𝑝 [−
(𝑥 − 𝑚𝑥)

2

2𝜎𝑥
2

−
(𝑦 − 𝑚𝑦)

2

2𝜎𝑥
2

] 

+𝛼. {−(
𝑥 − 𝑚𝑥

𝜎𝑥
2

)
1

2𝜋𝜎𝑥𝜎𝑦

𝑒𝑥𝑝 [−
(𝑥 − 𝑚𝑥)

2

2𝜎𝑥
2

−
(𝑦 − 𝑚𝑦)

2

2𝜎𝑦
2

]} 

+𝛽. {− (
𝑦−𝑚𝑦

𝜎𝑦
2 )

1

2𝜋𝜎𝑥𝜎𝑦
𝑒𝑥𝑝 [−

(𝑥−𝑚𝑥)2

2𝜎𝑥
2 −

(𝑦−𝑚𝑦)
2

2𝜎𝑦
2 ]} 

𝐺(𝑥, 𝑦, 𝜎𝑥, 𝜎𝑦 , 𝑚𝑥 , 𝑚𝑦, 𝛼, 𝛽)

=
1

2𝜋𝜎𝑥𝜎𝑦
𝑒𝑥𝑝 [−

(𝑥−𝑚𝑥)2

2𝜎𝑥
2 −

(𝑦−𝑚𝑦)
2

2𝜎𝑦
2 ] [1 − 𝛼. (

𝑥−𝑚𝑥

𝜎𝑥
2

) −

𝛽. (
𝑦−𝑚𝑦

𝜎𝑦
2 )] 

(17) 

For 2D the constants are calculated using formulas for a 

given matrix A of size m x n: 𝑚𝑥 =
1

𝑛
∑ 𝐴(𝑖, 𝑗)𝑛

𝑗=1 for each i;

𝑚𝑦 =
1

𝑚
∑ 𝐴(𝑖, 𝑗)𝑚

𝑖=1 for each j. 
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5.5 Numerical example of proposed methodology 

 

In order to display the numerical calculation of the above 

designed filters, consider a sample pixel 5×5 matrix from the 

image given in Figure 1.  

Let  

𝐴 =

[
 
 
 
 
102 168 199 209 195
158 195 202 190 172
197
208
190

209
206
181

197
189
172

174
166
159

158
157
154]

 
 
 
 

 

 

be the 5×5 pixel matrix and the numerical calculation to obtain 

denoised matrix using the above-described formulas are 

demonstrated below. The calculation is done using MATLAB 

and the following values are obtained: 

 

Imagefiltered = Imageoriginal + Convolutionmatrix 

∝=

[
 
 
 
 
0.4880 0.8038 0.9522 1 0.9330
0.7560 0.9330 0.9665 0.9091 0.8230
0.9426
0.9952
0.9091

1
0.9856
0.8660

0.9426
0.9043
0.8230

0.8325
0.7943
0.7608

0.7560
0.7512
0.7368]

 
 
 
 

; 

𝛽 =

[
 
 
 
 
0.4904 0.7596 0.9471 1 0.9135
0.8038 0.9330 1 0.9856 0.8660
0.9851

1
0.9135

1
0.9091
0.8821

0.9752
0.8325
0.8103

0.9356
0.7943
0.8051

0.8515
0.7608
0.7897]

 
 
 
 

 

𝑚𝑥 =

[
 
 
 
 

171
191.8
191.8
179.6
167.2]

 
 
 
 

𝑚𝑦 =

[
 
 
 
 
174.6
183.4
187

185.2
171.2]

 
 
 
 

; 

𝜎𝑥 =

[
 
 
 
 
38.9204
18.1769
19.0221
21.3897
13.9628]

 
 
 
 

; 𝜎𝑦 =

[
 
 
 
 
38.7536
16.1196
18.4065
20.6436
13.3776]

 
 
 
 

; 

𝜎 = 24.0807; 𝑚 = 180.28 

 

Using AGD-1D: 

𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑚𝑎𝑡𝑟𝑖𝑥(𝐶𝑥) =

[
 
 
 
 
25.83 34.54 42.28 34.73 25.67
35.37 46.56 56.59 45.71 33.43
43.97
36.50
27.70

57.55
46.87
35.17

69.84
56.23
42.01

55.91
44.08
32.46

40.78
31.65
23.11]

 
 
 
 

  

𝐴𝐴𝐺𝐷−1𝐷𝐹𝑖𝑙𝑡𝑒𝑟 = 𝐴 + 𝐶𝑥 

=

[
 
 
 
 
127.83 202.54 241.28 243.73 220.67
193.37 241.56 258.59 235.71 205.43
240.97
244.50
217.70

266.55
252.87
216.17

266.84
245.23
214.01

229.91
210.08
191.46

198.78
188.65
177.11]

 
 
 
 

 

≅

[
 
 
 
 
128 203 241 244 221
193 242 259 236 205
241
245
218

267
253
216

267
245
214

230
210
191

199
189
177]

 
 
 
 

 

 

=

[
 
 
 
 
128 203 241 244 221
193 242 255 236 205
241
245
218

255
253
216

255
245
214

230
210
191

199
189
177]

 
 
 
 

 

 

Using AGD-2D: 

𝐶𝑥 =

[
 
 
 
 
0.56 0.77 0.95 0.80 0.60
0.78 1.04 1.28 1.04 0.77
1.19
1.18
0.90

1.58
1.53
1.15

1.94
1.85
1.38

1.59
1.46
1.07

1.17
1.06
0.77]

 
 
 
 

 

𝐴𝐴𝐺𝐷−2𝐷𝐹𝑖𝑙𝑡𝑒𝑟

=

[
 
 
 
 
102.56 168.77 199.95 209.80 195.60
158.78 196.04 203.28 191.04 172.77
198.19
209.18
190.90

210.58
207.53
182.15

198.94
190.85
173.38

175.59
167.46
160.07

159.17
158.06
154.77]

 
 
 
 

 

≅

[
 
 
 
 
103 169 200 210 196
159 196 203 191 173
198
209
191

211
208
182

199
191
173

176
167
160

159
158
155]

 
 
 
 

 

 

Using AFGD-1D: 

𝐶𝑥 =

[
 
 
 
 
52.94 37.06 38.10 25.80 31.08
38.56 24.69 10.14 30.13 27.11
27.07
29.06
13.75

37.11
19.09
49.57

23.97
45.54
20.61

19.16
23.82
20.49

40.83
56.50
41.07]

 
 
 
 

 

𝐴𝐴𝐹𝐺𝐷−1𝐷𝐹𝑖𝑙𝑡𝑒𝑟

=

[
 
 
 
 
154.94 168.06 199.10 209.10 195.08
158.56 195.09 202.14 190.13 172.11
198.07
208.06
190.75

209.11
206.09
181.07

197.17
189.14
172.11

174.16
166.12
159.09

158.13
157.10
154.07]

 
 
 
 

 

≅

[
 
 
 
 
155 168 199 209 195
159 195 202 190 172
198
208
191

209
106
181

197
189
172

174
166
159

158
157
154]

 
 
 
 

 

 

Using AFGD-2D: 

𝐶𝑥 =

[
 
 
 
 
0.26 0.48 1.48 0.98 0.83
0.26 058 1.47 0.29 0.92
0.24
0.92
0.85

0.33
0.57
1.93

0.44
0.08
0.81

0.93
0.63
1.02

0.27
1.98
1.05]

 
 
 
 

 

𝐴𝐴𝐹𝐺𝐷−2𝐷𝐹𝑖𝑙𝑡𝑒𝑟

=

[
 
 
 
 
102.26 168.48 200.48 209.98 195. 83
158.26 195.58 203.47 190.29 172. 92
197.24
208.92
190.85

209.33
206.57
182.93

197.44
189.08
172.81

174.93
166.63
160.02

158.27
158.98
155.05]

 
 
 
 

 

≅

[
 
 
 
 
102 168 200 210 196
158 196 203 190 173
197
209
191

209
207
182

197
189
173

175
167
160

158
159
155]

 
 
 
 

 

 

 

6. PERFORMANCE ANALYSIS 

 

The performance analysis process in image processing is a 

critical step for evaluating the effectiveness of various 

techniques and algorithms. This multifaceted assessment 

involves the application of quantitative metrics to gauge the 

quality of processed images. Common performance metrics 

include the Root Mean Squared Error (RMSE) and Peak 

Signal-to-Noise Ratio (PSNR), which measure the difference 

and similarity between the original and processed images, 

respectively. Comparative studies between different filters or 

algorithms provide insights into their strengths and 

weaknesses, aiding practitioners in making informed choices 
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for specific applications. The performance analysis process is 

crucial for advancing the field, enabling the identification of 

optimal solutions and fostering continuous improvement in 

image processing methodologies. 

 

6.1 Root Mean Squared Error 

 

Root Mean Squared Error (RMSE) is a widely used metric 

in image processing and various other fields to quantify the 

difference between predicted or processed values and the 

actual or reference values. It is particularly useful for assessing 

the accuracy and fidelity of reconstructed or filtered images. 

The RMSE is calculated by taking the square root of the mean 

of the squared differences between corresponding pixel values 

in the original and processed images. The mathematical 

formula for RMSE is as follows: 

 

𝑅𝑀𝑆𝐸 =√
1

𝑁
∑ (𝐼𝑖 − 𝐼𝑖)

2𝑁
𝑖=1   (18) 

 

where, N is the total number of pixels in the image, Ii is the 

intensity value of the ith pixel in the original image, 𝐼𝑖  is the 

intensity value of the ith pixel in the processed or reconstructed 

image. In Figure 2, the work flow is shown as flow chart. 

 

 
 

Figure 2. Explains the proposed work flow 

 

6.2 Peak Signal-to-Noise Ratio (PSNR) 

 

Peak Signal-to-Noise Ratio (PSNR) is a widely used metric 

in image processing to assess the quality of a reconstructed or 

processed image by comparing it to a reference or original 

image. PSNR is expressed as a ratio of the peak signal level to 

the Root Mean Squared Error (RMSE) between corresponding 

pixel values in the original and processed images. It provides 

a quantitative measure of the fidelity and similarity between 

the two images. The mathematical formula for PSNR is given 

by: 

 

𝑃𝑆𝑁𝑅 = 10. 𝑙𝑜𝑔10 (
𝑃𝑒𝑎𝑘𝑆𝑖𝑔𝑛𝑎𝑙𝑉𝑎𝑙𝑢𝑒2

𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝐸𝑟𝑟𝑜𝑟
)  (19) 

 

where, Peak Signal Value is the maximum possible pixel value, 

Mean Squared Error is the mean of the squared differences 

between corresponding pixel values in the original and 

processed image. 

 

 

7. EXPERIMENTAL RESULTS 

 

The major objective of this work is to design an Adaptive 

Gaussian Filter by combining the gaussian function and its 

derivative and the resultant is used as filter for denoising the 

image. Also, to compare the performance of the adaptive 

gaussian filter with each other. The filtered images results are 

shown in Figure 3. The images taken for the proposed work is 

the secondary data taken from Kaggle. 

 

Algorithm: Adaptive Gaussian Filter-Based Denoising 

Input: Noisy Image (I) 

Output: Denoised Image (I_denoised) 

1. Initialize Parameters: 

   a. Read the image as grayscale image.  

   b. Set initial Gaussian filter parameters  

2. Analyze the Noisy Image: 

   a. Estimate local noise characteristics (e.g., noise level, 

variance)  

3. Adaptive Adjustment of Filter Parameters: 

   a. Adjust Gaussian filter parameters based on the 

estimated local noise characteristics. 

5. Evaluate Denoising Performance: 

   a. Calculate quality metrics (e.g., PSNR, RMSE) to 

assess the performance of the denoising process. 

End Algorithm 

 

Adaptive Filters  

(Filtered Image) 
Salt and Pepper Noise Gaussian Noise Speckle Noise 

AGD-1D 

   

AGD-2D 

   

AFGD-1D 

   

AFGD-2D 

   
 

Figure 3. Filtered image after using adaptive filters for noise density =0.06 
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Table 1. RMSE value for speckle noise 

 
Noise Density 1D Gaussian  2D Gaussian  1D Derivative  2D Derivative AGD-1D AGD-2 D AFGD-1D AFGD-2D 

0.01 7.109147881 9.51227493 48.35614443 46.49438233 4.4315 7.0499 3.6751 13.0718 

0.02 7.671172547 9.835913216 48.22640418 46.40444893 4.7316 7.1425 3.9752 13.096 

0.03 8.210896484 10.14732279 48.0989115 46.28819597 5.0585 7.2675 4.3021 13.1154 

0.04 8.707606813 10.42382294 48.02646318 46.22959589 5.3075 7.3423 4.5511 13.1333 

0.05 9.080211021 10.61466951 47.94066323 46.15142981 5.5821 7.4365 4.8257 13.1506 

0.06 9.60487158 10.90986684 47.8783036 46.11420211 5.8534 7.5641 5.097 13.1673 

0.07 9.990753023 11.14869392 47.79922848 46.0557318 6.1168 7.6674 5.3604 13.1814 

0.08 10.34709934 11.3494867 47.7208218 45.96744576 6.3838 7.7944 5.6274 13.1929 

0.09 10.66651743 11.49004254 47.67081004 45.93751735 6.5836 7.8929 5.8272 13.208 

0.1 11.08357009 11.77125603 47.60464728 45.87470046 6.8535 8.0119 6.0971 13.2192 

 

Table 2. PSNR values of speckle noise 

 
Noise Density 1D Gaussian  2D Gaussian  1D Derivative  2D Derivative AGD-1D AGD-2 D AFGD-1D AFGD-2D 

0.01 31.09445264 28.56511573 14.44177029 14.78279396 35.2 31.1673 56.6179 36.0645 

0.02 30.43356858 28.27450984 14.46510598 14.79961122 34.6307 31.0539 56.4605 35.4952 

0.03 29.84299207 28.00377409 14.48809865 14.82139851 34.0504 30.9033 56.3343 34.9149 

0.04 29.3328274 27.77026309 14.50119151 14.83240167 33.6331 30.8143 56.2182 34.4976 

0.05 28.96888478 27.61267407 14.51672285 14.8471004 33.195 30.7035 56.1065 34.0595 

0.06 28.48097236 27.37441462 14.52802852 14.85410964 32.7828 30.5557 55.9989 33.6473 

0.07 28.13883915 27.18632376 14.54238587 14.86512986 32.4004 30.438 55.9082 33.2649 

0.08 27.83443124 27.0312792 14.55664533 14.88179616 32.0294 30.2953 55.8337 32.8939 

0.09 27.57035066 26.92437088 14.56575297 14.8874532 31.7617 30.1861 55.7366 32.6262 

0.1 27.23721017 26.71434749 14.57781657 14.89933878 31.4126 30.0562 55.665 32.2771 

 

Table 3. RMSE value for salt and pepper noise 

 
Noise Density 1D Gaussian  2D Gaussian  1D Derivative  2D Derivative AGD-1D AGD-2 D AFGD-1D AFGD-2D 

0.01 11.11702861 10.21946771 48.61942732 46.54211052 6.285 7.7701 4.1974 13.0604 

0.02 14.44717898 11.5344193 48.63665398 46.43533838 7.9623 8.5877 5.8747 13.0778 

0.03 17.50551308 12.93244987 48.67265104 46.3265297 9.3603 9.3822 7.2727 13.0931 

0.04 19.63295042 14.04488319 48.69226808 46.26227233 10.7906 10.2824 8.703 13.1083 

0.05 22.05272295 15.36976576 48.7141882 46.17514423 12.0355 11.1279 9.9479 13.1243 

0.06 23.9057489 16.46080945 48.72247308 46.10760899 13.1609 11.9145 11.0733 13.1369 

0.07 25.82604815 17.64797129 48.74933894 46.06733781 14.4544 12.9025 12.3668 13.149 

0.08 27.51779109 18.68339019 48.7829182 46.06149024 15.4735 13.6981 13.3859 13.1661 

0.09 29.32424472 19.93126336 48.80346442 46.0127109 16.5842 14.6072 14.4966 13.1775 

0.1 31.16517892 21.20821542 48.87401754 46.02980714 17.7571 15.555 14.6695 13.1899 

 

Table 4. PSNR value of salt and pepper noise 

 
Noise Density 1D Gaussian  2D Gaussian  1D Derivative  2D Derivative AGD-1D AGD-2 D AFGD-1D AFGD-2D 

0.01 27.21102914 27.9422381 14.39460683 14.77388215 32.1649 30.3224 56.6922 33.0625 

0.02 24.93514255 26.89088891 14.39152982 14.79383132 30.1101 29.4534 56.5788 31.0077 

0.03 23.26730672 25.89718754 14.38510358 14.81420824 28.7051 28.6848 56.4793 29.6027 

0.04 22.27109221 25.18044098 14.38160352 14.82626439 27.47 27.889 56.3803 28.3676 

0.05 21.26155918 24.39745863 14.37769422 14.8426384 26.5216 27.2026 56.2767 27.4192 

0.06 20.56075654 23.80177986 14.37621712 14.85535158 25.7452 26.6094 56.1949 26.6428 

0.07 19.88964448 23.19690784 14.37142899 14.8629413 24.9309 25.9174 56.1168 25.8285 

0.08 19.33853222 22.70168993 14.36544808 14.86404392 24.3391 25.3977 56.0063 25.2367 

0.09 18.7862669 22.14010706 14.36179056 14.87324719 23.737 24.8395 55.9329 24.6346 

0.1 18.25741112 21.60072109 14.3492428 14.8700205 23.1435 24.2935 55.8533 24.0411 

 

Table 5. RMSE values of Gaussian noise 

 
Noise Density 1D Gaussian  2D Gaussian  1D Derivative  2D Derivative AGD-1D AGD-2 D AFGD-1D AFGD-2D 

0.01 14.45374646 13.49420509 47.75976741 45.82554865 9.2092 9.8082 6.3197 13.2281 

0.02 19.34256992 16.83674224 47.47599651 45.51995165 12.4663 12.2058 9.5768 13.3152 

0.03 22.99063698 19.4753713 47.34050229 45.36223612 15.0327 14.2439 12.1432 13.3733 

0.04 26.17116478 21.83692253 47.2459628 45.23099926 17.1824 16.9282 14.2929 13.4173 

0.05 28.94662331 23.98696408 47.19347487 45.1444431 19.0999 17.6862 15.2104 13.4539 

0.06 31.55328362 26.06022579 47.13545949 45.02103329 21.082 19.4344 16.1925 13.4786 

0.07 33.91014375 27.91011346 47.13329082 45.01382967 22.7703 20.9124 19.8808 13.5032 

0.08 36.08758531 29.63753666 47.1157946 44.99458047 24.3868 22.389 21.4973 13.5209 

0.09 38.07428237 31.28258924 47.10518741 44.93996311 25.8149 23.6889 22.9254 13.5402 

0.1 40.03755472 32.91757745 47.1501727 44.96015887 27.3009 25.0351 24.4114 13.5549 
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Table 6. PSNR value of gaussian noise 

 
Noise Density 1D Gaussian  2D Gaussian  1D Derivative  2D Derivative AGD-1D AGD-2 D AFGD-1D AFGD-2D 

0.01 24.93119496 25.52785748 14.54955955 14.90865014 28.8464 28.2991 55.608 30.6094 

0.02 22.4005201 23.60564234 14.60132182 14.96676777 26.2161 26.3995 55.0532 27.9791 

0.03 20.89978353 22.34108869 14.62614638 14.99691451 24.5901 25.0583 54.6862 26.3531 

0.04 19.77434257 21.34697494 14.64350954 15.02207996 23.4291 24.0331 54.41 25.1921 

0.05 18.89884542 20.53129791 14.65316449 15.03871761 22.5102 23.1781 54.1808 24.2732 

0.06 18.14991238 19.81124012 14.66384871 15.06249444 21.6526 22.3594 54.0272 23.4156 

0.07 17.52421099 19.21557157 14.66424835 15.06388434 20.9835 21.7227 53.8746 22.7465 

0.08 16.98364714 18.69396153 14.66747321 15.06759947 20.3877 21.1301 53.7645 22.1507 

0.09 16.51816908 18.22474976 14.66942889 15.07814938 19.8934 20.6399 53.6455 21.6564 

0.1 16.0814527 17.78224629 14.66113785 15.07424686 19.4073 20.1598 53.5545 21.1703 

 

 
 

Figure 4. RMSE of different filters adding speckle noise 
 

 
 

Figure 5. PSNR of different filters added speckle noise 

 

 
 

Figure 6. RMSE of different filters added salt and pepper noise 
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Figure 7 PSNR of different filters added salt and pepper noise 

 

 
 

Figure 8. RMSE of different filters added gaussian noise 

 

 
 

Figure 9. PSNR of different filters added salt and gaussian noise 

 

An MRI image was taken and different noises were added 

and the RMSE and PSNR value where calculated and the 

results are shown in Tables 1-6 and their corresponding 

graphical representation is shown in Figures 4-9. The 

MATLAB software was used for the execution of algorithm. 

In this, four Adaptive gaussian filter is proposed namely AGD-

1D, AGD-2D, AFGD-1D, AFGD-2D. The performance of the 

filter is calculated using the statistical method PSNR and 

RMSE. The calculated value is compared with some basic 

gaussian filter namely Gaussian 1D filter, Gaussian 2D filter. 

Derivative of Gaussian 1D filter and Derivative of Gaussian 

2D filter. The results are shown in the Tables 1-6. From the 

tabulation it can be concluded that the adaptive filter works 

effectively. Also, the performance of AFGD-1D gives the best 

results at different level of noises. It can also be noticed that 

the AFGD-1D filter works better in different noises. 
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8. CONCLUSION AND FUTURE WORK 

 

The major objective of this work is to design an Adaptive 

Gaussian Filter for denoising technique and to compare the 

performance of the four adaptive gaussian filter with each 

other and also with gaussian traditional filters. An MRI image 

is considered for this proposed methodology. The denoising 

filters are used at different noise intensity level. This paper 

mainly focuses on the pre-processing level of image 

processing. The performance of the filters was analyzed using 

the statistical values like RMSE and PSNR. From the results, 

it is evident that the adaptive filter namely AFGD-1D works 

better in comparison of other gaussian filters at different noise 

intensity level. Further this can be extended to other level of 

image processing like image classification and image 

segmentation. Also more fuzzy logic techniques can be 

applied in other stages for reducing the uncertainty. 
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