
Stochastic Gradient Descents Optimizer and Its Variants: Performance of the Optimizers

for Multinomial Logistic Models on Large Data Sets by Simulation

Sutarman1* , Muhammad Alfan Irsyadi Hutagalung1 , Open Darnius2 , Muhammad Yandi Putra El Sya’ban1

1 Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155,

Indonesia
2 Department of Statistics Diploma, Vocational Faculty, Universitas Sumatera Utara, Medan 20155, Indonesia

Corresponding Author Email: Sutarman@usu.ac.id

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.111025 ABSTRACT

Received: 1 August 2024

Revised: 2 October 2024

Accepted: 9 October 2024

Available online: 31 October 2024

The exploration of Stochastic Gradient Descent (SGD) and its variants within the

context of multinomial logistic models on large datasets represents a rich area of

research. The existing literature underscores the strengths and weaknesses of various

optimization techniques, paving the way for further investigations into their

performance across diverse data environments. This article seeks to contribute to this

ongoing discourse by systematically assessing the performance of these optimizers

through simulations and real-world applications. By conducting simulations, the

research will generate data-driven insights that can guide practitioners in selecting the

most effective optimization methods for their specific applications. We explore how

different SGD variants, including, Stochastic Gradient Descent (SGD), Stochastic

Gradient Descent Momentum (SGDM), Adaptive Momentum (Adam), and Decaying

Momentum Stochastic Gradient Descent Momentum (DemonSGDM), affect the

convergence speed, accuracy, and ROC-AUC value as a generalization performance of

the model on large simulated datasets. We compare their performance based on

maximum likelihood methods for parameter estimations. The simulation framework

allows us to control data characteristics and model parameters, allowing a systematic

evaluation of the behavior of each SGD variant. Our findings can provide valuable

insights into selecting the optimal SGD variant for modeling multinomial logistic

models on large datasets through simulation. The simulation results show that both

SGDM and DemonSGDM are more efficient and stable than SGD and Adam in terms

of the number of epochs. The findings reveal that all optimizers can converge, but their

effectiveness differs across datasets and complexities. SGDM and DemonSGDM

perform well in simulations, while Adam has a slight advantage in challenging real-

world scenarios.

Keywords:

optimizations, SGD, multinomial logistic

regression, large datasets, stratified k-fold

crossed validation, maximum likelihood

1. INTRODUCTION

The concept of optimization is currently very developed and

has been applied to various fields of science, engineering,

medicine, computer science, and others. The concept of

optimization has given birth to many methods and algorithms

that help develop the theory and application of these fields.

Some of them are least squares and maximum likelihood

methods. In addition, gradient-based algorithms were also

born, such as Newton. Especially in the field of statistics, the

concept of optimization is very helpful in building models

such as linear regression models, binary and multinomial

logistic regression, time series, cox regression, and others.

These models continue to grow, especially in the field of data

science. These models can then be used for prediction and

object classification.

One of the popular gradient-based optimization optimizers

is SGD [1, 2]. This optimizer has an algorithm that iteratively

optimizes a function that is differentiable or subdifferentiable.

Thus, SGD will converge even if it is applied to functions that

have derivatives or do not have derivatives. SGD works by

replacing the actual gradient computed on the entire data set

with an estimated gradient computed on a subset of the data

set. This gives it an advantage over the use of Newton's

method in solving the system of equations generated by

maximum likelihood, which is the most widely used method

for parameter estimation in statistical modeling. The method

is very powerful for smaller data sets [3]. Of course, by using

part of the data set to compute the gradient, it provides

computational efficiency for large data sets [4, 5]. In its

development, SGD [6] has several variants, including SGDM

[7], DemonSGDM [8], Adaptive Moment Estimation (Adam)

[9]. AdaGrad [10], Root Mean Square Propagation [11].

Evaluating SGD variants for multinomial logistic regression

(MLR) on large datasets is a critical area of study due to

several specific benefits and implications for practical

applications. Some of them are handling high-dimensional

data.

Mathematical Modelling of Engineering Problems
Vol. 11, No. 10, October, 2024, pp. 2823-2832

Journal homepage: http://iieta.org/journals/mmep

2823

https://orcid.org/0009-0007-3619-1303
https://orcid.org/0009-0004-6397-6526
https://orcid.org/0009-0000-8142-9762
https://orcid.org/0009-0001-8765-5266
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.111025&domain=pdf

Furthermore, the impact of evaluating SGD on decision-

making is giving information about accurate and efficient

model [12]. Accurate and efficient models can lead to better

decision-making in critical areas such as public health,

finance, and policy-making. Evaluating SGD variants can

enhance the predictive power of MLR models, ultimately

benefiting stakeholders.

While there is extensive research on SGD and its variants,

there is a lack of focused studies that compare the performance

of these optimizers specifically for multinomial logistic

regression. Most existing literature tends to concentrate on

binary classification or does not adequately address the

complexities of MLR [12, 13].

The rest of the paper is organized as follows. In Section 2,

we briefly explore the related works of SGD and its most

variants. In Section 3, we will explain about the optimization

related SGD and its variants. Furthermore, the experiments

and comparative results are discussed in Section 4. The last

two sections are about the conclusions and future research.

2. RELATED WORKS

SGD and its variants have been extensively researched for

optimizing multinomial logistic models, particularly in the

context of large datasets. The foundational work [4],

emphasizes the efficiency of SGD in large-scale optimization

problems, highlighting its ability to converge faster than

traditional batch gradient descent methods. This efficiency is

particularly crucial when dealing with massive datasets, as

SGD updates model parameters incrementally, allowing for

quicker adjustments based on new data. Variants such as Mini-

batch SGD, which processes small batches of data, have been

shown to enhance convergence speed while maintaining

computational efficiency.

In the context of multinomial logistic regression, the

performance of these optimizers has been rigorously evaluated

through both simulation studies and real-world applications.

For instance, some researches [14, 15] conducted simulations

that demonstrated the superiority of adaptive learning rate

methods, such as Adam and RMSprop, over standard SGD in

terms of convergence speed and accuracy when applied to

synthetic datasets. Their findings suggest that adaptive

methods can significantly reduce training time while achieving

comparable or superior accuracy.

Conversely, real-world applications often present unique

challenges that can affect optimizer performance [14]. They

explored the efficacy of various optimizers on real-world

datasets, revealing that while adaptive methods frequently

outperform standard SGD in controlled environments, their

performance can be inconsistent in practical scenarios due to

factors such as feature sparsity and noise. This observation

aligns with the work of, who introduced the Adam optimizer

and demonstrated its robustness across diverse datasets. They

found that while SGD remains a strong contender, the choice

of optimizer can greatly influence model performance,

particularly in high-dimensional and complex datasets.

Moreover, recent studies have highlighted the importance

of tuning hyperparameters for different optimizers to achieve

optimal performance [16]. The research emphasized the role

of learning rate schedules and momentum in enhancing the

performance of SGD and its variants in large-scale

multinomial logistic regression tasks. Their research indicates

that careful tuning can lead to significant improvements in

both convergence speed and model accuracy.

Overall, the literature indicates that while SGD and its

variants are powerful tools for optimizing multinomial logistic

models, the specific context of the dataset—whether simulated

or real—plays a crucial role in determining the most effective

optimization strategy. Future research should continue to

explore the interplay between optimizer choice,

hyperparameter tuning, and dataset characteristics to further

enhance the performance of multinomial logistic models

across various applications.

Moreover, the integration of advanced techniques such as

regularization and dropout has been explored to further

enhance the performance of SGD-based optimizers. For

instance, introduction dropout [15] as a regularization

technique that helps prevent overfitting in neural networks,

which can be particularly beneficial when training

multinomial logistic models on large datasets. Their work

indicates that combining dropout with SGD variants can lead

to improved generalization performance.

Many research papers have reported the use of SGD and its

development in various fields. One of them is related to the

stability of SGD for homogeneous neural networks and linear

classifiers [16].

In addition, investigation of the effects of gradient descent

optimizers and dropout techniques also conducted [17] on the

performance of deep learning LSTMs in rainfall runoff

modeling. Meanwhile, SGD continues to develop in recent

years, both theoretically and in applications. Some of them are

[18, 19] with the momentum on stochastic recursive gradient

descent algorithm and brain tumor detection using adaptive

Stochastic Gradient Descent on shared memory parallel

environment. In addition, we find that Stochastic Gradient

Descent with low noise [20] developed.

The next application is on modified time adaptive self-

organizing map for automated food recognition system [21].

Unfortunately, there are not many studies on the use of the

optimizer and its variants on large datasets. However, local

SGD which is more optimal when using small mini-batches

than when using large mini-batches in SGD [22] introduced.

Another study is about the ability of SGD and some of its

variants in non-convex settings, which is very common in

machine learning. In this case, it has shown that SGD can

converge to sharper minima, potentially yielding better

generalization on unseen data [23].

3. METHODS AND ALGORITHMS

3.1 Multinomial logistic regression

Multinomial logistic regression [24, 25] is a statistical

model used to predict categorical outcomes with more than

two levels. It generalizes binary logistic regression by

modeling multiple classes simultaneously. The mathematical

formulation of the multinomial logistic regression model can

be expressed as follows:

Assume we have 𝐾 categories for the dependent variable 𝑌,

where 𝑌 can take on values 1,2, … , 𝐾. Let X be a vector of

predictor variables (features). The probability of outcome 𝑌 =
𝑘 for 𝑘 = 1,2, … , 𝐾 given the predictor variables is modeled

using the SoftMax function:

𝑃(𝑌 = 𝑘|𝑿)

=
exp (𝛽𝑘,0 + 𝛽𝑘,1𝑋1 + 𝛽𝑘,2𝑋2 + ⋯ + 𝛽𝑘,𝑝𝑋𝑝)

∑ 𝑒𝑥𝑝𝐾
𝐽=1 (𝛽𝑗,0 + 𝛽𝑗,1𝑋1 + 𝛽𝑗,2𝑋2 + ⋯ + 𝛽𝑗,𝑝𝑋𝑝)

(1)

2824

where,

𝛽𝑘,0 is the intercept term for category 𝑘,

𝛽𝑘,𝑗 are the coefficients corresponding to predictor variables

𝑋𝑗 for category 𝑘,

𝑝 is the number of predictor variables.

To ensure identifiability, one category (often the last one,

𝐾) is chosen as the reference category, and its parameters are

set to zero:

𝛽𝐾,0 = 0, 𝛽𝐾,𝑗 = 0 for 𝑗 = 1,2, … , 𝑝 (2)

The log-odds of being in category 𝑘 versus the reference

category 𝐾 is given by:

𝑙𝑜𝑔 (
𝑃(𝑌 = 𝑘|𝑿)

𝑃(𝑌 = 𝐾|𝑿)
)

= 𝛽𝑘,0 + 𝛽𝑘,1𝑋1 + 𝛽𝑘,2𝑋2 + ⋯ + 𝛽𝑘,𝑝𝑋𝑝

(3)

3.2 Maximum likelihood estimation

The parameters 𝛽 of the model are estimated using the

method of maximum likelihood. The likelihood function for

the multinomial logistic regression can be expressed as:

𝐿(𝛽) = ∏ 𝑃(𝑌𝑖|𝑿𝒊) =

𝑛

𝑖=1

∏ ∏ 𝑃(𝑌𝑖 = 𝑘|𝑿𝒊)
𝐼(𝑌𝑖=𝑘)

𝐾

𝑘=1

𝑛

𝑖=1

 (4)

where, 𝑛 is the number of observations and 𝐼(𝑌𝑖 = 𝑘) is an

indicator function that is equal to 1 if 𝑌𝑖 = 𝑘 and 0 otherwise.

The log-likelihood function is therefore:

log 𝐿(𝛽) = ∑ ∑ 𝐼(𝑌𝑖 = 𝑘) log 𝑃(𝑌𝑖 = 𝑘|𝑿𝒊)

𝐾

𝑘=1

𝑛

𝑖=1

 (5)

3.3 Stratified K-fold Cross Validation (SKCV)

SKCV [26-28] is one of the variants based on k-fold cross

validation [29], where folds are created to preserve the target

class distribution. SKCV is particularly useful when dealing

with data with an unbalanced class distribution. It also ensures

that each fold has the same percentage of each class label.

K-fold cross-validation

The dataset is divided into k subsets (folds). The model is

trained on k-1 folds and validated on the remaining fold. This

process is repeated k times, with each fold serving as the

validation set once.

Stratified k-fold cross-validation

Similar to k-fold, but it ensures that each fold has the same

proportion of class labels as the entire dataset. This is

particularly useful for imbalanced datasets.

SKCV is a powerful tool in the scikit-learn library that

enhances the model evaluation process, aids in

hyperparameter tuning, and helps in selecting the best model

3.4 Algorithm

The gradient descent algorithm [30-32] is an optimization

algorithm commonly used to solve an equation or a system of

equations without constraints. Its application is widely found

in statistics, research operations, machine learning, deep

learning, and others [33]. Furthermore, the algorithm works

iteratively to find estimated parameter values as a solution to

the steepest descent equation.

Suppose one can compute the gradient of a function

𝛻𝑓(𝜃) at any point x. In this case, the simplest method for

optimizing 𝑓(𝜃) is the gradient method, in which one

constructs an iteration sequence starting from some initial

approximation θ0, one constructs an iteration sequence.

𝜃(𝑡 + 1) = 𝜃(𝑡) − 𝜂𝛻𝑓(𝜃𝑡) (6)

where, the parameter η > 0 is the step size, or what is usually

called the learning rate in machine learning.

Gradient descent uses all observation points to compute the

gradient at each epoch. This makes it computationally

inefficient for large data sets. To overcome this, several

variants of gradient descent have been introduced. These

variants of GD no longer use all observation points, but only

some of them, always referred to as mini-batches. In general,

the word stochastic is always associated with the names of

these variants. One such variant is SGDM. This SGDM

updates the gradient every epoch based on the momentum. In

this case, momentum is an extension of the gradient descent

optimization algorithm that allows the search to build up

inertia in one direction in the search space and to overcome the

oscillations of noisy gradients and coast over flat parts of the

search space.

Another popular variant is Adam [34]. This optimizer is an

algorithm for first-order gradient-based optimization of

stochastic objective functions and relies on adaptive estimates

of lower-order moments. The optimizer is easy to implement,

computationally efficient, has a small memory footprint, is

invariant to diagonal rescaling of the gradients, and is well

suited for problems with large amounts of data and/or

parameters. The method is also suitable for non-stationary

targets and problems with very noisy and/or sparse gradients.

Recently, an increasingly popular variant of SGD is

DemonSGD [35, 36]. DemonSGD uses linear learning rate

decay models that reduce the influence of a gradient on current

and future updates. By decaying the momentum parameter, the

total contribution of a gradient to all future updates is decayed.

In the following subsections, the algorithms used in the

experiment are presented in pseudocode.

SGD

1. Parameter: learning rate 𝜂, timestep 𝑡

a. 𝜃0 = 0 or random

b. 𝑡 = 0

2. While 𝜃𝑡 not converged do

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝛻𝜃𝑡
𝑓(𝜃𝑡)

3. End while

SGDM

1. Parameter:

a. learning rate 𝜂

b. momentum 𝛽

c. timestep 𝑡

d. 𝜃0 = 0 or random

2. While 𝜃𝑡 not converged do

𝛽𝑡 = 𝛽𝑡−1𝑣𝑡−1 + (1 − 𝛽𝑡−1)𝛻𝜃𝑓(𝜃𝑡−1)𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝛽𝑡

3. End while

Adam

1. Parameters:

a. 𝜂: learning rate

2825

b. 𝛽1, 𝛽2 ∈ [0,1): Exponential decay rates for the moment

estimates

c. 𝑓(𝜃): Stochastic objective function

d. 𝜃0: Initial parameter vector

e. 𝑚0 = 0: Initial first moment vector

f. 𝑣0 = 0: Initial second moment vector

g. 𝑡 = 0: initial timestep

2. While 𝜃𝑡 not converged do

a. 𝑔𝑡 ← 𝛻𝜃𝑓𝑡(𝜃𝑡−1)

b.𝑚𝑡 ← 𝛽1 ∙ 𝑚𝑡−1 + (1 − 𝛽1) ∙ 𝑔𝑡

c. 𝑣𝑡 ← 𝛽2 ∙ 𝑣𝑡−1 + (1 − 𝛽2) ∙ 𝑔𝑡
2

d. 𝑚𝑡̂ ←
𝑚𝑡

1−𝛽1
𝑡

e. 𝑣𝑡̂ ←
𝑣𝑡

1−𝛽2
𝑡

f. 𝜃𝑡 ← 𝜃𝑡−1 − 𝜂
𝑚𝑡̂

√𝑣𝑡̂+𝜖

3. End while

Demon SGDM

1. Parameter:

a. number of iterations 𝑇

b. learning rate 𝜂

c. 𝛽𝑖𝑛𝑖𝑡 (Initial Momentum)

d. 𝛽𝑡 momentum

e. 𝑣0 = 𝜃0 = 0 or random

2. While 𝜃𝑡 not converged do

a. 𝛽𝑡 =
𝛽𝑖𝑛𝑖𝑡∙(1−

𝑡

𝑇
)

(1−𝛽𝑖𝑛𝑖𝑡)+𝛽𝑖𝑛𝑖𝑡(1−
𝑡

𝑇
)

b. 𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑔𝑡 + 𝛽𝑡𝑣𝑡
c. 𝑣𝑡+1 = 𝛽𝑡𝑣𝑡 − 𝜂𝑔𝑡

3. End while

3.5 Performance evaluation

Three metrics, loss function, accuracy, and ROC-AUC, are

used to evaluate SGD variants in multinomial logistic

regression. It is grounded in their relevance to the objectives

of the study and their established significance in the literature.

These metrics collectively provide a comprehensive

evaluation of model performance, addressing both the

optimization process and the practical implications of

classification accuracy [37]. By utilizing these metrics, the

study can effectively assess the strengths and weaknesses of

different SGD variants [38, 39].

4. EXPERIMENTS

In general, this experiment was conducted based on two

datasets, namely the simulation dataset and the real-world Red

Wine Quality dataset. Subsequently, the learning rate and

momentum values were estimated using SKCV by considering

the Log-Loss test and test accuracy. The optimum learning rate

and momentum values obtained were used by each optimizer

to perform optimization on the multinomial logistic model.

After convergence, the average run time, average number of

epochs, and ROC-AUC scores were recorded. These values

serve as the basis for assessing the performance of the

optimizers on the multinomial logistic models.

4.1 Datasets

Table 1 provides a compilation of the datasets used to assess

the performance of different optimizers in managing large data

collections. We generated nine synthetic datasets, each

varying in size and number of variables, to ensure a robust

evaluation of the optimizers' performance under different

conditions. All datasets contain three categories without

outliers, and other nuance and were generated using the

make_classification() function from scikit-learn (version

1.2..2) in Python 3.10.14.

For reproducibility, we specify the key parameters used in

the make_classification() function:

• n_classes = 3 (fixed for all datasets)

• n_clusters_per_class = 1 (fixed for all datasets)

• n_samples: {5,000; 10,000; 20,000} (see Table 1)

• n_features: {30, 40, 50} (see Table 1)

• n_informative = 2

• n_redundant = 2

• n_repeated = 0 (no repeated features)

• class_sep = 1.0 (fixed for all datasets)

• flip_y = 0.01 (1% noise in class assignments)

• random_state = 42 (for reproducibility)

The function first creates clusters of points normally

distributed (standard deviation = 1) around vertices of an

n_informative-dimensional hypercube with sides of length

2*class_sep. It then assigns an equal number of clusters to

each class.

Table 1. Datasets

Datasets No. Observation No. Variable

1 5,000 30

2 5,000 40

3 5,000 50

4 10,000 30

5 10,000 40

6 10,000 50

7 20,000 30

8 20,000 40

9 20,000 50

4.2 Real world datasets

For comparison, real world datasets red-wine-quality

(source: https://www.kaggle.com/datasets/uciml/red-wine-

quality-cortez-et-al-2009) will be used. This dataset is a subset

of the wine quality datasets. This data consists of 1519

observations with 11 features and 6 classes. Due to privacy and

logistic issues, only physicochemical (inputs) and sensory (the

output) variables are available (e.g., there is no data about

grape types, wine brand, wine selling price, etc.).

4.3 Experimental setting

In this experiment, the optimal learning rate and momentum

are determined based on SKCV. In the case of the Adam

algorithm,

The H hyperparameter grid space are Learning Rates,

Momentum 1, and Momentum 2.

Learning Rates = {0.0001, 0.0003, 0.0005, 0.0008, 0.001,

0.003, 0.005, 0.008, 0.01, 0.03, 0.05, 0.08, 0.1, 0.3, 0.5, 0.8}

Momentum 1 = Momentum 2 = {0.7, 0.8, 0.9, 0.99, 0.999}

For all algorithms, the initial values of the parameters are

set to zero. The following Table 2 shows the values of the

learning rate, first momentum and second momentum for each

data set used in the simulations.

2826

Tabel 2. The values of the best learning rate, first momentum, and second momentum based on SKCV

No. Optimizer
No.

Observations

No.

Variables

Learning

Rate

Best First

Momentum

Best

Second

Momentum

Test Log-

Loss

Test

Accuracy

1 SGD 5000 30 0.03 - - 0.1111 0.9822

2 SGDM 5000 30 0.05 0.9 - 0.1036 0.9828

3 DemonSGDM 5000 30 0.01 0.8 - 0.1006 0.9824

4 Adam 5000 30 0.08 0.8 0.999 0.1198 0.9776

5 SGD 10000 30 0.001 - - 0.3543 0.8726

6 SGDM 10000 30 0.005 0.8 - 0.3421 0.8747

7 DemonSGDM 10000 30 0.0008 0.9 - 0.3417 0.8753

8 Adam 10000 30 0.01 0.7 0.8 0.341 0.8758

9 SGD 20000 30 0.008 - - 0.3855 0.86755

10 SGDM 20000 30 0.008 0.7 - 0.3858 0.8673

11 DemonSGDM 20000 30 0.0008 0.8 - 0.3839 0.86765

12 Adam 20000 30 0.01 0.9 0.8 0.3892 0.86655

13 SGD 5000 40 0.08 - - 0.1589 0.9758

14 SGDM 5000 40 0.05 0.7 - 0.1568 0.9762

15 DemonSGDM 5000 40 0.01 0.7 - 0.1546 0.9776

16 Adam 5000 40 0.1 0.8 0.99 0.1808 0.9624

17 SGD 10000 40 0.005 - - 0.3408 0.8741

18 SGDM 10000 40 0.003 0.7 - 0.3386 0.8739

19 DemonSGDM 10000 40 0.001 0.7 - 0.3388 0.8738

20 Adam 10000 40 0.01 0.7 0.9 0.342 0.8738

21 SGD 20000 40 0.005 - - 0.3875 0.86725

22 SGDM 20000 40 0.005 0.8 - 0.3878 0.86715

23 DemonSGDM 20000 40 0.0005 0.9 - 0.3861 0.8684

24 Adam 20000 40 0.01 0.9 0.7 0.389 0.86755

25 SGD 5000 50 0.05 - - 0.1494 0.9734

26 SGDM 5000 50 0.05 0.7 - 0.1562 0.9724

27 DemonSGDM 5000 50 0.005 0.8 - 0.1607 0.971

28 Adam 5000 50 0.08 0.8 0.999 0.1794 0.9592

29 SGD 10000 50 0.005 - - 0.3453 0.8704

30 SGDM 10000 50 0.003 0.8 - 0.3415 0.8736

31 DemonSGDM 10000 50 0.0003 0.9 - 0.3433 0.8714

32 Adam 10000 50 0.008 0.7 0.99 0.3533 0.8701

33 SGD 20000 50 0.005 - - 0.3899 0.8641

34 SGDM 20000 50 0.005 0.9 - 0.3875 0.86485

35 DemonSGDM 20000 50 0.0005 0.9 - 0.3851 0.86675

36 Adam 20000 50 0.01 0.9 0.8 0.3889 0.8636

37 SGD Wine 0.003 - - 0.9698 0.596

38 SGDM Wine 0.003 0.7 - 0.969 0.5979

39 DemonSGDM Wine 0.0005 0.99 - 0.9768 0.5985

40 Adam Wine 0.0001 0.999 0.99 0.9714 0.6035

Each optimizer was evaluated based on its convergence

speed, loss function stability, final accuracy, and ROC-AUC

values with a tolerance value of 10-16 as the stopping rule.

This is to determine the behavior of the optimizer after a

solution is reached and over 100 epochs.

Furthermore, additional hyperparameters will be adjusted

during the optimisation process, including the learning rate

and momentum are determined using a combination of the

python scikit-learn and numpy libraries with employed a grid

search method coupled with k-fold cross-validation to

determine the optimal learning rate and momentum. The

dataset was initially partitioned into training and validation

sets. Each hyperparameter combination within the predefined

grid was evaluated using k-fold cross-validation on the

training set. For each fold, the model was trained on the

training subset and evaluated on the test subset using a

specified scoring metric. The average score across all folds

was computed for each hyperparameter combination. The

combination yielding the best average score was selected as

the optimal hyperparameters. Subsequently, the model was

retrained on the entire training set using these optimal

hyperparameters. Finally, the best model was evaluated on the

held-out validation set to obtain an unbiased estimate of

performance. These steps are shown as follows in pseudocode

form:

Parameter:

a. dataset D

b. model M

c. hyperparameter_grid H

d. cross_validation_folds K

e. scoring_metric S

 BEGIN

 Split D into training set T and validation set V

 FOR EACH combination C in H:

a. score_sum = 0

 FOR i = 1 TO K:

a. Split T into K subsets

b. train_subset = T - T[i]

c. test_subset = T[i]

d. Train M on train_subset using

hyperparameters C

e. Evaluate M on test_subset using S

2827

f. Add evaluation score to score_sum

 average_score = score_sum / K

 IF average_score is better than best_score:

a. best_score = average_score

b. best_hyperparameters = C

 Train M on entire T using best_hyperparameters

 best_model = trained M

 Evaluate best_model on V using S

 final_score = evaluation result

 RETURN

a. best_hyperparameters,

b. best_model,

c. best_score,

d. final_score

 END

4.4 Model fitting

The model fitting process for evaluating SGD variants for

MLR involves several key components, including the choice

of software, convergence criteria, and regularization

techniques. Open source Python; Buat sendiri; konvergence

criteria: tolerance.

After getting the values of learning rate and momentum the

multinomial logistic model is fitted using the following steps

(pseudocode):

1. Initializing the weight matrix W randomly.

2. Depending on the chosen optimizer, we initialize

additional variables (velocity for SGDM, first and

second moments for Adam).

3. We then enter the main training loop, which iterates

for a specified number of epochs.

4. In each epoch, we shuffle the data and process it in

mini-batches.

5. For each mini-batch, we perform a forward pass,

compute the gradient, and then update the weights

based on the chosen optimizer:

a. For SGD, we simply subtract the learning

rate multiplied by the gradient.

b. For SGDM, we update the momentum and

then use it to update the weights.

c. For DemonSGDM, we update the

momentum and then use it to update the

weights and decay momentum.

d. For Adam, we update the first and second

moments, compute their bias-corrected

versions, and use them to update the

weights.

6. After training, we return the final weight matrix.

Figure 1. Model accuracy for simulation datasets

2828

The multinomial logistic model is defined separately as it's

used in the forward pass to compute the predicted

probabilities.

This pseudocode provides a high-level overview of the

process. In a real implementation, you would also need to

handle data preprocessing, model evaluation, and potentially

early stopping or learning rate scheduling.

5. RESULT

In general, all optimizers are capable of achieving

convergence for both simulation datasets and the Red-Wine

dataset. The following Table 2 shows the values of the learning

rate, first momentum and second momentum for each dataset

used in the simulations and real-world. Next, Table 3 presents

the average run times of the teams (s), the average number of

epochs, and the ROC-AUC scores. Additionally, Figures 1 and

2 display the accuracy interval values for each optimizer and

dataset used. The ROC-AUC score and accuracy intervals will

be used as the basis for assessing the performance of each

optimizer.

Figure 2. Model performance for red-wine quality

Table 3. Average run time, average number of epoch, ROC-AUC score values

Datasets Optimizer Average Run Time (s) Average Number of Epochs ROC-AUC Score

Simulation Dataset 5000 obs. ×

30 features

SGD 0.758038 78.6 0.9974

SGDM 0.509473 49.2 0.9971

DemonSGDM 3.204334 300 0.9973

Adam 3.696493 300 0.9972

Simulation Dataset 5000 obs. ×

40 features

SGD 0.215203 21.4 0.9962

SGDM 0.317307 28.8 0.9966

DemonSGDM 3.295011 300 0.9969

Adam 3.717411 300 0.996

Simulation Dataset 5000 obs. ×

50 features

SGD 0.403949 39.8 0.9915

SGDM 0.462271 42.2 0.9918

DemonSGDM 2.711366 251.2 0.9919

Adam 3.814062 300 0.9922

Simulation Dataset 10000 obs. ×

30 features

SGD 1.910756 108 0.9605

SGDM 0.49598 26.8 0.9601

DemonSGDM 5.386132 300 0.9588

Adam 0.917388 42.6 0.9596

Simulation Dataset 10000 obs. ×

40 features

SGD 0.722471 42.4 0.959

SGDM 1.193789 64.2 0.9597

DemonSGDM 0.841327 46.4 0.9599

Adam 1.61335 77.8 0.9599

Simulation Dataset 10000 obs. ×

50 features

SGD 1.308712 36.4 0.9594

SGDM 2.258024 53.6 0.9609

DemonSGDM 12.10365 300 0.9603

Adam 14.19419 300 0.9601

Simulation Dataset 20000 obs. ×

30 features

SGD 0.764878 11.6 0.9628

SGDM 0.82038 11.4 0.9627

DemonSGDM 18.53604 243.4 0.9639

Adam 7.485278 86.4 0.9638

Simulation Dataset 20000 obs. ×

40 features

SGD 1.106545 17.2 0.9625

SGDM 1.205817 17 0.9625

DemonSGDM 23.68813 300 0.9624

Adam 8.17894 90.2 0.9625

Simulation Dataset 20000 obs. ×

50 features

SGD 1.26268 16.8 0.964

SGDM 1.211844 16.2 0.9645

DemonSGDM 21.9884 300 0.9639

Adam 7.994103 90.6 0.9643

Red Wine Quality Dataset

SGD 2.698811 300 0.8325

SGDM 2.900424 300 0.8322

DemonSGDM 2.964975 300 0.8001

Adam 3.498089 300 0.8344

For 5000 observations, the models generally performed

best, with test accuracies often above 97%. Performance

decreased for 10000 and 20000 observations, with accuracies

dropping to around 87% and 86% respectively. There's no

clear trend in performance as the number of variables increases

from 30 to 50. For 5000 observations, SGDM and

2829

DemonSGDM generally outperformed SGD and Adam. For

10000 and 20000 observations, the differences between

optimizers were less pronounced. Adam often had slightly

worse performance compared to the other optimizers,

especially for 5000 observations.

All optimizers performed similarly on this real-world

dataset. Test accuracies were much lower (around 60%)

compared to the generated dataset, indicating this is a more

challenging classification task. Adam slightly outperformed

the other optimizers, with the highest test accuracy of 60.35%.

The log-loss values were significantly higher for this dataset

compared to the generated data. Furthermore, Figure 1 shows

a series of plots comparing the performance of different

optimization optimizers (SGD, SGDM, DemonSGDM, and

Adam) across various datasets and conditions. The plots are

organized in a 3×3 grid, with each row representing a different

number of observations (5000, 10000, 20000) and each

column representing a different number of features (30, 40,

50).

Each individual plot displays the accuracy of the four

optimization algorithms for a specific combination of

observations and features. The optimizers are listed vertically,

and horizontal lines with dots represent the accuracy range and

mean for each algorithm. The relative performance of the

algorithms seems fairly consistent across different numbers of

observations and features. In most cases, the order of

performance from best to worst appears to be: DemonSGDM

≈ SGDM > SGD > Adam. The accuracy values generally fall

between 0.86 and 0.98, indicating high performance across all

conditions. There seems to be slightly more variation in results

for the 5000 observation datasets compared to the 10000 and

20000 observation datasets. The number of features (30, 40,

50) doesn't seem to dramatically change the relative

performance of the optimizers. Adam consistently shows the

widest range of accuracy values and often performs slightly

worse than the other optimizers. These two algorithms

frequently have very similar performance, often overlapping

in their accuracy ranges.

Figure 2 displays the performance comparison of four

different optimization algorithms (SGD, SGDM,

DemonSGDM, and ADAM) on a wine dataset. SGD shows a

wide range of performance, with accuracy varying from about

0.58 to 0.61. SGDM has a narrower performance range,

clustered around 0.59 to 0.60. DemonSGDM displays the

widest range of performance, spanning from about 0.50 to

0.60. ADAM shows the most consistent performance with the

smallest range, achieving an accuracy of about 0.60. ADAM

seems to perform the best with the highest and most consistent

accuracy has decent performance but with more variability

than SGDM and ADAM. DemonSGDM shows the most

unpredictable performance, with a very wide range of possible

accuracies.

In general, the performance differences between these

algorithms on this wine dataset are relatively small, with all

achieving accuracies between 50% and 60%. This suggests

that the classification task for this wine dataset might be

challenging, as none of the algorithms achieve very high

accuracy.

6. DISCUSSION

It is noteworthy that all optimizers used in the study can

achieve convergence, both in simulation datasets and the more

challenging real-world Red-Wine dataset. This suggests that

despite differences in their underlying mechanics, each

optimizer possesses the fundamental characteristics necessary

to minimize loss functions effectively across diverse data

types.

The evaluation of the optimizers is supported by two main

metrics: the ROC-AUC score and accuracy intervals. Table 2

provides insights into the learning parameters for each

simulation, while Table 3 and Figures 1 and 2 present more

comprehensive performance metrics like average run times,

epochs, and the ROC-AUC scores, which together create a

robust framework for comparison.

Analyzing the performance based on the number of

observations reveals intriguing insights. With 5000

observations, the models achieve high test accuracies often

exceeding 97%. However, as the number of observations

increases to 10,000 and 20,000, a significant drop in accuracy

to around 87% and 86%, respectively, occurs. This decline

may indicate that the models struggle to generalize as the

dataset becomes larger and potentially more complex. The

absence of a clear performance trend with the increase in

feature variables (30 to 50) further complicates the narrative,

indicating that merely increasing complexity does not

necessarily enhance model performance.

Within the 5000 observation datasets, SGDM and

DemonSGDM generally demonstrate superior performance

over SGD and Adam. However, the differences among

optimizers become less pronounced with larger dataset sizes

of 10,000 and 20,000 observations. Interestingly, Adam often

lagged behind the others, especially in smaller datasets. This

suggests that while Adam is a popular choice in various

contexts, it may require more data to express its full potential

effectively.

The real-world wine dataset presents an entirely different

challenge, with all optimizers achieving lower accuracies

(around 60%). Adam stands out slightly with the highest

accuracy of 60.35%, although this is modest overall. The

increased log-loss values further indicate that this dataset is

inherently more difficult, reinforcing the idea that complex

real-world data may not always yield favorable results,

regardless of the optimizer.

Figures 1 and 2 collectively illustrate the performance of

each optimizer across varying conditions. The first figure

compares the algorithms through a grid of accuracy plots,

highlighting that DemonSGDM and SGDM consistently

outperform others within the 5000 observations dataset. Figure

2 delves deeper into the wine dataset, illustrating that while

ADAM offers consistency, it doesn't reach the levels of

variability seen with SGDM and DemonSGDM. The

accuracies for the wine dataset, hovering between 50% and

60%, imply that all algorithms are relatively ineffective under

these classification conditions and may suggest a need for

alternative modeling strategies or feature engineering.

7. CONCLUSION

In conclusion, the findings indicate that while all optimizers

can achieve convergence, their effectiveness varies

significantly across datasets and task complexities. SGDM and

DemonSGDM stand out in simulations, while Adam garners a

slight edge in challenging real-world applications, albeit with

modest performance. The varying results highlight the need

for careful optimizer selection based on dataset characteristics

2830

and required performance thresholds particularly in predicting

outcomes, where subtle distinctions in methodology can

influence results substantially. Further exploration into hybrid

approaches or alternative optimization techniques may yield

enhanced performance, particularly for complex, real-world

datasets like the wine classification case.

8. FUTURE RESEARCH

Future research could focus on developing and evaluating

hybrid optimization algorithms that combine the strengths of

existing optimizers like SGDM, DemonSGDM, and Adam. By

integrating different optimization strategies, researchers can

investigate whether hybrid approaches can achieve superior

convergence rates and accuracy across various datasets,

particularly in complex real-world scenarios.

Investigating adaptive optimization techniques that

dynamically adjust learning rates and momentum parameters

based on the characteristics of the dataset could be beneficial.

This research could explore how adaptive mechanisms can

improve performance in datasets with varying complexities

and sizes, potentially leading to more robust models.

Given the observed performance variations with different

feature sets, future studies should delve into advanced feature

engineering and selection techniques. Research could focus on

identifying which features contribute most significantly to

model performance and how to preprocess data effectively to

enhance optimizer efficacy.

Conducting extensive benchmarking of optimization

algorithms across a wider range of datasets, including both

synthetic and real-world data, would provide deeper insights

into their performance. This research could help establish

guidelines for selecting optimizers based on specific dataset

characteristics, such as size, dimensionality, and inherent

complexity.

Investigating alternative optimization techniques, such as

evolutionary algorithms, swarm intelligence, or reinforcement

learning-based optimizers, could yield new insights into their

effectiveness compared to traditional methods. This research

could assess whether these novel approaches can outperform

established optimizers in specific contexts.

Future studies should consider a broader range of

performance metrics beyond accuracy and ROC-AUC scores.

Metrics such as precision, recall, F1-score, and computational

efficiency could provide a more comprehensive evaluation of

optimizer performance, particularly in imbalanced datasets or

those with specific classification challenges.

Conducting case studies that apply various optimization

algorithms to real-world problems, such as medical diagnosis,

financial forecasting, or image classification, would provide

practical insights into their effectiveness. These studies could

highlight the nuances of optimizer performance in real-world

applications and inform best practices for their deployment.

Implementing longitudinal studies that track the

performance of different optimizers over time as new data

becomes available could provide valuable insights into their

adaptability and robustness. This research could help identify

which optimizers maintain performance consistency in

evolving datasets.

REFERENCES

[1] Li, L., Wang, Y.L. (2022). On uniform-in-time diffusion

approximation for stochastic gradient descent. arXiv

preprint arXiv.2207.04922.

http://doi.org/10.48550/arXiv.2207.04922

[2] Toulis, P., Airoldi, E.M. (2015). Scalable estimation

strategies based on stochastic approximations: Classical

results and new insights. Statistics and Computing, 25:

781-795. https://doi.org/10.1007/s11222-015-9560-y

[3] Ghazali, K., Sulaiman, J., Dasril, Y., Gabda, D. (2020).

Newton-2EGSOR method for unconstrained

optimization problems with a block diagonal hessian. SN

Computer Science, 1: 21.

https://doi.org/10.1007/s42979-019-0021-0

[4] Bottou, L., Bousquet, O. (2007). The tradeoffs of large

scale learning. In Advances in Neural Information

Processing Systems (Vol. 20).

[5] Shen, L., Sun, Y., Yu, Z.Y., Ding, L., Tian, X.M., Tao,

D.C. (2023). On efficient training of large-scale deep

learning models: A literature review. arXiv preprint

arXiv:2304.03589.

https://doi.org/10.48550/arXiv.2304.03589

[6] Soydaner, D. (2020). A comparison of optimization

algorithms for deep learning. International Journal of

Pattern Recognition and Artificial Intelligence, 34(13):

2052013. https://doi.org/10.1142/S0218001420520138

[7] Bottou, L., Curtis, F.E., Nocedal, J. (2018). Optimization

methods for large-scale machine learning. SIAM

Review, 60(2): 223-311.

https://doi.org/10.1137/16M1080173

[8] Sutskever, I., Martens, J., Dahl, G., Hinton, G. (2013).

On the importance of initialization and momentum in

deep learning. In Proceedings of the 30th International

Conference on International Conference on Machine

Learning, Atlanta, USA, pp. 1139-1147.

[9] Buduma, N., Buduma, N., Papa, J. (2022). Fundamentals

of Deep Learning. O'Reilly Media, Inc.

[10] Duchi, J., Hazan, E., Singer, Y. (2011). Adaptive

subgradient methods for online learning and stochastic

optimization. Journal of Machine Learning Research,

12(7): 2121-2159.

[11] Xu, D.P., Zhang, S.D., Zhang, H.S., Mandic, D.P.

(2021). Convergence of the RMSProp deep learning

method with penalty for nonconvex optimization. Neural

Networks, 139: 17-23.

https://doi.org/10.1016/j.neunet.2021.02.011

[12] Fawcett, T. (2006). An introduction to ROC analysis.

Pattern Recognition Letters, 27(8): 861-874.

https://doi.org/10.1016/j.patrec.2005.10.010

[13] Mai, X., Liao, Z., Couillet, R. (2019). A large scale

analysis of logistic regression: Asymptotic performance

and new insights. In ICASSP 2019 - 2019 IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Brighton, UK, pp. 3357-

3361. https://doi.org/10.1109/ICASSP.2019.8683376

[14] Smith, L.N., Topin, N. (2018). Super-convergence: Very

fast training of neural networks using large learning

rates. arXiv preprint arXiv:1708.07120.

https://doi.org/10.48550/arXiv.1708.07120

[15] Xie, Z.K., Wang, Z.X., Zhang, H.S., Sato, I., Sugiyama,

M. (2024). Adaptive inertia: Disentangling the effects of

adaptive learning rate and momentum.

https://proceedings.mlr.press/v162/xie22d/xie22d.pdf,

accessed on Oct. 13, 2024.

[16] Paquin, A.L., Chaib-Draa, B., Giguère, P. (2023).

Stability analysis of Stochastic Gradient Descent for

2831

https://doi.org/10.1007/s42979-019-0021-0
https://doi.org/10.48550/ARXIV.2304.03589
https://doi.org/10.1142/S0218001420520138
https://doi.org/10.1137/16M1080173
https://doi.org/10.1016/j.neunet.2021.02.011
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1109/ICASSP.2019.8683376
https://doi.org/10.48550/arXiv.1708.07120
https://proceedings.mlr.press/v162/xie22d/xie22d.pdf

homogeneous neural networks and linear classifiers.

Neural Networks, 164: 382-394.

https://doi.org/10.1016/j.neunet.2023.04.028

[17] Anh, D.T., Thanh, D.V., Le, H.M., Sy, B.T., Tanim,

A.H., Pham, Q.B., Dang, T.D., Mai, S.T., Dang, N.M.

(2023). Effect of gradient descent optimizers and dropout

technique on deep learning LSTM performance in

rainfall-runoff modeling. Water Resources Management,

37(2): 639-657. https://doi.org/10.1007/s11269-022-

03393-w

[18] Qin, C., Li, B., Han, B. (2023). Fast brain tumor

detection using adaptive Stochastic Gradient Descent on

shared-memory parallel environment. Engineering

Applications of Artificial Intelligence, 120: 105816.

https://doi.org/10.1016/j.engappai.2022.105816

[19] Yang, Z. (2024). SARAH-M: A fast stochastic recursive

gradient descent algorithm via momentum. Expert

Systems with Applications, 238: 122295.

https://doi.org/10.1016/j.eswa.2023.122295

[20] Wang, P.Y., Lei, Y.W., Ying, Y.M., Zhou, D.X. (2024).

Differentially private Stochastic Gradient Descent with

low-noise. Neurocomputing, 585: 127557.

https://doi.org/10.1016/j.neucom.2024.127557

[21] Kotwal, J.G., Koparde, S., Jadhav, C., Bharati, R.,

Somkunwar, R. (2024). A modified time adaptive self-

organizing map with Stochastic Gradient Descent

optimizer for automated food recognition system.

Journal of Stored Products Research, 107: 102314.

https://doi.org/10.1016/j.jspr.2024.102314

[22] Lin, T., Stich, S.U., Patel, K.K., Jaggi, M. (2018). Don't

use large mini-batches, use local SGD. arXiv preprint

arXiv:1808.07217.

https://doi.org/10.48550/arXiv.1808.07217

[23] Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy,

M., Tang, P.T.P. (2016). On large-batch training for deep

learning: Generalization gap and sharp minima. arXiv

preprint arXiv:1609.04836.

https://doi.org/10.48550/arXiv.1609.04836

[24] Hosmer, D.W., Lemeshow, S. (2000). Applied Logistic

Regression. John Wiley & Sons. Inc.: New York, NY,

USA.

[25] Agresti, A. (2012). Categorical Data Analysis (Vol. 792).

John Wiley & Sons.

[26] Allen, J., Liu, H., Iqbal, S., Zheng, D., Stansby, G.

(2021). Deep learning-based photoplethysmography

classification for peripheral arterial disease detection: A

proof-of-concept study. Physiological Measurement,

42(5): 054002. https://doi.org/10.1088/1361-

6579/abf9f3

[27] Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.

(2009). The Elements of Statistical Learning: Data

Mining, Inference, and Prediction (Vol. 2). New York:

Springer.

[28] Theodoridis, S., Koutroumbas, K. (2009). Pattern

Recognition (4th ed.). Academic Press.

[29] Szeghalmy, S., Fazekas, A. (2023). A comparative study

of the use of stratified cross-validation and distribution-

balanced stratified cross-validation in imbalanced

learning. Sensors, 23(4): 2333.

https://doi.org/10.3390/s23042333

[30] Lemaréchal, C. (2012). Cauchy and the gradient method.

Documenta Mathematica Extra Volume ISMP, pp. 251-

254.

[31] Maitanmi, O.S., Ogunyolu, O.A., Kuyoro, A.O. (2024).

Evaluation of financial credit risk management models

based on gradient descent and meta-heuristic algorithms.

Ingénierie des Systèmes d’Information, 29(4): 1441-

1452. https://doi.org/10.18280/isi.290417

[32] Farchi, C., Farchi, F., Touzi, B., Mousrij, A. (2023). A

sustainable performance assessment system for road

freight transport based on artificial neural networks.

Ingénierie des Systèmes d’Information, 28(3): 647-653.

https://doi.org/10.18280/isi.280313

[33] Pedregal, P. (2004). Introduction to Optimization (Vol.

46). New York: Springer.

[34] Kingma, D.P. (2014). Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980.

https://doi.org/10.48550/arXiv.1412.6980

[35] John, C., Cameron, W., Zhao, L., Anastasios, K. (2019).

Demon: Improved neural network training with

momentum decay. In arXiv [cs.LG].

https://akyrillidis.github.io/pubs/Conferences/Demon.pd

f.

[36] Chen, J., Kyrillidis, A. (2019). Decaying momentum

helps neural network training. Opt-ml.org.

https://www.opt-ml.org/papers/2019/paper_12.pdf,

accessed on Oct. 16, 2024.

[37] Gupta, M., Yadav, D., Khan, S.S., Kumawat, A.K.,

Chourasia, A., Rane, P., Ujlayan, A. (2024). Modeling

the detection and classification of tomato leaf diseases

using a robust deep learning framework. Traitement du

Signal, 41(4): 1667-1678.

https://doi.org/10.18280/ts.410403

[38] Berbiche, N., El Alami, J. (2023). Enhancing anomaly-

based Intrusion Detection Systems: A hybrid approach

integrating feature selection and Bayesian

Hyperparameter Optimization. Ingénierie des Systèmes

d’Information, 28(5): 1177-1195.

https://doi.org/10.18280/isi.280506

[39] Dasari, K., Mekala, S., Kaka, J.R. (2024). Evaluation of

UDP-based DDoS attack detection by neural network

classifier with convex optimization and activation

functions. Ingénierie des Systèmes d’Information, 29(3):

1031-1042. https://doi.org/10.18280/isi.290321

2832

https://doi.org/10.1016/j.neunet.2023.04.028
https://doi.org/10.1007/s11269-022-03393-w
https://doi.org/10.1007/s11269-022-03393-w
https://doi.org/10.1016/j.engappai.2022.105816
https://doi.org/10.1016/j.eswa.2023.122295
https://doi.org/10.1016/j.jspr.2024.102314
https://doi.org/10.48550/arXiv.1808.07217
https://doi.org/10.48550/arXiv.1609.04836
https://doi.org/10.1088/1361-6579/abf9f3
https://doi.org/10.1088/1361-6579/abf9f3
https://doi.org/10.3390/s23042333
https://doi.org/10.48550/arXiv.1412.6980

