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The exploration of Stochastic Gradient Descent (SGD) and its variants within the 

context of multinomial logistic models on large datasets represents a rich area of 

research. The existing literature underscores the strengths and weaknesses of various 

optimization techniques, paving the way for further investigations into their 

performance across diverse data environments. This article seeks to contribute to this 

ongoing discourse by systematically assessing the performance of these optimizers 

through simulations and real-world applications. By conducting simulations, the 

research will generate data-driven insights that can guide practitioners in selecting the 

most effective optimization methods for their specific applications. We explore how 

different SGD variants, including, Stochastic Gradient Descent (SGD), Stochastic 

Gradient Descent Momentum (SGDM), Adaptive Momentum (Adam), and Decaying 

Momentum Stochastic Gradient Descent Momentum (DemonSGDM), affect the 

convergence speed, accuracy, and ROC-AUC value as a generalization performance of 

the model on large simulated datasets. We compare their performance based on 

maximum likelihood methods for parameter estimations. The simulation framework 

allows us to control data characteristics and model parameters, allowing a systematic 

evaluation of the behavior of each SGD variant. Our findings can provide valuable 

insights into selecting the optimal SGD variant for modeling multinomial logistic 

models on large datasets through simulation. The simulation results show that both 

SGDM and DemonSGDM are more efficient and stable than SGD and Adam in terms 

of the number of epochs. The findings reveal that all optimizers can converge, but their 

effectiveness differs across datasets and complexities. SGDM and DemonSGDM 

perform well in simulations, while Adam has a slight advantage in challenging real-

world scenarios. 
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1. INTRODUCTION

The concept of optimization is currently very developed and 

has been applied to various fields of science, engineering, 

medicine, computer science, and others. The concept of 

optimization has given birth to many methods and algorithms 

that help develop the theory and application of these fields. 

Some of them are least squares and maximum likelihood 

methods. In addition, gradient-based algorithms were also 

born, such as Newton. Especially in the field of statistics, the 

concept of optimization is very helpful in building models 

such as linear regression models, binary and multinomial 

logistic regression, time series, cox regression, and others. 

These models continue to grow, especially in the field of data 

science. These models can then be used for prediction and 

object classification. 

One of the popular gradient-based optimization optimizers 

is SGD [1, 2]. This optimizer has an algorithm that iteratively 

optimizes a function that is differentiable or subdifferentiable. 

Thus, SGD will converge even if it is applied to functions that 

have derivatives or do not have derivatives. SGD works by 

replacing the actual gradient computed on the entire data set 

with an estimated gradient computed on a subset of the data 

set. This gives it an advantage over the use of Newton's 

method in solving the system of equations generated by 

maximum likelihood, which is the most widely used method 

for parameter estimation in statistical modeling. The method 

is very powerful for smaller data sets [3]. Of course, by using 

part of the data set to compute the gradient, it provides 

computational efficiency for large data sets [4, 5]. In its 

development, SGD [6] has several variants, including SGDM 

[7], DemonSGDM [8], Adaptive Moment Estimation (Adam) 

[9]. AdaGrad [10], Root Mean Square Propagation [11].  

Evaluating SGD variants for multinomial logistic regression 

(MLR) on large datasets is a critical area of study due to 

several specific benefits and implications for practical 

applications. Some of them are handling high-dimensional 

data. 
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Furthermore, the impact of evaluating SGD on decision-

making is giving information about accurate and efficient 

model [12]. Accurate and efficient models can lead to better 

decision-making in critical areas such as public health, 

finance, and policy-making. Evaluating SGD variants can 

enhance the predictive power of MLR models, ultimately 

benefiting stakeholders. 

While there is extensive research on SGD and its variants, 

there is a lack of focused studies that compare the performance 

of these optimizers specifically for multinomial logistic 

regression. Most existing literature tends to concentrate on 

binary classification or does not adequately address the 

complexities of MLR [12, 13]. 

The rest of the paper is organized as follows. In Section 2, 

we briefly explore the related works of SGD and its most 

variants. In Section 3, we will explain about the optimization 

related SGD and its variants. Furthermore, the experiments 

and comparative results are discussed in Section 4. The last 

two sections are about the conclusions and future research. 
 

 

2. RELATED WORKS 
 

SGD and its variants have been extensively researched for 

optimizing multinomial logistic models, particularly in the 

context of large datasets. The foundational work [4], 

emphasizes the efficiency of SGD in large-scale optimization 

problems, highlighting its ability to converge faster than 

traditional batch gradient descent methods. This efficiency is 

particularly crucial when dealing with massive datasets, as 

SGD updates model parameters incrementally, allowing for 

quicker adjustments based on new data. Variants such as Mini-

batch SGD, which processes small batches of data, have been 

shown to enhance convergence speed while maintaining 

computational efficiency.  

In the context of multinomial logistic regression, the 

performance of these optimizers has been rigorously evaluated 

through both simulation studies and real-world applications. 

For instance, some researches [14, 15] conducted simulations 

that demonstrated the superiority of adaptive learning rate 

methods, such as Adam and RMSprop, over standard SGD in 

terms of convergence speed and accuracy when applied to 

synthetic datasets. Their findings suggest that adaptive 

methods can significantly reduce training time while achieving 

comparable or superior accuracy.  

Conversely, real-world applications often present unique 

challenges that can affect optimizer performance [14]. They 

explored the efficacy of various optimizers on real-world 

datasets, revealing that while adaptive methods frequently 

outperform standard SGD in controlled environments, their 

performance can be inconsistent in practical scenarios due to 

factors such as feature sparsity and noise. This observation 

aligns with the work of, who introduced the Adam optimizer 

and demonstrated its robustness across diverse datasets. They 

found that while SGD remains a strong contender, the choice 

of optimizer can greatly influence model performance, 

particularly in high-dimensional and complex datasets.  

Moreover, recent studies have highlighted the importance 

of tuning hyperparameters for different optimizers to achieve 

optimal performance [16]. The research emphasized the role 

of learning rate schedules and momentum in enhancing the 

performance of SGD and its variants in large-scale 

multinomial logistic regression tasks. Their research indicates 

that careful tuning can lead to significant improvements in 

both convergence speed and model accuracy.  

Overall, the literature indicates that while SGD and its 

variants are powerful tools for optimizing multinomial logistic 

models, the specific context of the dataset—whether simulated 

or real—plays a crucial role in determining the most effective 

optimization strategy. Future research should continue to 

explore the interplay between optimizer choice, 

hyperparameter tuning, and dataset characteristics to further 

enhance the performance of multinomial logistic models 

across various applications.  

Moreover, the integration of advanced techniques such as 

regularization and dropout has been explored to further 

enhance the performance of SGD-based optimizers. For 

instance, introduction dropout [15] as a regularization 

technique that helps prevent overfitting in neural networks, 

which can be particularly beneficial when training 

multinomial logistic models on large datasets. Their work 

indicates that combining dropout with SGD variants can lead 

to improved generalization performance. 

Many research papers have reported the use of SGD and its 

development in various fields. One of them is related to the 

stability of SGD for homogeneous neural networks and linear 

classifiers [16]. 

In addition, investigation of the effects of gradient descent 

optimizers and dropout techniques also conducted [17] on the 

performance of deep learning LSTMs in rainfall runoff 

modeling. Meanwhile, SGD continues to develop in recent 

years, both theoretically and in applications. Some of them are 

[18, 19] with the momentum on stochastic recursive gradient 

descent algorithm and brain tumor detection using adaptive 

Stochastic Gradient Descent on shared memory parallel 

environment. In addition, we find that Stochastic Gradient 

Descent with low noise [20] developed. 

The next application is on modified time adaptive self-

organizing map for automated food recognition system [21]. 

Unfortunately, there are not many studies on the use of the 

optimizer and its variants on large datasets. However, local 

SGD which is more optimal when using small mini-batches 

than when using large mini-batches in SGD [22] introduced. 

Another study is about the ability of SGD and some of its 

variants in non-convex settings, which is very common in 

machine learning. In this case, it has shown that SGD can 

converge to sharper minima, potentially yielding better 

generalization on unseen data [23]. 

 

 

3. METHODS AND ALGORITHMS 

 

3.1 Multinomial logistic regression 

 

Multinomial logistic regression [24, 25] is a statistical 

model used to predict categorical outcomes with more than 

two levels. It generalizes binary logistic regression by 

modeling multiple classes simultaneously. The mathematical 

formulation of the multinomial logistic regression model can 

be expressed as follows: 

Assume we have 𝐾 categories for the dependent variable 𝑌, 

where 𝑌 can take on values 1,2, … , 𝐾. Let X be a vector of 

predictor variables (features). The probability of outcome 𝑌 =
𝑘 for 𝑘 = 1,2, … , 𝐾 given the predictor variables is modeled 

using the SoftMax function: 

 

𝑃(𝑌 = 𝑘|𝑿) 

=
exp (𝛽𝑘,0 + 𝛽𝑘,1𝑋1 + 𝛽𝑘,2𝑋2 + ⋯ + 𝛽𝑘,𝑝𝑋𝑝)

∑ 𝑒𝑥𝑝𝐾
𝐽=1 (𝛽𝑗,0 + 𝛽𝑗,1𝑋1 + 𝛽𝑗,2𝑋2 + ⋯ + 𝛽𝑗,𝑝𝑋𝑝)

 
(1) 
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where, 

𝛽𝑘,0 is the intercept term for category 𝑘, 

𝛽𝑘,𝑗 are the coefficients corresponding to predictor variables 

𝑋𝑗 for category 𝑘, 

𝑝 is the number of predictor variables. 

To ensure identifiability, one category (often the last one, 

𝐾) is chosen as the reference category, and its parameters are 

set to zero: 

 

𝛽𝐾,0 = 0,  𝛽𝐾,𝑗 = 0 for 𝑗 = 1,2, … , 𝑝 (2) 

 

The log-odds of being in category 𝑘 versus the reference 

category 𝐾 is given by: 

 

𝑙𝑜𝑔 (
𝑃(𝑌 = 𝑘|𝑿)

𝑃(𝑌 = 𝐾|𝑿)
) 

= 𝛽𝑘,0 + 𝛽𝑘,1𝑋1 + 𝛽𝑘,2𝑋2 + ⋯ + 𝛽𝑘,𝑝𝑋𝑝 

(3) 

 

3.2 Maximum likelihood estimation 

 

The parameters 𝛽  of the model are estimated using the 

method of maximum likelihood. The likelihood function for 

the multinomial logistic regression can be expressed as: 

 

𝐿(𝛽) = ∏ 𝑃(𝑌𝑖|𝑿𝒊) =

𝑛

𝑖=1

∏ ∏ 𝑃(𝑌𝑖 = 𝑘|𝑿𝒊)
𝐼(𝑌𝑖=𝑘)

𝐾

𝑘=1

𝑛

𝑖=1

 (4) 

 

where, 𝑛 is the number of observations and 𝐼(𝑌𝑖 = 𝑘) is an 

indicator function that is equal to 1 if 𝑌𝑖 = 𝑘 and 0 otherwise. 

The log-likelihood function is therefore: 

 

log 𝐿(𝛽) = ∑ ∑ 𝐼(𝑌𝑖 = 𝑘) log 𝑃(𝑌𝑖 = 𝑘|𝑿𝒊)

𝐾

𝑘=1

𝑛

𝑖=1

 (5) 

 

3.3 Stratified K-fold Cross Validation (SKCV) 

 

SKCV [26-28] is one of the variants based on k-fold cross 

validation [29], where folds are created to preserve the target 

class distribution. SKCV is particularly useful when dealing 

with data with an unbalanced class distribution. It also ensures 

that each fold has the same percentage of each class label. 

K-fold cross-validation 

The dataset is divided into k subsets (folds). The model is 

trained on k-1 folds and validated on the remaining fold. This 

process is repeated k times, with each fold serving as the 

validation set once.  

Stratified k-fold cross-validation 

Similar to k-fold, but it ensures that each fold has the same 

proportion of class labels as the entire dataset. This is 

particularly useful for imbalanced datasets. 

SKCV is a powerful tool in the scikit-learn library that 

enhances the model evaluation process, aids in 

hyperparameter tuning, and helps in selecting the best model 

 

3.4 Algorithm 

 

The gradient descent algorithm [30-32] is an optimization 

algorithm commonly used to solve an equation or a system of 

equations without constraints. Its application is widely found 

in statistics, research operations, machine learning, deep 

learning, and others [33]. Furthermore, the algorithm works 

iteratively to find estimated parameter values as a solution to 

the steepest descent equation. 

Suppose one can compute the gradient of a function 

𝛻𝑓(𝜃) at any point x. In this case, the simplest method for 

optimizing 𝑓(𝜃)  is the gradient method, in which one 

constructs an iteration sequence starting from some initial 

approximation θ0, one constructs an iteration sequence. 

 

𝜃(𝑡 + 1) = 𝜃(𝑡) − 𝜂𝛻𝑓(𝜃𝑡) (6) 

 

where, the parameter η > 0 is the step size, or what is usually 

called the learning rate in machine learning. 

Gradient descent uses all observation points to compute the 

gradient at each epoch. This makes it computationally 

inefficient for large data sets. To overcome this, several 

variants of gradient descent have been introduced. These 

variants of GD no longer use all observation points, but only 

some of them, always referred to as mini-batches. In general, 

the word stochastic is always associated with the names of 

these variants. One such variant is SGDM. This SGDM 

updates the gradient every epoch based on the momentum. In 

this case, momentum is an extension of the gradient descent 

optimization algorithm that allows the search to build up 

inertia in one direction in the search space and to overcome the 

oscillations of noisy gradients and coast over flat parts of the 

search space. 

Another popular variant is Adam [34]. This optimizer is an 

algorithm for first-order gradient-based optimization of 

stochastic objective functions and relies on adaptive estimates 

of lower-order moments. The optimizer is easy to implement, 

computationally efficient, has a small memory footprint, is 

invariant to diagonal rescaling of the gradients, and is well 

suited for problems with large amounts of data and/or 

parameters. The method is also suitable for non-stationary 

targets and problems with very noisy and/or sparse gradients.  

Recently, an increasingly popular variant of SGD is 

DemonSGD [35, 36]. DemonSGD uses linear learning rate 

decay models that reduce the influence of a gradient on current 

and future updates. By decaying the momentum parameter, the 

total contribution of a gradient to all future updates is decayed. 

In the following subsections, the algorithms used in the 

experiment are presented in pseudocode. 

 

SGD 

1. Parameter: learning rate 𝜂, timestep 𝑡 

a. 𝜃0 = 0 or random 

b. 𝑡 = 0 

2. While 𝜃𝑡 not converged do 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝛻𝜃𝑡
𝑓(𝜃𝑡) 

3. End while 

 

SGDM 

1. Parameter:  

a. learning rate 𝜂 

b. momentum 𝛽 

c. timestep 𝑡  

d. 𝜃0 = 0 or random  

2. While 𝜃𝑡 not converged do  

𝛽𝑡 = 𝛽𝑡−1𝑣𝑡−1 + (1 − 𝛽𝑡−1)𝛻𝜃𝑓(𝜃𝑡−1)𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝛽𝑡 

3. End while  

 

Adam 

1. Parameters: 

a. 𝜂: learning rate 
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b. 𝛽1, 𝛽2 ∈ [0,1): Exponential decay rates for the moment 

estimates  

c. 𝑓(𝜃): Stochastic objective function  

d. 𝜃0: Initial parameter vector  

e. 𝑚0 = 0: Initial first moment vector  

f. 𝑣0 = 0: Initial second moment vector  

g. 𝑡 = 0: initial timestep  

2. While 𝜃𝑡 not converged do  

a. 𝑔𝑡 ← 𝛻𝜃𝑓𝑡(𝜃𝑡−1) 

b.𝑚𝑡 ← 𝛽1 ∙ 𝑚𝑡−1 + (1 − 𝛽1) ∙ 𝑔𝑡  

c. 𝑣𝑡 ← 𝛽2 ∙ 𝑣𝑡−1 + (1 − 𝛽2) ∙ 𝑔𝑡
2 

d. 𝑚𝑡̂ ←
𝑚𝑡

1−𝛽1
𝑡 

e. 𝑣𝑡̂ ←
𝑣𝑡

1−𝛽2
𝑡 

f. 𝜃𝑡 ← 𝜃𝑡−1 − 𝜂
𝑚𝑡̂

√𝑣𝑡̂+𝜖
 

3. End while 
 

Demon SGDM 

1. Parameter:  

a. number of iterations 𝑇 

b. learning rate 𝜂 

c. 𝛽𝑖𝑛𝑖𝑡  (Initial Momentum) 

d. 𝛽𝑡 momentum  

e. 𝑣0 = 𝜃0 = 0 or random  

2. While 𝜃𝑡 not converged do  

a. 𝛽𝑡 =
𝛽𝑖𝑛𝑖𝑡∙(1−

𝑡

𝑇
)

(1−𝛽𝑖𝑛𝑖𝑡)+𝛽𝑖𝑛𝑖𝑡(1−
𝑡

𝑇
)
 

b. 𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑔𝑡 + 𝛽𝑡𝑣𝑡   
c. 𝑣𝑡+1 = 𝛽𝑡𝑣𝑡 − 𝜂𝑔𝑡  

3. End while 

 

3.5 Performance evaluation 

 

Three metrics, loss function, accuracy, and ROC-AUC, are 

used to evaluate SGD variants in multinomial logistic 

regression. It is grounded in their relevance to the objectives 

of the study and their established significance in the literature. 

These metrics collectively provide a comprehensive 

evaluation of model performance, addressing both the 

optimization process and the practical implications of 

classification accuracy [37]. By utilizing these metrics, the 

study can effectively assess the strengths and weaknesses of 

different SGD variants [38, 39]. 

 

 

4. EXPERIMENTS 

 

In general, this experiment was conducted based on two 

datasets, namely the simulation dataset and the real-world Red 

Wine Quality dataset. Subsequently, the learning rate and 

momentum values were estimated using SKCV by considering 

the Log-Loss test and test accuracy. The optimum learning rate 

and momentum values obtained were used by each optimizer 

to perform optimization on the multinomial logistic model. 

After convergence, the average run time, average number of 

epochs, and ROC-AUC scores were recorded. These values 

serve as the basis for assessing the performance of the 

optimizers on the multinomial logistic models. 

 

4.1 Datasets 

 

Table 1 provides a compilation of the datasets used to assess 

the performance of different optimizers in managing large data 

collections. We generated nine synthetic datasets, each 

varying in size and number of variables, to ensure a robust 

evaluation of the optimizers' performance under different 

conditions. All datasets contain three categories without 

outliers, and other nuance and were generated using the 

make_classification() function from scikit-learn (version 

1.2..2) in Python 3.10.14.  

For reproducibility, we specify the key parameters used in 

the make_classification() function:  

• n_classes = 3 (fixed for all datasets)  

• n_clusters_per_class = 1 (fixed for all datasets)  

• n_samples: {5,000; 10,000; 20,000} (see Table 1)  

• n_features: {30, 40, 50} (see Table 1)  

• n_informative = 2  

• n_redundant = 2  

• n_repeated = 0 (no repeated features)  

• class_sep = 1.0 (fixed for all datasets)  

• flip_y = 0.01 (1% noise in class assignments)  

• random_state = 42 (for reproducibility)  

The function first creates clusters of points normally 

distributed (standard deviation = 1) around vertices of an 

n_informative-dimensional hypercube with sides of length 

2*class_sep. It then assigns an equal number of clusters to 

each class. 

 

Table 1. Datasets 

 
Datasets No. Observation No. Variable 

1 5,000 30 

2 5,000 40 

3 5,000 50 

4 10,000 30 

5 10,000 40 

6 10,000 50 

7 20,000 30 

8 20,000 40 

9 20,000 50 

 

4.2 Real world datasets 
 

For comparison, real world datasets red-wine-quality 

(source: https://www.kaggle.com/datasets/uciml/red-wine-

quality-cortez-et-al-2009) will be used. This dataset is a subset 

of the wine quality datasets. This data consists of 1519 

observations with 11 features and 6 classes. Due to privacy and 

logistic issues, only physicochemical (inputs) and sensory (the 

output) variables are available (e.g., there is no data about 

grape types, wine brand, wine selling price, etc.). 

 

4.3 Experimental setting 

 

In this experiment, the optimal learning rate and momentum 

are determined based on SKCV. In the case of the Adam 

algorithm,  

The H hyperparameter grid space are Learning Rates, 

Momentum 1, and Momentum 2. 

Learning Rates = {0.0001, 0.0003, 0.0005, 0.0008, 0.001, 

0.003, 0.005, 0.008, 0.01, 0.03, 0.05, 0.08, 0.1, 0.3, 0.5, 0.8} 

Momentum 1 = Momentum 2 = {0.7, 0.8, 0.9, 0.99, 0.999} 

For all algorithms, the initial values of the parameters are 

set to zero. The following Table 2 shows the values of the 

learning rate, first momentum and second momentum for each 

data set used in the simulations. 
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Tabel 2. The values of the best learning rate, first momentum, and second momentum based on SKCV 

 

No. Optimizer 
No. 

Observations 

No. 

Variables 

Learning 

Rate 

Best First 

Momentum 

Best 

Second 

Momentum 

Test Log-

Loss 

Test 

Accuracy 

1 SGD 5000 30 0.03 - - 0.1111 0.9822 

2 SGDM 5000 30 0.05 0.9 - 0.1036 0.9828 

3 DemonSGDM 5000 30 0.01 0.8 - 0.1006 0.9824 

4 Adam 5000 30 0.08 0.8 0.999 0.1198 0.9776 

5 SGD 10000 30 0.001 - - 0.3543 0.8726 

6 SGDM 10000 30 0.005 0.8 - 0.3421 0.8747 

7 DemonSGDM 10000 30 0.0008 0.9 - 0.3417 0.8753 

8 Adam 10000 30 0.01 0.7 0.8 0.341 0.8758 

9 SGD 20000 30 0.008 - - 0.3855 0.86755 

10 SGDM 20000 30 0.008 0.7 - 0.3858 0.8673 

11 DemonSGDM 20000 30 0.0008 0.8 - 0.3839 0.86765 

12 Adam 20000 30 0.01 0.9 0.8 0.3892 0.86655 

13 SGD 5000 40 0.08 - - 0.1589 0.9758 

14 SGDM 5000 40 0.05 0.7 - 0.1568 0.9762 

15 DemonSGDM 5000 40 0.01 0.7 - 0.1546 0.9776 

16 Adam 5000 40 0.1 0.8 0.99 0.1808 0.9624 

17 SGD 10000 40 0.005 - - 0.3408 0.8741 

18 SGDM 10000 40 0.003 0.7 - 0.3386 0.8739 

19 DemonSGDM 10000 40 0.001 0.7 - 0.3388 0.8738 

20 Adam 10000 40 0.01 0.7 0.9 0.342 0.8738 

21 SGD 20000 40 0.005 - - 0.3875 0.86725 

22 SGDM 20000 40 0.005 0.8 - 0.3878 0.86715 

23 DemonSGDM 20000 40 0.0005 0.9 - 0.3861 0.8684 

24 Adam 20000 40 0.01 0.9 0.7 0.389 0.86755 

25 SGD 5000 50 0.05 - - 0.1494 0.9734 

26 SGDM 5000 50 0.05 0.7 - 0.1562 0.9724 

27 DemonSGDM 5000 50 0.005 0.8 - 0.1607 0.971 

28 Adam 5000 50 0.08 0.8 0.999 0.1794 0.9592 

29 SGD 10000 50 0.005 - - 0.3453 0.8704 

30 SGDM 10000 50 0.003 0.8 - 0.3415 0.8736 

31 DemonSGDM 10000 50 0.0003 0.9 - 0.3433 0.8714 

32 Adam 10000 50 0.008 0.7 0.99 0.3533 0.8701 

33 SGD 20000 50 0.005 - - 0.3899 0.8641 

34 SGDM 20000 50 0.005 0.9 - 0.3875 0.86485 

35 DemonSGDM 20000 50 0.0005 0.9 - 0.3851 0.86675 

36 Adam 20000 50 0.01 0.9 0.8 0.3889 0.8636 

37 SGD Wine 0.003 - - 0.9698 0.596 

38 SGDM Wine 0.003 0.7 - 0.969 0.5979 

39 DemonSGDM Wine 0.0005 0.99 - 0.9768 0.5985 

40 Adam Wine 0.0001 0.999 0.99 0.9714 0.6035 

 

Each optimizer was evaluated based on its convergence 

speed, loss function stability, final accuracy, and ROC-AUC 

values with a tolerance value of 10-16 as the stopping rule. 

This is to determine the behavior of the optimizer after a 

solution is reached and over 100 epochs. 

Furthermore, additional hyperparameters will be adjusted 

during the optimisation process, including the learning rate 

and momentum are determined using a combination of the 

python scikit-learn and numpy libraries with employed a grid 

search method coupled with k-fold cross-validation to 

determine the optimal learning rate and momentum. The 

dataset was initially partitioned into training and validation 

sets. Each hyperparameter combination within the predefined 

grid was evaluated using k-fold cross-validation on the 

training set. For each fold, the model was trained on the 

training subset and evaluated on the test subset using a 

specified scoring metric. The average score across all folds 

was computed for each hyperparameter combination. The 

combination yielding the best average score was selected as 

the optimal hyperparameters. Subsequently, the model was 

retrained on the entire training set using these optimal 

hyperparameters. Finally, the best model was evaluated on the 

held-out validation set to obtain an unbiased estimate of 

performance. These steps are shown as follows in pseudocode 

form: 

 

Parameter: 

a. dataset D  

b. model M  

c. hyperparameter_grid H  

d. cross_validation_folds K  

e. scoring_metric S  

 BEGIN  

   Split D into training set T and validation set V  

        FOR EACH combination C in H:  

a. score_sum = 0   

            FOR i = 1 TO K:  

a. Split T into K subsets  

b. train_subset = T - T[i]  

c. test_subset = T[i]  

 

d. Train M on train_subset using 

hyperparameters C  

e. Evaluate M on test_subset using S  
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f. Add evaluation score to score_sum  

            average_score = score_sum / K     

            IF average_score is better than best_score:  

a. best_score = average_score  

b. best_hyperparameters = C  

        Train M on entire T using best_hyperparameters  

        best_model = trained M  

        Evaluate best_model on V using S  

        final_score = evaluation result  

        RETURN    

a. best_hyperparameters, 

b. best_model, 

c. best_score,  

d. final_score  

         END  

 

4.4 Model fitting 

 

The model fitting process for evaluating SGD variants for 

MLR involves several key components, including the choice 

of software, convergence criteria, and regularization 

techniques. Open source Python; Buat sendiri; konvergence 

criteria: tolerance.  

After getting the values of learning rate and momentum the 

multinomial logistic model is fitted using the following steps 

(pseudocode):  

1. Initializing the weight matrix W randomly.  

2. Depending on the chosen optimizer, we initialize 

additional variables (velocity for SGDM, first and 

second moments for Adam).  

3. We then enter the main training loop, which iterates 

for a specified number of epochs.  

4. In each epoch, we shuffle the data and process it in 

mini-batches.  

5. For each mini-batch, we perform a forward pass, 

compute the gradient, and then update the weights 

based on the chosen optimizer:   

a. For SGD, we simply subtract the learning 

rate multiplied by the gradient.  

b. For SGDM, we update the momentum and 

then use it to update the weights.  

c. For DemonSGDM, we update the 

momentum and then use it to update the 

weights and decay momentum. 

d. For Adam, we update the first and second 

moments, compute their bias-corrected 

versions, and use them to update the 

weights. 

6. After training, we return the final weight matrix. 

 

 
 

Figure 1. Model accuracy for simulation datasets 
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The multinomial logistic model is defined separately as it's 

used in the forward pass to compute the predicted 

probabilities.  

This pseudocode provides a high-level overview of the 

process. In a real implementation, you would also need to 

handle data preprocessing, model evaluation, and potentially 

early stopping or learning rate scheduling.  

 

 

5. RESULT 

 

In general, all optimizers are capable of achieving 

convergence for both simulation datasets and the Red-Wine 

dataset. The following Table 2 shows the values of the learning 

rate, first momentum and second momentum for each dataset 

used in the simulations and real-world. Next, Table 3 presents 

the average run times of the teams (s), the average number of 

epochs, and the ROC-AUC scores. Additionally, Figures 1 and 

2 display the accuracy interval values for each optimizer and 

dataset used. The ROC-AUC score and accuracy intervals will 

be used as the basis for assessing the performance of each 

optimizer. 

 

 
 

Figure 2. Model performance for red-wine quality 

 

Table 3. Average run time, average number of epoch, ROC-AUC score values 

 
Datasets Optimizer Average Run Time (s) Average Number of Epochs ROC-AUC Score 

Simulation Dataset 5000 obs. × 

30 features 

SGD 0.758038 78.6 0.9974 

SGDM 0.509473 49.2 0.9971 

DemonSGDM 3.204334 300 0.9973 

Adam 3.696493 300 0.9972 

Simulation Dataset 5000 obs. × 

40 features 

SGD 0.215203 21.4 0.9962 

SGDM 0.317307 28.8 0.9966 

DemonSGDM 3.295011 300 0.9969 

Adam 3.717411 300 0.996 

Simulation Dataset 5000 obs. × 

50 features 

SGD 0.403949 39.8 0.9915 

SGDM 0.462271 42.2 0.9918 

DemonSGDM 2.711366 251.2 0.9919 

Adam 3.814062 300 0.9922 

Simulation Dataset 10000 obs. × 

30 features 

SGD 1.910756 108 0.9605 

SGDM 0.49598 26.8 0.9601 

DemonSGDM 5.386132 300 0.9588 

Adam 0.917388 42.6 0.9596 

Simulation Dataset 10000 obs. × 

40 features 

SGD 0.722471 42.4 0.959 

SGDM 1.193789 64.2 0.9597 

DemonSGDM 0.841327 46.4 0.9599 

Adam 1.61335 77.8 0.9599 

Simulation Dataset 10000 obs. × 

50 features 

SGD 1.308712 36.4 0.9594 

SGDM 2.258024 53.6 0.9609 

DemonSGDM 12.10365 300 0.9603 

Adam 14.19419 300 0.9601 

Simulation Dataset 20000 obs. × 

30 features 

SGD 0.764878 11.6 0.9628 

SGDM 0.82038 11.4 0.9627 

DemonSGDM 18.53604 243.4 0.9639 

Adam 7.485278 86.4 0.9638 

Simulation Dataset 20000 obs. × 

40 features 

SGD 1.106545 17.2 0.9625 

SGDM 1.205817 17 0.9625 

DemonSGDM 23.68813 300 0.9624 

Adam 8.17894 90.2 0.9625 

Simulation Dataset 20000 obs. × 

50 features 

SGD 1.26268 16.8 0.964 

SGDM 1.211844 16.2 0.9645 

DemonSGDM 21.9884 300 0.9639 

Adam 7.994103 90.6 0.9643 

Red Wine Quality Dataset 

SGD 2.698811 300 0.8325 

SGDM 2.900424 300 0.8322 

DemonSGDM 2.964975 300 0.8001 

Adam 3.498089 300 0.8344 

 

For 5000 observations, the models generally performed 

best, with test accuracies often above 97%. Performance 

decreased for 10000 and 20000 observations, with accuracies 

dropping to around 87% and 86% respectively. There's no 

clear trend in performance as the number of variables increases 

from 30 to 50. For 5000 observations, SGDM and 
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DemonSGDM generally outperformed SGD and Adam. For 

10000 and 20000 observations, the differences between 

optimizers were less pronounced. Adam often had slightly 

worse performance compared to the other optimizers, 

especially for 5000 observations.  

All optimizers performed similarly on this real-world 

dataset. Test accuracies were much lower (around 60%) 

compared to the generated dataset, indicating this is a more 

challenging classification task. Adam slightly outperformed 

the other optimizers, with the highest test accuracy of 60.35%. 

The log-loss values were significantly higher for this dataset 

compared to the generated data. Furthermore, Figure 1 shows 

a series of plots comparing the performance of different 

optimization optimizers (SGD, SGDM, DemonSGDM, and 

Adam) across various datasets and conditions. The plots are 

organized in a 3×3 grid, with each row representing a different 

number of observations (5000, 10000, 20000) and each 

column representing a different number of features (30, 40, 

50).  

Each individual plot displays the accuracy of the four 

optimization algorithms for a specific combination of 

observations and features. The optimizers are listed vertically, 

and horizontal lines with dots represent the accuracy range and 

mean for each algorithm. The relative performance of the 

algorithms seems fairly consistent across different numbers of 

observations and features. In most cases, the order of 

performance from best to worst appears to be: DemonSGDM 

≈ SGDM > SGD > Adam. The accuracy values generally fall 

between 0.86 and 0.98, indicating high performance across all 

conditions. There seems to be slightly more variation in results 

for the 5000 observation datasets compared to the 10000 and 

20000 observation datasets. The number of features (30, 40, 

50) doesn't seem to dramatically change the relative 

performance of the optimizers. Adam consistently shows the 

widest range of accuracy values and often performs slightly 

worse than the other optimizers. These two algorithms 

frequently have very similar performance, often overlapping 

in their accuracy ranges.  

Figure 2 displays the performance comparison of four 

different optimization algorithms (SGD, SGDM, 

DemonSGDM, and ADAM) on a wine dataset. SGD shows a 

wide range of performance, with accuracy varying from about 

0.58 to 0.61. SGDM has a narrower performance range, 

clustered around 0.59 to 0.60. DemonSGDM displays the 

widest range of performance, spanning from about 0.50 to 

0.60. ADAM shows the most consistent performance with the 

smallest range, achieving an accuracy of about 0.60. ADAM 

seems to perform the best with the highest and most consistent 

accuracy has decent performance but with more variability 

than SGDM and ADAM. DemonSGDM shows the most 

unpredictable performance, with a very wide range of possible 

accuracies.  

In general, the performance differences between these 

algorithms on this wine dataset are relatively small, with all 

achieving accuracies between 50% and 60%. This suggests 

that the classification task for this wine dataset might be 

challenging, as none of the algorithms achieve very high 

accuracy. 

 

 

6. DISCUSSION 

 

It is noteworthy that all optimizers used in the study can 

achieve convergence, both in simulation datasets and the more 

challenging real-world Red-Wine dataset. This suggests that 

despite differences in their underlying mechanics, each 

optimizer possesses the fundamental characteristics necessary 

to minimize loss functions effectively across diverse data 

types. 

The evaluation of the optimizers is supported by two main 

metrics: the ROC-AUC score and accuracy intervals. Table 2 

provides insights into the learning parameters for each 

simulation, while Table 3 and Figures 1 and 2 present more 

comprehensive performance metrics like average run times, 

epochs, and the ROC-AUC scores, which together create a 

robust framework for comparison. 

Analyzing the performance based on the number of 

observations reveals intriguing insights. With 5000 

observations, the models achieve high test accuracies often 

exceeding 97%. However, as the number of observations 

increases to 10,000 and 20,000, a significant drop in accuracy 

to around 87% and 86%, respectively, occurs. This decline 

may indicate that the models struggle to generalize as the 

dataset becomes larger and potentially more complex. The 

absence of a clear performance trend with the increase in 

feature variables (30 to 50) further complicates the narrative, 

indicating that merely increasing complexity does not 

necessarily enhance model performance. 

Within the 5000 observation datasets, SGDM and 

DemonSGDM generally demonstrate superior performance 

over SGD and Adam. However, the differences among 

optimizers become less pronounced with larger dataset sizes 

of 10,000 and 20,000 observations. Interestingly, Adam often 

lagged behind the others, especially in smaller datasets. This 

suggests that while Adam is a popular choice in various 

contexts, it may require more data to express its full potential 

effectively. 

The real-world wine dataset presents an entirely different 

challenge, with all optimizers achieving lower accuracies 

(around 60%). Adam stands out slightly with the highest 

accuracy of 60.35%, although this is modest overall. The 

increased log-loss values further indicate that this dataset is 

inherently more difficult, reinforcing the idea that complex 

real-world data may not always yield favorable results, 

regardless of the optimizer. 

Figures 1 and 2 collectively illustrate the performance of 

each optimizer across varying conditions. The first figure 

compares the algorithms through a grid of accuracy plots, 

highlighting that DemonSGDM and SGDM consistently 

outperform others within the 5000 observations dataset. Figure 

2 delves deeper into the wine dataset, illustrating that while 

ADAM offers consistency, it doesn't reach the levels of 

variability seen with SGDM and DemonSGDM. The 

accuracies for the wine dataset, hovering between 50% and 

60%, imply that all algorithms are relatively ineffective under 

these classification conditions and may suggest a need for 

alternative modeling strategies or feature engineering. 

 

 

7. CONCLUSION 

 

In conclusion, the findings indicate that while all optimizers 

can achieve convergence, their effectiveness varies 

significantly across datasets and task complexities. SGDM and 

DemonSGDM stand out in simulations, while Adam garners a 

slight edge in challenging real-world applications, albeit with 

modest performance. The varying results highlight the need 

for careful optimizer selection based on dataset characteristics 
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and required performance thresholds particularly in predicting 

outcomes, where subtle distinctions in methodology can 

influence results substantially. Further exploration into hybrid 

approaches or alternative optimization techniques may yield 

enhanced performance, particularly for complex, real-world 

datasets like the wine classification case. 

 

 

8. FUTURE RESEARCH 

 

Future research could focus on developing and evaluating 

hybrid optimization algorithms that combine the strengths of 

existing optimizers like SGDM, DemonSGDM, and Adam. By 

integrating different optimization strategies, researchers can 

investigate whether hybrid approaches can achieve superior 

convergence rates and accuracy across various datasets, 

particularly in complex real-world scenarios. 

Investigating adaptive optimization techniques that 

dynamically adjust learning rates and momentum parameters 

based on the characteristics of the dataset could be beneficial. 

This research could explore how adaptive mechanisms can 

improve performance in datasets with varying complexities 

and sizes, potentially leading to more robust models. 

Given the observed performance variations with different 

feature sets, future studies should delve into advanced feature 

engineering and selection techniques. Research could focus on 

identifying which features contribute most significantly to 

model performance and how to preprocess data effectively to 

enhance optimizer efficacy. 

Conducting extensive benchmarking of optimization 

algorithms across a wider range of datasets, including both 

synthetic and real-world data, would provide deeper insights 

into their performance. This research could help establish 

guidelines for selecting optimizers based on specific dataset 

characteristics, such as size, dimensionality, and inherent 

complexity. 

Investigating alternative optimization techniques, such as 

evolutionary algorithms, swarm intelligence, or reinforcement 

learning-based optimizers, could yield new insights into their 

effectiveness compared to traditional methods. This research 

could assess whether these novel approaches can outperform 

established optimizers in specific contexts. 

Future studies should consider a broader range of 

performance metrics beyond accuracy and ROC-AUC scores. 

Metrics such as precision, recall, F1-score, and computational 

efficiency could provide a more comprehensive evaluation of 

optimizer performance, particularly in imbalanced datasets or 

those with specific classification challenges. 

Conducting case studies that apply various optimization 

algorithms to real-world problems, such as medical diagnosis, 

financial forecasting, or image classification, would provide 

practical insights into their effectiveness. These studies could 

highlight the nuances of optimizer performance in real-world 

applications and inform best practices for their deployment. 

Implementing longitudinal studies that track the 

performance of different optimizers over time as new data 

becomes available could provide valuable insights into their 

adaptability and robustness. This research could help identify 

which optimizers maintain performance consistency in 

evolving datasets. 
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