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 Tuberculosis (TB) remains a significant global issue, particularly in countries with low 

economic status and limited healthcare systems. One of the primary challenges is 

accurate early diagnosis, especially through microscopic examination of sputum 

samples. However, subjective interpretation and variations in microscopic image 

quality often hinder diagnostic accuracy. In recent years, the use of Convolutional 

Neural Networks (CNN) has increased to enhance TB diagnosis effectiveness. This 

study utilizes the EfficientNet architecture to understand the model's effectiveness in 

detecting TB in medical images. The dataset used consists of 1266 images, divided into 

training and testing data with a ratio of 70:30. Additionally, a median filter technique 

was applied for image preprocessing. Several optimization algorithms are used in this 

research, namely RMSprop, Stochastic Gradient Descent (SGD), Adam, and Stochastic 

Gradient Descent with Momentum (SGDM), to find the best scenario. The test results 

show that Adam optimization provides the best performance compared to the others. 

The results showed excellent performance, with a low loss rate (9.20%) and high 

accuracy (98.03%). The relatively fast model training time (122.81 seconds) also adds 

to the model's efficiency value. This confirms that EfficientNet B0 is an attractive 

choice for TB classification, with the hope that further development will improve 

accuracy and efficiency in diagnosing this disease. 
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1. INTRODUCTION 

 

TB remains a highly significant global public health issue, 

particularly in countries with low economic levels and limited 

healthcare systems, where the prevalence of the disease is 

often high and its impact is widespread [1]. This disease is 

caused by the bacterium Mycobacterium tuberculosis, which 

spreads through the air and can infect anyone. If not identified 

and treated properly, it can lead to serious complications and 

even death [2]. The main challenge in controlling the spread 

of this disease is finding ways to identify and diagnose it early 

and accurately, even though preventive and control measures 

have been implemented [3]. 

One of the key techniques for achieving early detection of 

tuberculosis is by identifying TB bacteria through microscopic 

examination of sputum samples [2]. Although the microscopic 

identification of TB bacteria in sputum samples has 

advantages in terms of speed and high cost efficiency, the main 

challenges are subjective interpretation and variations in the 

quality of microscopic images, which often hinder the 

accuracy and consistency of the diagnostic results provided by 

this method [3]. In recent years, along with rapid 

advancements in technology, especially in the development of 

artificial intelligence, specifically CNN, research has focused 

on overcoming these challenges and enhancing the 

effectiveness of the tuberculosis diagnosis process [4]. 

The feed-forward CNN is a model developed from the 

Multilayer Perceptron algorithm, an innovation that enables 

deep learning in image processing [5]. In this structure, each 

set of parameters to be adjusted in the convolutional layer, 

often referred to as convolutional filters, aims to extract deeper 

visual meaning from the original image input into the network 

[6]. This process aids in identifying meaningful features from 

the image, such as color patterns, textures, and shapes, which 

are then utilized for further analysis [7]. On the other hand, 

parameters placed in the fully connected layers aim to classify 

the extracted visual features into predefined target classes, 

such as distinguishing between TB and non-TB bacteria in the 

medical field. The convolutional layers in this architecture 

play a key role in forming a hierarchical abstraction of visual 

concepts from the initial images, with earlier layers focusing 

on low-level features like color and simple shapes, while 
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deeper layers within the network capture more complex visual 

concepts, such as identifying sub-parts of objects present in the 

image [8]. 

Through the proposed optimization methods, namely 

RMSprop, SGD, Adam, and SGDM, this research aims to 

provide deeper insights into the strengths and limitations of 

each model in the context of TB detection application in 

medical images. By applying CNN methods using the 

EfficientNet architecture, this step is expected to offer a more 

holistic understanding of the effectiveness and scalability of 

these models in addressing the challenges of TB detection in 

medical images. 

 

 

2. MATERIALS AND METHODS 

 

2.1 Methodology 

 

The steps outlined in Figure 1 for identifying the bacteria 

causing TB involve analyzing microscopic images obtained by 

collecting several microscopic images related to TB disease. 

These images then undergo a series of preprocessing steps 

that include various processes to ensure optimal image quality 

before being used in further analysis. An important stage in 

preprocessing is the use of a median filter, a highly effective 

method in reducing noise and improving image details. The 

use of a median filter allows for filtering of microscopic 

images so that important information related to 

microbiological structures remains preserved while removing 

unwanted disturbances. 

After completing the preprocessing stage, the next step is to 

train the model using previously separated data. This data is 

divided into two main parts: training data and testing data. In 

this testing, 70% of the total data is used for the model training 

process, while the remaining 30% is used to evaluate the 

performance of the trained model. This division aims to ensure 

that the model has the ability to effectively apply information 

from unseen data, thereby accurately identifying TB disease 

images. 

The next step in this study involves the disease 

identification stage through the analysis of TB images. Here, 

the model that has undergone the training stage will be used to 

classify these images into two categories: TB bacteria or non-

TB bacteria. The CNN architecture used in the research for 

classification is EfficientNet, which serves as a crucial 

foundation in implementing CNN. EfficientNet excels in 

recognizing and analyzing essential features in images, 

enabling the model to make accurate decisions based on the 

information available in these features. This ensures obtaining 

accurate final results. 

 

 
 

Figure 1. System diagram 

 

2.2 Dataset 

 

 
 

Figure 2. Dataset TB 

 

 
 

Figure 3. Dataset non-TB 

 

The dataset used in this research consists of sputum images 

captured through microscopy, totaling 1266 images. This data 

is divided into two types: sputum images from TB patients, 

comprising 633 data, and sputum images from non-TB 

patients, also comprising 633 data (refer to Figures 2 and 3). 

Images of sputum with dimensions of 800 × 600 pixels are 

included in the image dataset. The Ziehl-Neelsen (ZN) 

staining method was used to obtain these images. A Labomed 

Digi 3 digital microscope with an L × 400 and an iVu 5100 

digital camera with 5.0 MP were used for the process of taking 

pictures. At a 1000 × magnification, the sputum images were 

captured with a resolution of 120 and a color depth of 24 bits. 

 

2.3 Median filter 

 

The median filter, first introduced by Tukey [9], plays an 

important role as an image processing technique that does not 

rely on linearity but instead uses a non-linear approach in 

processing image data [10]. The median filter method is 

designed with the primary goal of reducing the noise level 

present in an image, while simultaneously smoothing the 

distribution of pixel values [11]. The median filter process 

involves a series of structured steps, starting with sorting the 
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pixels that form an odd-sized group such as 3 × 3, 5 × 5, 7 × 7 

[12], followed by calculating the median value of that group. 

The resulting median value is then used to replace the pixel 

value at the center of the filter window. This unique approach 

makes the median filter highly effective in reducing or even 

eliminating noise in an image [13].  

For a clearer example, consider the application of a median 

filter using a 3 × 3 matrix that encompasses the central pixel 

and its immediate neighbors within an image. The 

fundamental operation of the median filter involves gathering 

these pixels, arranging them in order, and then determining the 

median value. This median value is subsequently assigned to 

the central pixel of the matrix. The primary objective of this 

process is to ensure that the central pixel's value is a more 

accurate representation of the surrounding area, leading to 

enhanced image clarity and reduced noise [14]. Figure 4 

illustrates the visual impact of applying the median filter with 

a 3 × 3 matrix, demonstrating how it effectively sharpens the 

image while minimizing noise [9]. 

 

 
 

Figure 4. 3 × 3 pixel area 

 

2.4 EfficientNet architecture 

 

Since 2012, there has been a noticeable improvement in the 

success rates of models from the ImageNet dataset, which 

have grown increasingly complex over time. This complexity, 

however, introduces the challenge of heightened 

computational demands from these advanced models. In 

response to this challenge, recent developments such as 

EfficientNet have gained prominence due to their impressive 

accuracy, achieving a 84.4% success rate in ImageNet 

classification tasks with just 66 million parameters, 

showcasing their exceptional efficiency [15]. 

EfficientNet is particularly notable for its family of 8 

models, ranging from B0 to B7. Interestingly, as the model 

number increases, there is no substantial growth in the number 

of parameters; yet, there is a consistent enhancement in 

accuracy. A key feature that distinguishes EfficientNet from 

other CNN models is its adoption of the Swish activation 

function, a novel alternative to the traditionally used Rectifier 

Linear Unit (ReLU) activation function [16].  

The goal of deep learning architectures is to uncover more 

efficient approaches with smaller models. Unlike other 

contemporary models, EfficientNet achieves superior 

efficiency by uniformly scaling depth, width, and resolution 

while reducing model size. The initial step in this compound 

scaling technique involves a grid search to identify 

correlations between various tuning dimensions in the base 

network within resource constraints. Through this approach, 

the most appropriate scaling factors for each dimension, 

including depth, width, and resolution, can be determined. The 

resulting coefficients are then implemented to tune the base 

network to match the desired target network. Figure 5 shows 

that EfficientNet architecture has proven highly successful in 

various image processing competitions and applications, 

capable of producing lightweight and efficient models without 

sacrificing accuracy [15]. 

 

 
 

Figure 5. Schematic representation of EfficientNet 

 

2.5 Algorithm optimization  

 

Optimization algorithms in the context of machine learning 

are methods used to minimize or maximize an objective 

function measured based on a specific dataset. These 

algorithms iteratively update model parameters to reduce 

prediction errors. This research employs four types of 

optimization: 

RMSprop is a modification of AdaGrad that is more 

effective for non-convex optimization by changing the 

accumulation of gradients into exponentially weighted moving 

averages. The standard value for the learning rate in SGD is 

0.001. Here are the calculations for RMSprop updates as 

described in Eqs. (1)-(3) [17]. 

 

(1 )r r g g = + −  (1) 

 

g
r





 = −

+
 (2) 

 
  = +  (3) 

 

In this context, r is the squared gradient accumulation, p is 

the decay rate, ∆θ is the computed update, α is the learning 

rate, 𝛿 is a constant with a value of 10-7 and θ is the initial 

parameter. 

SGD is one variation of gradient descent optimization that 

updates parameters each time it processes training data. In the 

parameter update process, SGD does not iterate, making it 

faster, especially for large datasets. The standard value for the 

learning rate in SGD is 0.01. The parameter update process in 

SGD can be defined in Eq. (4) [17]. 

 

( )( ) ( )* ; ;i iJ x y   = −   (4) 

 

In this context, θ is the updated parameter, ղ is the learning 

rate, and x(i) and y(i) are the training data. This process ensures 

that each learning iteration updates the parameter θ according 

to the processed data. 

Adam is an algorithm that combines elements from 

RMSProp and Momentum. This algorithm retains the learning 

rate as RMSProp does and merges it with momentum-

weighted moving averages. This combination allows Adam to 

efficiently optimize the model by leveraging the advantages of 

both approaches [18-20]. 
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Parameters (5) and (6) tend to experience bias as they 

approach the value of 1, especially if the initialization of time 

steps and decay rates is very small. To address this, bias 

correction and moment estimation are required by dividing 

parameters (5) and (6) by the difference between 1 and the 

decay factor. With this step, the bias that arises in the initial 

estimation can be corrected, resulting in more accurate 

parameters. 
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The developers of the Adam algorithm recommend using a 

beta-1 value of 0.9, a beta-2 value of 0.999, and an epsilon 

value of 10-8. After obtaining the optimal values of parameters 

(5) and (6), the Adam formula can be computed as follows: 
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Based on the formula of Adam, it is known that Adam uses 

the foundation of RMSProp but with gradient estimation 

through momentum methods. This combination aims to 

enhance training speed. With this method, Adam has 

succeeded in surpassing previous optimization algorithms 

both in training stages and in other experiments. However, 

Adam introduces new hyperparameters that can complicate 

hyperparameter tuning when facing increasingly complex 

problems. 

SGDM is a variation of gradient descent optimization that 

consistently updates parameters for each training data. In the 

parameter update process, SGDM does not iterate, making it 

faster, especially for large datasets. The standard value for the 

learning rate in SGD is 0.01. The parameter update process in 

SGD can be described in Eq. (8) [21]. 

 

( )( ) ( ); ,i iGt J x y =  (10) 

 

with θ as the updated parameter, ղ as the learning rate, and x(i) 

and y(i) as the training data. This ensures that each learning 

iteration updates parameters according to the processed data. 

 

2.6 Confusion matrix 

 

Confusion matrix is a table used to describe the performance 

of a classification method by comparing the model's predicted 

outcomes against the actual values of the observed objects 

[22]. By dividing the prediction outcomes into four categories: 

true positive, false positive, true negative, and false negative, 

the confusion matrix provides deep insights into how well a 

model can identify true and false objects. This aids in 

evaluating the strengths and weaknesses of the classification 

model, as well as enabling better optimization of the 

classification strategies employed [23]. Here is a table of the 

confusion matrix: 

 
 

Figure 6. Confusion matrix 
 

The confusion matrix consists of four main components 

(refer to Figure 6): 

True Positive (TP): This is the number of data points 

correctly predicted as positive by the model. 

True Negative (TN): This is the number of data points 

correctly predicted as negative by the model. 

False Positive (FP): This is the number of data points 

incorrectly predicted as positive by the model (negative). 

False Negative (FN): This is the number of data points 

incorrectly predicted as negative by the model (positive). 
 

 

3. RESULT 

 

3.1 Test scenario 
 

The next step is to train the EfficientNet architecture model 

using microscopic images of tuberculosis bacteria. Table 1 

below summarizes a series of experiments aimed at gaining a 

deep understanding of the influence of optimizers, batch sizes, 

and learning rates on model performance. Consequently, test 

scenarios were conducted by varying combinations of the 

Adam, RMSProp, SGD, and SGDM optimizers while 

maintaining consistency with a batch size of 16, a learning rate 

of 0.0001, and 20 epochs. Table 1 presents below contains the 

results obtained from these experiments, providing a solid 

foundation for further analysis to determine the optimal 

strategy for the appropriate learning configuration. 

 

Table 1. Test scenario 

 
 Optimizer Batch Learning Rate Epoch 

Test 

Scenario 

Adam 16 0.0001 20 

RmsProp 16 0.0001 20 

SGD 16 0.0001 20 

SGDM 16 0.0001 20 

 

3.2 Test result 
 

The trial results on the images were conducted using the 

EfficientNet model architecture, which has been proven to be 

efficient in resource utilization. The trial results indicate that 

the EfficientNet model with the Adam optimizer, batch size of 

16, learning rate of 0.0001, and 20 epochs can be seen in 

Figures 7-10. 

Test results using the RMSprop optimizer in Figure 7 show 

that the model has quite good performance on training data 

with an accuracy of 90.48% and a loss of 23.51%. However, 

the model performance on validation data experienced a 

significant decrease, with an accuracy of 51.23% and a loss of 

68.49%. This indicates the possibility of overfitting, where the 

model fits the training data too well but is less able to 

generalize to new data. 
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Figure 7. RMSProp optimizer test results 

 

Test results using the SGD optimizer in Figure 8 show that 

the model has unsatisfactory performance on training data 

with an accuracy of 58.47% and a loss of 67.77%. Apart from 

that, the model performance on validation data also did not 

show significant improvement, with an accuracy of 37.93% 

and a loss of 69.20%. This indicates that the model has not 

been able to learn and generalize well, both on training data 

and validation data. 

 

 
 

Figure 8. SGD optimizer trial results 

 

Test results using the SGDM optimizer in Figure 9 show 

that the model has quite good performance on training data 

with an accuracy of 60.57% and a loss of 66.95%. Apart from 

that, the model performance on validation data also shows 

adequate results with an accuracy of 66.50% and a loss of 

68.78%. This indicates that the model is able to learn and 

generalize quite well, although there is still room for further 

improvement in reducing loss values and increasing accuracy 

on training and validation data. 

The test results using the Adam optimizer in Figure 10 

achieved a loss value of 9.20%, which shows a relatively low 

level of information loss during the training process. 

Additionally, the model accuracy reached 98.03%, 

demonstrating the model's ability to classify data with a high 

level of correctness. Furthermore, the precision metric of 

98.04% indicates the proportion of true positive results, while 

the recall metric of 98.03% indicates the proportion of true 

positive data correctly identified from all actually positive 

data. The F1-score of 98.03% combines both metrics to 

provide an overall assessment of the model's quality in 

predicting data classes. The time required to train the 

EfficientNet model was 122.81 seconds, which is relatively 

fast considering the model's good performance in producing 

accurate results. Overall, the trial results demonstrate that the 

EfficientNet architecture performs very well in data 

classification, with high accuracy and low loss rates, as well 

as the ability to maintain a balance between precision and 

recall. The training time for the model is also quite efficient, 

making EfficientNet an attractive choice for various 

classification tasks. Table 2 and Figure 11 present a 

comparison of metrics between the testing and validation 

stages, illustrating the consistency and performance of the 

model in both stages. 

 

 
 

Figure 9. SGDM optimizer trial results 

 

 
 

Figure 10. Adam optimizer test results 

 

Table 2. Comparison of metrics between training and validation stages using Adam optimization 

 
 Loss Acc Precision Recall F1-Score Time (s) 

Training 16.61 97.24 97.25 97.24 97.24 122.81 

Validation 9.20 98.03 98.04 98.03 98.03 122.81 

 

Figure 12 depicts the loss performance of the EfficientNet 

B0 model in TB classification. There is significant variation in 

loss between training and validation data during model 

iterations. Initially, there is substantial variation in loss for 

both types of data. However, as the iterations progress, the loss 

on the validation data starts to stabilize and decrease, 
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indicating that the model is improving its performance and 

becoming better at generalizing on new data. Nevertheless, 

some points still show significant increases in loss. 

 

 
 

Figure 11. The EfficientNet test results using Adam 

optimization 

 

 
 

Figure 12. EfficientNet loss performance graph 

 

 
 

Figure 13. EfficientNet accuracy performance graph 

 

Figure 13 shows the accuracy performance of the 

EfficientNet B0 model in TB classification. There are 

fluctuations in accuracy on both training and validation data 

during model iterations. Initially, there is significant variation 

in accuracy for both types of data. However, as the iterations 

progress, an overall improvement in accuracy on both data sets 

is observed, indicating the model's enhanced ability to classify 

data more accurately. Some points show significant increases 

in accuracy, indicating an overall improvement in model 

performance. 

 

 

4. CONCLUSIONS 

 

The conclusion from the experiments with EfficientNet 

using the Adam optimizer with a batch size of 16, learning rate 

of 0.0001, and 20 epochs shows excellent performance in 

classifying TB data, with a low loss rate (9.20%) and high 

accuracy (98.03%). Precision, recall, and F1-score metrics 

also indicate the model's ability to predict data classes 

effectively. The relatively fast model training time (122.81 

seconds) adds value to the model's efficiency. Performance 

graphs demonstrate a consistent decrease in loss on validation 

data and an overall increase in accuracy. This confirms that 

EfficientNet B0 is an attractive choice for TB classification, 

with the hope that further development will improve accuracy 

and efficiency, contributing positively to the medical field, 

particularly in diagnosing diseases like tuberculosis.  
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