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Tree-structured deep learning classifier models are widely used in dimensional sentiment 

analysis for efficient feature representation and learning. From this perspective, an 

Adversarial Tree-structured Convolutional Neural Network with Long Short-Term 

Memory (A-T-CNN-LSTM) model was developed that adopts the Semantic-enabled 

Frequency-aware Generative Adversarial Network (SFGAN) to create more adversarial 

samples for predicting the Valence-Arousal (VA) of the texts or image classes. In contrast, 

an abrupt change in input data was not handled that impacts the model accuracy. Hence, 

this article proposes an Adversarial Attention T-CNN-LSTM (AA-T-CNN-LSTM) model 

to handle abrupt changes and uncertainties in the input data for dimensional sentiment 

analysis. This model aims to enhance self-adaptation and self-learning efficiency by 

integrating an attention strategy with the A-T-CNN-LSTM network. This model is 

constructed based on the SFGAN, CNN, LSTM and attention strategy layers. The CNN 

captures the spatial dependencies, whereas the LSTM captures the temporal dependencies 

of the given input data. The attention strategy layer is included after LSTM to adaptively 

control the proportion of spatial and temporal dependencies by emphasizing a few weights 

for final output vectors. Moreover, the prediction of VA ratings of the texts or image classes 

is achieved based on the final output vectors. Finally, the testing outcomes reveal that the 

AA-T-CNN-LSTM model on the Stanford Sentiment Treebank (SST) and CIFAR-10 

datasets reaches an accuracy of 91.84% and 93.14%, respectively, contrasted with the state-

of-the-art models. 
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1. INTRODUCTION

Deep neural models have gained widespread use in recent 

years, but tree-based approaches like Decision Trees (DTs) 

and Random Forests (RFs) are still commonly used for 

learning problems involving metadata [1]. These methods 

offer several benefits, such as handling a wide variety of 

attribute classes, insensitivity to data quantity and extracting 

features with minimal complexity. However, when input has 

spatial features, neural net designs like Deep Neural Network 

(DNN), CNN and Recurrent Neural Networks (RNNs) are 

recognized as alternatives. Such designs can create task-

sensitive assumptions, obviating the requirement for domain-

specific experts in specific situations like image classification 

[2]. However, building DNNs using tree-based methodologies 

in raw information is challenging due to traditional Fully 

Connected Networks (FCNs) lacking an inductive bias toward 

high-dimensional raw data [3]. Despite some efforts, there is 

no widely accepted neural design that can successfully adapt 

tree-based techniques and most systems rely on traditional DT 

learning in their loops. This challenges the application of 

neural designs in different settings, revealing a blind spot in 

our understanding of DNNs. As a result, CNNs have become 

the preferred architecture for large-scale image classification 

due to their ability to recognize objects based on their salient 

features [4]. Supervised training is the core principle for 

training CNNs to identify images, as they are trained using a 

large collection of labeled images. The network recognizes 

individual features within previously labeled images, and 

every training sample is presented simultaneously during the 

learning process [5, 6]. Nevertheless, modern knowledge is 

gathered gradually over time, necessitating the creation of 

structures that can learn new data as it becomes available. 

CNN unifies feature extraction and classification, updating 

the entire structure instantly when a part of the feature space is 

updated. However, iterative learning risks permanent 

knowledge loss. To achieve this, retrained CNNs must 

incorporate past data into the process of updating current 

information. Tree-CNN (T-CNN) [7] is an adaptive 

hierarchical network designed to address catastrophic 

forgetting and utilize previously-learned characteristics. The 

T-CNN network consists of hierarchically developing CNNs

that take on new labels. Its hierarchical structure has been

expanded to accommodate new labels as nodes, with

branching based on feature sharing. Better categorization is

achieved by focusing on leaves, which are allocated by early

nodes into coarse super-classes. Pre-trained convolution layers

can be easily included in the expanded network, but it

struggles to learn task-related texts with the required features.

As a result, the T-CNN-LSTM model was developed, which 
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aims to increase granularity in dimensional sentiment analysis 

by utilizing the regional CNN and LSTM to predict VA 

sentence scores [8].  

The CNN splits text into regions, assigning weights based 

on their importance in VA prediction, while the LSTM 

aggregates data to predict VA across all regions. The model 

considers local information and global relationships between 

texts, then locates task-related expressions and clauses using a 

region division mechanism. The model incorporates organized 

data into VA prediction but does not examine the effects of 

class variations, low prediction rates, or feature learning 

complexity. To tackle these problems, the A-T-CNN-LSTM 

model [9] was developed to improve VA prediction 

performance in sentiment analysis. It adopted the GAN to 

produce adversarial samples for limited dataset classes. 

Spectrum divergences between generated and real images 

were significant when using standard GANs. The SFGAN 

variant can prevent spectral loss during the discriminator 

training by integrating the Frequency-Aware Categorizer 

(FAC) for multi-domain confidence estimate and introducing 

semantic restricted sampling for image creation. 

1.1 Problem statement 

The A-T-CNN-LSTM model can solve optimization 

problems, obtaining the correct latent vector for GAN-

generated image creation according to user specifications. But 

this model cannot handle abrupt changes in data features, or 

factors. Also, uncertainties were more complex, which causes 

poor granularity and prediction in dimensional sentiment 

analysis. 

1.2 Major contributions of the manuscript 

In this manuscript, the AA-T-CNN-LSTM model is 

proposed to handle abrupt changes and uncertainties in the 

input data for sentiment analysis. In this model, the attention 

strategy on the input dimensions forces the model to focus on 

decisive feature dimensions and ignore others. The main aim 

of integrating the attention strategy with the A-T-CNN-LSTM 

is to enhance self-adaptation and self-learning performance 

while abruptly changing the input data. In this AA-T-CNN-

LSTM model, the A-T-CNN-LSTM is the main core network 

for classification. Both attention strategy and A-T-CNN-

LSTM layers emphasize a few weights for feature vectors. 

First, the input vector is provided to the CNN layer followed 

by the LSTM to learn both spatial and temporal dependencies 

of the input vector, respectively. After the LSTM layer, the 

attention strategy layer is added to adaptively adjust the 

proportion of spatial and temporal dependencies for achieving 

effective prediction of VA ratings of the texts or image classes. 

Thus, it can handle uncertainty, or abrupt changes in the input 

data during the training phase for increasing the 

classification/prediction accuracy. 

The following portions are prepared as follows: Section 2 

presents the literature survey. Section 3 explains the AA-T-

CNN-LSTM model. Section 4 exhibits the test outcomes. 

Section 5 summarizes the study and suggests possible 

improvements. 

2. LITERATURE SURVEY

This section discusses a few previous research on tree-based 

deep learning algorithms for different applications. Deep 

Fuzzy Tree (DFT) algorithm [10] was presented to handle the 

huge-scale hierarchical image classification with numerous 

classes by replacing the Softmax function in the deep learner. 

To set up the tree-learning and core classifiers, a new double 

fuzzy inter-class relationship measure was included. However, 

the improper number of nodes and tree depth reduced 

precision. 

A neural machine translation was developed with a Gumbel 

Tree-LSTM-based encoder [11]. The authors focused on 

encoding an input phrase into a vector in an unsupervised-tree 

style and decoding it into a desired phrase. The learned tree 

representations were provided to the decoders as contextual 

data. Additionally, they developed a relation-gated LSTM 

model [12] to capture the correlation among different phrases. 

They also adopted a typed dependency Tree-LSTM, which 

utilizes the phrase dependency pattern and the dependency 

category to embed phrase significance into a dense vector. 

A new Tree-RNN [13] was developed for topology-

preserving deep graph embedding and learning. First, the trees 

were built from graphs and projected them into image space. 

Then, the TreeRNN was used to capture the patterns from the 

graph-tree pictures and categorize them into different graph 

categories. To better categorize network traffic, a Tree-RNN 

algorithm has been applied [14]. Each classifier in the tree's 

binary structure implements the small classification and 

separate rules for splitting traffic into distinct classes are 

provided. Time-related data characteristics were trained using 

the RNN and similarity between classes was estimated using 

cosine similarity. However, the databases were unbalanced, so 

the results were not particularly reliable. 

An integrated ResNet and Tree-RNN model [15] was built 

for classifying neuron categories in rat brains. The Tree-RNN 

was developed to learn from the unorganized SWC-format 

document information and the ResNet was built to identify 

features from the organized 2D neuron pictures. These were 

integrated by fusing two feature vectors and classifying them 

by the novel 3-layer neural network. But it did not handle any 

changes in the neuron data. 

The RF-CNN model [16] was created to use cardiac 

magnetic resonance in the diagnosis of coronary artery disease. 

Low-dimensional copies of the original high-dimensional 

images were sent to the CNNs so that they could automatically 

extract the relevant details. Then, the majority voting system 

was used to incorporate these features into the DTs for 

categorizing coronary artery disease. However, the number of 

features used in the DTs affected the RF efficiency. 

An optimized hierarchical T-CNN algorithm [17] has been 

developed based on the sheep flock optimization to predict 

workload and increase power efficiency in cloud computing. 

But it was difficult to handle the sudden changes in the input 

data. A tree-structured model [18] was designed by removing 

the impact of variances among clusters. The tree-structured 

classifier was built by automatically creating a primary 

classification tree by a clustering scheme, which assembles 

identical subtypes and uses the pruning rule to remove 

unwanted groups from the tree order. 

A Balanced binary Tree CNN (BT-CNN) [19] was designed 

that utilizes a binary tree-like architecture. It includes 

convolution and depthwise separable convolution group 

modules to optimize time and memory usage. The balanced 

approach of combining these modules aims to achieve optimal 

performance. However, it may struggle with sudden changes 

in features, resulting in reduced accuracy. 
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A Child-Sum Tree-LSTM model [20] was created to update 

nodes and edge vectors interactively, enhancing the learning 

of richer node representations. It attaches node embeddings to 

connected links and updates parent nodes with edge 

information. This process was repeated from bottom to top. It 

utilizes one constituent parser and one dependency parser to 

generate diverse formats. However, it was more effective for 

syntactic dependency tree structures than phrase trees. A tree-

structured LSTM network [21] was used to analyze the glycan 

moiety, and a graph neural network was employed to integrate 

potential fragmentation pathways. However, its efficiency was 

hindered by insufficient training data. 

2.1 Research gap 

From this literature, it is addressed that the existing tree-

structured deep learning models do not handle uncertainties or 

sudden changes in the input data or features during model 

training. This impacts the prediction/classification efficiency. 

Related to these models, the proposed AA-T-CNN-LSTM 

model can effectively handle uncertainties in the input data 

depending on the attention strategy for dimensional sentiment 

analysis, which predicts the VA scores of texts or classes of 

different images. 

3. PROPOSED METHODOLOGY

This section explains the AA-T-CNN-LSTM model for 

dimensional sentiment analysis in detail. Figure 1 depicts a 

pipeline of this study, which involves two major processes: (i) 

SFGAN-based data augmentation and (ii) T-CNN-LSTM with 

an attention strategy for classification/prediction. First, the 

SFGAN [9] is applied to augment the training data by creating 

more adversarial samples. After that, those data are used to 

train the Attention strategy integrated T-CNN-LSTM model. 

The trained model is later validated by the test data to predict 

VA ratings of texts or classify image classes. 

Figure 1. Pipeline of this study 

3.1 Design of T-CNN-LSTM with an attention strategy 

The design of the AA-T-CNN-LSTM model for classifying 

VA ratings of texts or image classes comprises two major 

components: (i) the SFGAN model [10] and (ii) the proposed 

T-CNN-LSTM with an attention strategy model. The T-CNN-

LSTM splits every given vector into many regions rather than

utilizing the entire input text or image to capture local n-gram

traits in regions and long-range dependencies among regions.

To split regions, a tree-structured region partition approach is

adopted [9] such that the semantic features at various tree

depths (regions) are used for classification tasks. A

comprehensive description of the structure of the T-CNN-

LSTM with an attention strategy is presented below. An

overall structure of the T-CNN-LSTM with attention strategy

is shown in Figure 2.

Figure 2. Structure of T-CNN-LSTM network with attention strategy 

For each input vector, the T-CNN utilizes a portion of the 

input vector as a region to split the input into R regions, i.e., 

r1, …, ri, rj, rk, …, rR. In every r, valuable sentimental traits are 

mined after the input vectors successively transfer via a 

convolution (conv) and max-pooling layers. Those local traits 

are successively united across R by the LSTM followed by the 

attention strategy to create an output vector for VA 

classification. 

Conv layer: In every region, the conv layer is utilized to 

mine local n-gram traits. Every input vector can be arranged 

in a region matrix 𝑀 ∈ ℝ𝑑×|𝑉| , where |V| denotes the data

dimension of r and d denotes the size of the input vectors. For 

2803



instance, in Figure 2, the input vectors in the regions 𝑟𝑖 =

{𝑣1
𝑟𝑖 , 𝑣2

𝑟𝑖 , … , 𝑣𝐼
𝑟𝑖} , 𝑟𝑗 = {𝑣1

𝑟𝑗
, 𝑣2

𝑟𝑗
, … , 𝑣𝐽

𝑟𝑗
}  and 𝑟𝑘 =

{𝑣1
𝑟𝑘 , 𝑣2

𝑟𝑘, … , 𝑣𝐾
𝑟𝑘}  are united to create the region matrices

𝑚𝑟𝑖 , 𝑚𝑟𝑗 and 𝑚𝑟𝑘. In all regions, L convolutional kernels are

used to capture local n-gram traits. In a window of ω input 

vectors mn:n+ω-1, a kernel Fl (1≤l≤L) produces the feature map 

𝑦𝑛
𝑙  in this manner: 

𝑦𝑛
𝑙 = 𝑓(𝑊𝑙 ∘ 𝑚𝑛:𝑛+𝜔−1 + 𝑏𝑙) (1) 

In Eq. (1), ∘ denotes the convolutional operator, bl is the 

weight matrix and bias related to Fl, ω denotes the kernel 

length, d denotes the input vector dimension and f refers to the 

Rectified Linear Unit (ReLU) activation function. If a kernel 

slowly traverses from m1:ω-1 to mN:ω-1:N, the output feature 

maps 𝑦𝑙 = 𝑦1
𝑙 , … , 𝑦𝑁−𝜔+1

𝑙  of Fl. For varying input vector

lengths in R, yl can contain various sizes for various input 

vectors. So, the highest length of the CNN input in R is defined 

as the size N. When the input length is lower than N, no vectors 

can be added. As illustrated in Figure 2, all conv layers 

consider their input as a region vector to L distinct kernels and 

creates feature maps 𝑌 = {𝑦1, … , 𝑦𝐿} ∈ ℝ(𝑁−𝜔+1)×𝐿.

Max-pooling layer: Max-pooling reduces the result of the 

conv layer by applying a max operation with a pooling 

dimension ρ to the outcome of all kernels. This helps preserve 

important details by mining local dependencies within 

multiple regions. The resulting M is then flattened to a vector 

and passed to the LSTM network. 

LSTM layer: To extract long-range dependencies across R, 

the LSTM network successively combines all region vectors 

with the input vectors. It consists of an input gate, forget gate 

and output gate. The input gate regulates the present input, the 

output gate regulates the present result, and the forget gate 

regulates the past state. Eq. (2) calculates the forget gate, Eqs. 

(3)-(4) calculate the input gate, Eq. (5) updates the memory 

unit, and Eqs. (6)-(7) calculate the output gate. 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2) 

𝑖𝑡 = Sigmoid(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3) 

𝑐𝑡
′ = tanh(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4) 

𝑐𝑡 = 𝑐𝑡−1 ∙ 𝑓𝑡 + 𝑖𝑡 ∙ 𝑐𝑡
′ (5) 

𝑜𝑡 = Sigmoid(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (6) 

ℎ𝑡 = tanh(𝑐𝑡) ∙ 𝑜𝑡 (7) 

In Eqs. (2)-(7), ht-1 and ht denote the result at time t-1 and t, 

correspondingly, xt represents the input at t, W and b are the 

weight matrix and bias, respectively, ft indicates the result of 

the forget gate, it denotes the result of input gate, ot, ht are the 

input and result of output gate, correspondingly, 𝑐𝑡
′  and ct

represent the present state of input and output memory units, 

respectively. After the LSTM cell sequentially traverses 

through each region, the final hidden state ht is defined as the 

output representation, which is given to the attention strategy 

layer. 

Attention strategy layer: The attention strategy for input 

lengths intends to direct the model's focus toward the most 

important feature dimensions while disregarding others. In the 

attention layer, two processes are performed: (i) the output of 

the upstream layer is merged and (ii) the decisive feature 

dimensions are chosen for classification. An attention strategy 

is utilized to reallocate the weights of feature representations. 

The attention strategy initially determines the final hidden 

state and attention score vectors depending on the input data 

from multiple channels of LSTM layers. The scores of 

representations are obtained by the dot-product function. The 

attention weight coefficient is calculated by: 

𝑒𝑡 = 𝑢 tanh(𝑤ℎ𝑡 + 𝑏) (8) 

𝑎𝑡 =
𝑒𝑒𝑡

∑ 𝑒𝑒𝑖𝑛
𝑖=1

 (9) 

𝑠𝑡 = ∑ 𝑒𝑡𝑎𝑡
𝑛
𝑡=1 (10) 

In Eqs. (8)-(10), et is the decision features of the LSTM’s 

result ht at t, u and w denote the weight coefficients, b 

represents the bias, at indicates the normalized weight 

coefficient and st represents the result of attention at t. 

Softmax layer: In the last layer of the T-CNN-LSTM, the 

Softmax classifier is applied to classify the output vector from 

the LSTM into valence and arousal of the texts, or different 

classes of images. 

The T-CNN-LSTM with the attention strategy is trained by 

reducing the mean squared error between the classified y and 

observed y. For a training set of the input matrix X={x1, …, xm} 

and their VA ratings set, or image classes y={y1, …, ym}, the 

loss function is described by: 

𝐿(𝑋, 𝑦) =
1

2𝑚
∑ ‖ℎ(𝑥𝑖) − 𝑦𝑖‖

2𝑚
𝑖=1 (11) 

In the training stage, a backpropagation procedure with an 

Adam optimizer is utilized to fine-tune the model parameters. 

Thus, the AA-T-CNN-LSTM is trained and tested for 

dimensional sentiment analysis. 

4. EXPERIMENTAL RESULTS

The efficiency of the AA-T-CNN-LSTM is compared with 

the existing models in this section. The experiment is carried 

out on a computer armed with Intel® Core™ i5-4210 

CPU@2.80GHz, 8GB RAM, 1TB HDD under Windows 10 

64-bit OS. This experiment uses two distinct datasets: Stanford

Sentiment Treebank (SST) [22] and CIFAR-10 [23].

The SST dataset consists of 11,855 single sentences from 

movie reviews, parsed into 215,154 unique phrases. Each 

phrase is labeled as very negative, negative, neutral, positive, 

or very positive. For this study, 8,555 sentences (1711 for each 

class) are used for training and 3,300 (660 for each label) for 

testing.  

The CIFAR-10 dataset contains 60000 color images of 

dimension 32×32 in 10 different categories, with 6000 images 

per category. Of these, 50000 images (5000 for each class) are 

used for learning and 10000 (1000 for each class) are used for 

testing.  

To conduct a fair comparative study, all the existing models 

(e.g., T-CNN [7], T-CNN-LSTM [8], A-T-CNN-LSTM [9], 

Tree-RNN [14] and RF-CNN [16]) and proposed AA-T-CNN-

LSTM are implemented in Python 3.7.8 software. The 

following performance evaluation metrics are determined: 

Accuracy: It is a proper classification of VA of texts or 

image class among the overall examples tested. 
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𝐴𝑐𝑐 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
(12) 

In Eq. (12), TP is the total +ve texts exactly categorized as 

+ve, TN is the total -ve texts exactly categorized as –ve, FP is

the total –ve texts incorrectly classified as +ve and FN is the

total +ve texts incorrectly classified as –ve.

Precision: It is calculated by: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
(13) 

Recall: It is calculated by: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(14) 

F-measure: It is determined by:

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(15) 

Mean Absolute Error (MAE): It measures the average 

magnitude of the errors in a set of predictions. It is calculated 

as: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛
𝑖=1 (16) 

In Eq. (16), n represents the number of images/sentences, yi 

is the true label and �̂�𝑖 is the classified label.

Receiver Operating Characteristic (ROC) Curve: It is the 

relationship between the FP rate and TP rate. 

4.1 Performance analysis for SST dataset 

Table 1 presents the confusion matrix for the AA-T-CNN-

LSTM model using the SST dataset. Additionally, Figure 3 

shows the performance of AA-T-CNN-LSTM during training 

and testing phases using the SST dataset. 

Table 1. Confusion matrix for AA-T-CNN-LSTM model 

using the SST dataset 

True Labels 

0 1 2 3 4 

Classified labels 

0 580 8 15 9 15 

1 20 629 17 10 14 

2 18 9 600 13 12 

3 19 8 13 617 13 

4 23 6 15 11 606 

*Note: 0 – Very negative; 1 – Negative; 2 – Neutral; 3 – Positive; 4 – Very 

positive 

In Figure 4, a comparison of the AA-T-CNN-LSTM model 

against existing models tested using the SST dataset is shown. 

It is observed that the precision of the AA-T-CNN-LSTM is 

improved by 15.58%, 14.06%, 11.81%, 7.45% and 1.05%, 

compared to the T-CNN, RF-CNN, Tree-RNN, T-CNN-

LSTM and A-T-CNN-LSTM, respectively. The recall of the 

AA-T-CNN-LSTM is better by 15.49%, 14.16%, 11.53%, 

7.26% and 1.75%, compared to the T-CNN, RF-CNN, Tree-

RNN, T-CNN-LSTM and A-T-CNN-LSTM models, 

respectively. The f-measure of the AA-T-CNN-LSTM is 

enhanced by 15.52%, 14.11%, 11.67%, 7.35% and 1.18%, 

compared to the T-CNN, RF-CNN, Tree-RNN, T-CNN-

LSTM and A-T-CNN-LSTM models, respectively. Also, the 

accuracy of the AA-T-CNN-LSTM is increased up to 15.71%, 

14.53%, 11.85%, 7.65% and 1.91%, compared to the T-CNN, 

RF-CNN, Tree-RNN, T-CNN-LSTM and A-T-CNN-LSTM 

models, respectively.  

Figure 3. Performance of AA-T-CNN-LSTM during training 

and testing on SST dataset 

Figure 4. Comparison of AA-T-CNN-LSTM against existing 

models on SST dataset 

Figure 5 illustrates the MAE for various tree-structure deep 

learning models on the SST dataset. The MAE of AA-T-CNN-

LSTM is 60.45%, 58.81%, 54.39%, 44.45% and 17.41% less 

than the T-CNN, RF-CNN, Tree-RNN, T-CNN-LSTM and A-

T-CNN-LSTM models, respectively. 

Figure 5. MAE of AA-T-CNN-LSTM model against existing 

tree-structured deep learning models on SST dataset 
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Figures 6 and 7 display the ROC curve and precision vs. 

recall curve, respectively, for different models on the SST 

dataset. The AA-T-CNN-LSTM network outperformed other 

models by enhancing self-learning and self-adaptation through 

the attention strategy in A-T-CNN-LSTM. 

Figure 6. ROC curve of AA-T-CNN-LSTM against existing 

models on SST dataset 

Figure 7. Precision vs. recall curve of AA-T-CNN-LSTM 

against existing models on SST dataset 

4.2 Performance analysis using CIFAR-10 dataset 

Table 2 presents the confusion matrix for the AA-T-CNN-

LSTM model using the CIFAR-10 dataset. Additionally, 

Figure 8 shows the performance of AA-T-CNN-LSTM during 

training and testing phases using the CIFAR-10 dataset.

Table 2. Confusion matrix for AA-T-CNN-LSTM model using the CIFAR-10 dataset 

True Labels 

0 1 2 3 4 5 6 7 8 9 

Classified labels 

0 935 17 10 7 3 11 4 8 2 0 

1 10 893 8 5 3 13 0 5 3 10 

2 8 6 900 15 4 9 2 10 5 6 

3 5 8 15 931 6 12 0 8 0 9 

4 6 18 10 4 965 21 6 4 6 8 

5 15 5 6 13 2 890 3 13 4 5 

6 5 7 9 4 7 8 980 9 0 7 

7 7 28 11 7 2 15 0 905 5 6 

8 0 10 20 8 0 11 2 20 970 4 

9 9 8 11 6 8 10 3 18 5 945 
*Note: 0 – Airplane; 1 – Automobile; 2 – Bird; 3 – Cat; 4 – Deer; 5 – Dog; 6 – Frog; 7 – Horse; 8 – Ship; 9 – Truck 

Figure 8. Performance of AA-T-CNN-LSTM during training 

and testing on CIFAR-10 dataset 

Figure 9 shows the comparison of the AA-T-CNN-LSTM 

against existing models tested using the CIFAR-10 dataset. It 

is noted that the precision of the AA-T-CNN-LSTM is 

improved by 14.03%, 12.81%, 10.85%, 7.64% and 1.73%, 

compared to the T-CNN, RF-CNN, Tree-RNN, T-CNN-

LSTM and A-T-CNN-LSTM, respectively. The recall of the 

AA-T-CNN-LSTM is better by 14.45%, 12.97%, 10.91%, 

8.15% and 2.21%, compared to the T-CNN, RF-CNN, Tree-

RNN, T-CNN-LSTM and A-T-CNN-LSTM models, 

respectively. 

The f-measure of the AA-T-CNN-LSTM is enhanced by 

14.23%, 12.88%, 10.87%, 7.9% and 1.97%, compared to the 

T-CNN, RF-CNN, Tree-RNN, T-CNN-LSTM and A-T-CNN-

LSTM, respectively. Also, the accuracy of the AA-T-CNN-

LSTM is increased up to 14.51%, 12.88%, 11.01%, 8.3% and

2.35%, compared to the T-CNN, RF-CNN, Tree-RNN, T-

CNN-LSTM and A-T-CNN-LSTM models, respectively.

Figure 10 illustrates the MAE for various tree-structure 

deep learning models on the CIFAR-10 dataset. The MAE of 

AA-T-CNN-LSTM is 63.24%, 60.78%, 57.39%, 51% and 
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23.78% less than the T-CNN, RF-CNN, Tree-RNN, T-CNN-

LSTM and A-T-CNN-LSTM models, respectively. 

Figure 11 and Figure 12 display the ROC curve and 

precision vs. recall curve, respectively, for different models on 

the CIFAR-10 dataset. Thus, it is realized that the AA-T-CNN-

LSTM model on the CIFAR-10 dataset achieves superior 

efficiency in classifying VA ratings of texts or image classes 

compared to the other models by improving the self-learning 

and self-adaptation abilities based on the attention strategy in 

A-T-CNN-LSTM.

Figure 9. Comparison of AA-T-CNN-LSTM against existing 

models on CIFAR-10 dataset 

Figure 10. MAE of AA-T-CNN-LSTM against existing 

models on CIFAR-10 dataset 

Figure 11. ROC curve of AA-T-CNN-LSTM against 

existing models on CIFAR-10 dataset 

Figure 12. Precision vs. recall curve of AA-T-CNN-LSTM 

against existing models on CIFAR-10 dataset 

5. CONCLUSION

In this study, the AA-T-CNN-LSTM model was developed 

to achieve dimensional sentiment analysis, which classifies the 

VA ratings of texts, or image classes while handling 

uncertainties in the given data. First, the training data was 

augmented by creating the adversarial samples using the 

SFGAN model. Then, the T-CNN-LSTM network with the 

attention strategy was trained using those data for classifying 

the VA ratings of texts, or image classes. Using the attention 

strategy, the fraction of spatial and temporal dependencies 

captured by the CNN and LSTM layers, respectively was 

adjusted by emphasizing a few weights for the final output 

vector. Extensive experiments were carried out using the SST 

and CIFAR-10 databases to assess the efficiency of the AA-T-

CNN-LSTM against existing models. The test results proved 

that the AA-T-CNN-LSTM on the SST and CIFAR-10 

datasets achieved 91.84% and 93.14% accuracy, respectively 

compared to the conventional tree-structured deep learning 

models. 
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