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This study addresses the critical challenge of accurately identifying skin disorders as 

benign, malignant, or non-tumors, essential for timely and successful treatment. Early 

identification can greatly minimize tumor development and cut fatality rates. Given the 

high costs involved with standard medical detection approaches, this research addresses 

using sophisticated Convolutional Neural Networks (CNNs) with transfer learning to 

categorize skin malignancies efficiently. Specifically, the study assesses the 

performance of MobileNetV2, VGG16, and VGG19 architectures. The primary 

objective is to find which model has the maximum accuracy in classifying skin cancers. 

Our findings reveal that while a standard CNN reached an accuracy of 62.2%, the 

transfer learning models greatly outperformed it, with MobileNetV2 achieving the 

highest accuracy at 93.9%, followed by VGG19 at 90.0% and VGG16 at 88.9%. These 

results imply that MobileNetV2 is the most successful solution for this task since it 

consistently obtained a prediction accuracy of 90% for both in-dataset and out-of-

dataset images.  
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1. INTRODUCTION

Tumors, irrespective of their classification as benign or 

malignant, represent abnormal proliferation within the body 

that may manifest varying levels of severity. Benign tumors 

are generally considered less harmful as they do not develop 

into cancer and can be effectively controlled. In contrast, 

malignant tumors, known as cancer, pose a greater risk, often 

leading to cancerous growth and potentially resulting in death. 

Malignant tumors display swift expansion, infiltration of 

neighboring tissues, and the ability to metastasize to distant 

body sites, making them highly lethal [1, 2]. 

Cancer, identified as malignant tumors, is widely 

recognized as a primary factor contributing to mortality on a 

global scale. The most perilous type of cancer to human life, 

characterized by its rapid proliferation, is skin cancer, 

encompassing melanoma and non-melanoma. The upcoming 

year, 2020, will witness a substantial surge in new cases of 

skin cancer and fatalities attributed to this ailment. Indonesia 

grapples with a pronounced prevalence of both forms of skin 

cancer, melanoma, and non-melanoma, indicating a 

significant health challenge in the region [3]. 

Many researchers have explored using advanced deep 

learning techniques, such as convolutional neural networks 

(CNNs). The CNNs perform well in classifying images similar 

to the training dataset. However, they often struggle with 

images that have tilt or rotation. To improve future technology, 

the proposal suggests using fully CNNs to classify 3D images, 

which could address these challenges and enhance 

classification accuracy in such scenarios [4]. 

A study compared different Deep Convolutional Neural 

Network (DCNNs) models for classifying MR brain images. 

The pre-trained InceptionV3 DCNN model used in this 

approach achieved a classification accuracy of 99.82% on the 

Figshare MRI dataset, outperforming other models and setting 

a high classification standard [5]. Moreover, the study [6] 

aimed to analyze the impact of different data modalities (text, 

images, and a combination of both) using Deep Learning (DL) 

models for memotion analysis. Pre-trained models like 

ResNet152V2, VGG19, and EfficientNetB7 were used for 

image classification, while CNNs and CNNs+LSTM were 

applied for text. EfficientNetB7 achieved the best image 

performance and CNNs with Glove embedding for text. An 

early fusion technique combining CNNs and EfficientNetB7 

produced strong results in multimodal analysis. The proposed 

model outperformed baseline studies, achieving high accuracy 

and F1-macro scores, demonstrating its effectiveness for 

meme classification. 

The study highlights the effectiveness of using CNNs for 

seed classification in agriculture. To enhance model 

robustness, a modified VGG architecture with two 0.5 dropout 

layers after the dense layer was employed. Transfer learning 

and fine-tuning techniques improved performance, reduced 

computational demands, and shortened training time, making 

the seed classification process more efficient and effective [7]. 

Based on the previous study, using CNNs and transfer 

learning models has demonstrated promising results in various 

applications. To confront the challenges of diagnosing and 

classifying skin neoplasms, the CNNs has exhibited promising 

outcomes in effectively distinguishing between benign and 

malignant skin tumors, thereby assisting in promptly 

identifying and categorizing such neoplasms. Studies have 
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indicated that CNNs integrating transfer learning have attained 

notable precision in categorizing skin ailments, including 

melanoma. The integration of pre-existing models and 

sophisticated architectures such as MobileNet, VGG-16, and 

ResNet-50 has facilitated researchers in achieving a 

substantial degree of accuracy in skin tumor classification 

tasks [8-10]. 

The implementation of CNNs in conjunction with transfer 

learning has significantly improved the accuracy of skin lesion 

classification by utilizing a robust pre-trained model and 

optimizing feature extraction. Various investigations have 

proven accuracy levels above 70% using models such as 

MobileNetV2, VGG16, and VGG19. Notably, MobileNetV2 

distinguishes itself by effectively balancing precision and 

computational efficiency. These models are critical in 

advancing the differentiation of benign, malignant, and non-

tumorous skin lesions, laying a solid groundwork for 

prospective investigations in this domain [11]. 

Nevertheless, although prior research has investigated the 

use of CNNs and transfer learning in skin cancer diagnosis, 

there is a lack of detailed comparative analysis of models such 

as MobileNetV2, VGG16, and VGG19. This work addresses 

this information gap by thoroughly evaluating these models, 

emphasizing their classification accuracy, computational 

efficiency, and practical usefulness in clinical environments. 

The originality of this study resides in its methodical 

assessment of these models, providing fresh perspectives on 

their advantages and constraints and directing future 

investigation and implementation in the field of medical image 

analysis. 

Moreover, the application of transfer learning in medical 

imaging, namely in skin cancer categorization, has played a 

crucial role in surmounting obstacles associated with restricted 

training datasets. Using pre-trained models, researchers can 

extract significant characteristics from medical images, 

improving the classification accuracy of CNNs [12-15]. This 

study expands upon prior research by not only evaluating the 

efficacy of CNNs models but also examining the influence of 

transfer learning on the capacity of these models to distinguish 

between benign, malignant, and non-tumorous skin lesions. 

In contrast to previous studies that often assess a single 

model or a restricted range of topologies, our work thoroughly 

evaluates three distinct CNNs architectures. The present study 

provides novel perspectives on each model’s comparative 

merits and limitations regarding classification accuracy, 

computational efficiency, and resilience to diverse datasets. 

This allows us to identify the most effective model for skin 

tumor classification, which is critical for clinical application. 

Moreover, we assess in-dataset performance and out-of-

dataset images, demonstrating the robustness and 

generalizability of the transfer learning model, which 

consistently achieves high accuracy across different datasets. 

A key focus of our work is to provide dependable and scalable 

solutions in medical imaging, especially in settings with 

limited resources where the consequences of misclassification 

might be significant. 

Subsequent sections of this paper will provide detailed 

explanations of the methodology used, show the outcomes of 

our comparative analysis, and examine the consequences of 

our findings for future scholarship and clinical application. 

This organizational framework aims to offer a coherent and 

rational progression of information, directing the reader 

through the study’s goals, methodologies, findings, and 

conclusions. 

 

 

2. METHODS 

 

2.1 Convolutional Neural Networks 

 

Convolutional Neural Networks (CNNs) are a specialized 

form of deep neural network devised to analyze structured grid 

data, such as images. The architecture comprises strata such as 

convolutional layers, pooling layers, and fully connected 

layers [16] as shown in Figure 1. 

 

 
 

Figure 1. CNNs architecture 

 

 
 

Figure 2. CNNs transfer learning illustration 
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Convolutional layers employ filters to record spatial 

hierarchies and patterns, encompassing edges, textures, and 

forms. Pooling layers decrease the dimensions in the data, 

improving computing efficiency and reducing the likelihood 

of overfitting. 

Although CNNs are the fundamental structure for analyzing 

visual data, transfer learning is a method that can be used to 

modify a pre-trained model for a different purpose. CNNs 

differs from transfer learning because it does not need 

extensive datasets or substantial computing resources to train 

from scratch. Instead, it utilizes an existing model, decreasing 

training time and data resource requirements. The CNNs are 

deployed from the beginning to acquire knowledge of patterns 

from unprocessed data, while transfer learning is applied after 

a model has already been trained on a similar job. 

 

2.2 Transfer learning 

 

CNNs utilize transfer learning to use pre-existing models 

for relevant tasks by excluding the final fully connected layer 

and introducing a new classification layer tailored to the new 

dataset. The methodology uses convolution and pooling layers 

while disregarding fully connected and SoftMax layers, 

deeming them superfluous for pre-existing models [17, 18]. 

Subsequently, the model undergoes fine-tuning by utilizing 

the new dataset containing distinct classes [19]. Adjusting 

weights in transfer learning mirrors that of the initial project. 

Typically, ImageNet weights are utilized, offering an 

extensive repository of labelled object images to advance 

computer vision research. The availability of training data 

plays a pivotal role in the classification system, with the 

assessment of accuracy being carried out using validation data. 

Transfer learning is beneficial in scenarios where data is 

scarce, enabling efficient learning even with limited datasets, 

in contrast to conventional machine learning and CNNs 

approaches that require substantial datasets to achieve high 

accuracy [20, 21]. Figure 2 visually represents the application 

of CNNs and CNNs models incorporating transfer learning 

methodologies. 

In Figure 2, a CNNs is illustrated as it employs the 

ImageNet dataset to extract features and the classification 

layers, thereby leading to data categorization into specific 

classes. In contrast, transfer learning entails the utilization of 

a targeted dataset, where the feature extraction layer adopts a 

pre-trained CNNs model from the ImageNet dataset. 

Consequently, the classification layer is adjusted to align with 

the categorized dataset. Transfer learning with CNNs involves 

using pre-trained architectural models, such as those trained 

on ImageNet, to achieve heightened classification accuracy. 

This strategy facilitates enhanced performance in 

classification assignments compared to commencing training 

from the beginning with smaller datasets. 

 

2.3 MobileNetV2 architecture model  

 

Transfer learning in CNNs pertains to using a pre-trained 

model, such as MobileNetV2, that has undergone initial 

training on vast datasets like ImageNet. MobileNetV2 

represents a progression of the MobileNet framework, 

presenting enhancements compared to its precursor. An 

overview of the MobileNetV2 architecture is presented in 

Table 1. 

 

 

Table 1. MobileNetV2 architecture [22] 

 
Input Operator t c n s 

2242×3 conv2d - 32 1 2 

1122×32 bottleneck 1 16 1 1 

1122×16 bottleneck 6 24 2 2 

562×24 bottleneck 6 32 3 2 

282×32 bottleneck 6 64 4 2 

142×64 bottleneck 6 96 3 1 

142×96 bottleneck 6 160 3 2 

72×160 bottleneck 6 320 1 1 

72×320 conv2d 1×1 - 1280 1 1 

72×1280 avgpool 7×7 - - 1 - 

1×1×1280 conv2d 1×1 - k - - 

 

Table 1 utilizes the symbol n to represent the act of 

repeating something n times, and the symbol c indicates the 

magnitude of the output channels. The parameter s represents 

the block stride, while t is the expansion factor, which 

increases the number of channels. The input data for this 

structural design has dimensions of 224×224. Moreover, the 

system includes a bottleneck component. There are a total of 

7 bottleneck blocks. The first bottleneck occurs once, the 

second bottleneck occurs twice, the third bottleneck occurs 

thrice, the fourth bottleneck occurs four times, the fifth 

bottleneck thrice, the sixth bottleneck thrice, and the seventh 

bottleneck occurs once. MobileNetV2’s architecture 

comprises 17 bottleneck layers [22]. The bottleneck residual 

block in the MobileNetV2 framework includes an extra layer, 

as specified in Table 2. 

 

Table 2. Bottleneck MobileNetV2 [22] 

 
Input Operator Output 

h×w×k 1×1 conv2d, ReLU6 h×w×(tk) 

h×w×tk 3×3 dwise s=s, ReLU6 
ℎ

𝑠
×
𝑤

𝑠
 × tk 

𝒉

𝒔
× 
𝒘

𝒔
 × tk linear 1×1 conv2d 

ℎ

𝑠
 × 

𝑤

𝑠
 × 𝑘′ 

 

Table 2 illustrates the configuration of every bottleneck 

within the architecture of MobileNetV2. Every bottleneck 

comprises three principal elements: a convolutional layer with 

Rectified Linear Unit (ReLU) activation, a depth wise 

separable convolution with ReLU activation, and a linear 

convolution layer. 

This architecture integrates inverted residuals and linear 

bottlenecks to improve the propagation of features and 

decrease the complexity of the model. This architecture 

enables MobileNetV2 to sustain a high level of accuracy while 

maintaining a compact model size. Compared to many 

traditional CNNs, MobileNetV2 is more efficient as it delivers 

more accuracy with less processing time. This high-efficiency 

level is especially advantageous for applications that need 

immediate processing, such as mobile applications and 

embedded devices [23, 24]. 

 

2.4 VGG16 architecture model  

 

Another prominent architectural paradigm employed in 

CNNs transfer learning is VGG16, developed by the Visual 

Geometry Group at Oxford University. VGG16 is 

distinguished by its utilization of 3×3 filters throughout all 

layers, facilitating the extraction of intricate features at a 

relatively reduced computational expense. The architectural 

layout of VGG16 is depicted in Figure 3. 
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Figure 3. VGG16 architecture 

 

The architectural design’s depth enables it to accurately 

capture complex patterns and characteristics from images, 

making it incredibly efficient for jobs such as medical image 

analysis, where even minor variations can be crucial [25, 26]. 

The VGG16 model has demonstrated exceptional 

performance in transfer learning challenges, including fine-

tuning pre-trained models for applications. This method’s 

popularity for different image classification problems stems 

from its capacity to extract comprehensive feature 

representations [27, 28]. 

 

2.5 VGG19 architecture model  

 

The architectural design of VGG19, an expansion of 

VGG16 by incorporating three more convolutional layers, 

therefore increasing the overall number of layers to 19. It 

upholds the utilization of 3×3 filters throughout its various 

layers, mirroring the approach taken in VGG16 [29]. The 

VGG19 architecture is visually depicted in Figure 4. 

 

 
 

Figure 4. VGG19 architecture 

VGG19 is composed of a total of 47 layers, featuring an 

initial layer with dimensions of 224×224 pixels, 16 

convolutional layers, 18 ReLU activation functions, five max-

pooling layers, three fully connected layers, two dropout 

layers, one SoftMax activation function, and a concluding 

output layer. 

In image classification tasks, including more layers in 

VGG19 enhances accident accuracy compared to other 

methods. Previous research has demonstrated that VGG19 

frequently surpasses VGG16 in several applications, 

especially fine-grained categorization tasks [25, 27]. 

Like its predecessor, VGG16, VGG19 is very efficient in 

transfer learning. The pre-trained weights of this model, 

trained on extensive datasets such as ImageNet, allow it to 

apply effectively to novel tasks, enhancing its usefulness for 

researchers and practitioners [27, 30]. 

 

 

3. RESULTS AND DISCUSSIONS 

 

3.1 Data overview 

 

The images we employed in this investigation encompassed 

two classifications of cutaneous neoplasms: benign and 

malignant. These particular images were procured from the 

International Skin Imaging Collaboration (ISIC) website. 

Furthermore, images portraying cutaneous neoplasms from 

male individuals aged between 40 and 80 years were 

encompassed, both with and without a familial background of 

cutaneous neoplasms. A total of 600 images were accounted 

for, comprising 300 images of benign cutaneous neoplasms 

and 300 images of malignant cutaneous neoplasms. 

Furthermore, we also used a dataset of non-neoplastic skin that 

included images of various non-neoplastic skin conditions. 

The image representing normal skin was acquired from 

kaggle.com and acknowledged to the user Joydip Paul. Images 

illustrating skin with atrophic scars, contusions, acne papules, 

and acne pustules were obtained from kaggle.com and 

attributed to the username Kukuh Prakoso. The collection of 

non-neoplastic skin specimens encompassed 300 images, 

comprising 37 images of normal skin, 57 images of atrophic 

scarred skin, 57 images of contused skin, 88 images of skin 

with acne papules, and 61 images of skin with pustules. 

 

Table 3. Variable definition 

 
Variable Description Example 

Benign 

Patients aged 40-60 years old, 

male, and whether there is a 

family history of skin tumors. 

 

Malignant 
It contains images of malignant 

skin tumors or skin cancer. 

 

Non-

tumors 

It contains images of non-

tumor skin, such as healthy 

skin, pockmarks, rashes, acne 

papules, and acne pustules. 
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In this research endeavour, the investigator employed three 

distinct research variables, categorized explicitly as benign, 

malignant, and non-tumor skin. These research variables have 

been systematically organized and presented in Table 3. 

 

3.2 Training model 

 

The present investigation utilized a dataset comprising 300 

images per category, encompassing benign, malignant, and 

non-tumor skin lesions, culminating in 900 images. Following 

this, the dataset was divided into three subsets: 80% for 

training, 20% for testing, and 10% for the training subset 

designated for validation purposes. Consequently, were 648 

images earmarked for training, 180 for testing, and 72 for 

validation. The pixel intensities of the images underwent 

rescaling from a range spanning 0 to 255 to a standardized 

interval of 0 to 1. This normalization procedure was 

implemented to enhance the convergence and robustness of 

the model throughout the training phase. Furthermore, the 

images were uniformly resized to 224×224 pixels and 

converted to the RGB color space to faithfully capture the 

broad spectrum of colors in skin lesion images. A batch size 

64 was employed for the training, testing, and validation 

collections. 

In the CNNs methodology, the transfer learning models 

MobileNetV2, VGG16, and VGG19 each exhibit unique 

architectural designs. Throughout the training stage, the input 

dataset undergoes processing via the feature extraction stratum 

followed by the classification stratum. The distinct 

configurations of these feature extraction and classification 

strata employed in the CNNs methodology are delineated in 

Figure 5. 

 

 
 

Figure 5. CNNs training model 

 

 
 

Figure 6. MobileNetV2 training model 

 

 
 

Figure 7. VGG16 training model 
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Figure 8. VGG19 training model 
 

The CNNs methodology entails the utilization of multiple 

pre-determined layers. In this study, we used skin images with 

dimensions of 224×224 pixels as input and a kernel size 3×3. 

Afterward, the input is processed using a convolutional layer 

that consists of 16 filters, a 3×3 kernel, and the ReLU 

activation function. This specific layer is designed to extract 

prominent characteristics from the input images. The next 

layer in the architecture is a max pooling layer with a 2×2 

kernel, which is used to decrease the dimensionality of the 

image. 

After the initial stage, a subsequent convolutional layer is 

added with 32 filters, a 3×3 kernel, and the ReLU activation 

function. Another max pooling layer is implemented with a 

2×2 kernel sequentially. After two cycles of convolution and 

pooling, a global average pooling layer is applied to produce a 

feature matrix with a single average value for each channel. A 

compact layer with a SoftMax activation function produces 

probability values, which helps classify images into specific 

categories such as benign, malignant, and non-tumor skin 

types. 

In CNNs with transfer learning, the MobileNetV2 

architecture features layers different from those in the VGG16 

and VGG19 models. The specific layers within the feature 

extraction and classification components of the MobileNetV2 

architecture are distinct and are illustrated in Figure 6. 

In the CNNs with the transfer learning, the MobileNetV2 

architecture model takes as input skin images measuring 

224×224 pixels, using a 3×3 kernel. This input is processed 

through the feature extraction section, which utilizes the 

MobileNetV2 model. Consequently, the layers in this section 

follow the structure of MobileNetV2, consisting of 17 

bottleneck layers. Modifications to the classification layer 

were made to accommodate three classes: benign, malignant, 

and non-tumor skin. The classification layer includes two fully 

connected (dense) layers with the ReLU activation function 

and one dense layer with the SoftMax activation function. 

In contrast, the VGG16 architecture features different layers 

from those in MobileNetV2 and other models. The specific 

layers in the feature extraction and classification sections of 

the VGG16 model are depicted in Figure 7. 

The VGG16 architecture model processes skin images 

measuring 224×224 pixels with a 3×3 kernel. This input is 

passed to the feature extraction section, which adopts the 

VGG16 model. Consequently, the feature extraction layers 

follow the VGG16 structure, consisting of 13 convolutional 

layers and five pooling layers. The classification layer includes 

two fully connected (dense) layers with the ReLU activation 

function and one dense layer with the SoftMax activation 

function. 

Similarly, the VGG19 architecture model has layers that 

closely resemble those in the VGG16 model. The specific 

layers in the feature extraction and classification sections for 

the VGG19 model are illustrated in Figure 8. 

The VGG19 architecture model analyses skin images with 

dimensions of 224×224 pixels using a 3×3 kernel. The input is 

passed to the feature extraction section, which utilizes the 

VGG19 model. Therefore, the layers in this section adhere to 

the VGG19 architecture, consisting of 16 convolutional layers 

and five pooling layers. The classification layer comprises two 

fully connected (dense) layers utilizing the ReLU and one 

dense layer employing the SoftMax activation function. 

In this study, we utilize the Adam optimizer to adjust the 

weights and biases in the model, aiming to minimize the loss 

function during training. The maximum number of epochs is 

set to 100. After comprehensively evaluating four methods, 

the MobileNetV2 emerged as the best model. It produced the 

most stable and smooth accuracy graph across epochs, the 

highest accuracy value at the end of training, and overall 

superior model performance, affirming the validity and 

reliability of our findings. 

For each method, it utilizes a different number of 

parameters during model training. These parameters play a 

crucial role in enhancing model performance. The research 

results highlight the impact of the number of parameters on the 

accuracy and loss values for both the training and validation 

data at the end of the training period. 

 

 
 

Figure 9. CNNs accuracy 
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Figure 10. MobileNetV2 accuracy 

 

 
 

Figure 11. VGG16 accuracy 

 

 
 

Figure 12. VGG19 accuracy 

 

Figures 9-12 shows that among the four training approaches, 

the CNN transfer learning approach of the MobileNetV2 

architecture model yielded the most stable and smooth graph 

in each epoch, the highest accuracy value at the end of training, 

and achieved solid model performance. MobileNetV2 

generates a more consistent and seamless accuracy value 

graph for each epoch compared to alternative approaches. 

Furthermore, the training and validation data have an accuracy 

rate of around 95% upon completion. This approach yields a 

very high level of accuracy. By achieving a rather high 

accuracy value, the resultant model will exhibit excellent 

performance in classifying data into suitable and more precise 

categories. 
 

Table 4. Model accuracy 
 

 CNNs MobileNetV2 VGG16 VGG19 

Number of parameters 5,187 2,438,851 14,797,251 20,106,947 

Train accuracy 61.3% 99.7% 97.5% 97.4% 

Validation accuracy 68.1% 93.1% 86.1% 90.3% 

Train loss 0.9 0.0 0.1 0.1 

Validation loss 0.8 0.2 0.3 0.4 
 

 
 

Figure 13. CNNs metric 

 

 
 

Figure 14. MobileNetV2 metric 

 
 

Figure 15. VGG16 metric 

 

The outcomes of model training are presented in Table 4, 

containing details regarding the total quantity of parameters 

utilized and their impact on accuracy and loss metrics. The 

methodologies are arranged in increasing order based on the 

number of parameters they possess are CNNs, MobileNetV2, 

VGG16, and VGG19. Conversely, the accuracy outcomes for 

training and validation datasets post-training, organized in 

ascending sequence, are CNNs, VGG16, VGG19, and 

MobileNetV2. The loss values for training and validation, 

ranked in descending sequence, are as follows: CNNs, VGG16, 

VGG19, and MobileNetV2. Its superior accuracy and minimal 

loss distinguish the most suitable model. The CNNs 

implementing the MobileNetV2 architecture showcased 

superior accuracy and minimal loss under these circumstances. 
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Figure 16. VGG19 metric 

 

However, a surprising discovery emerged. Despite 

MobileNetV2 having fewer parameters, both VGG16 and 

VGG19 attained inferior accuracy and higher loss metrics. 

This intriguing result challenges the conventional belief that a 

higher parameter count always leads to enhanced performance 

for categorizing benign, malignant, and non-tumor skin 

images. In fact, a model with a reduced parameter count, like 

MobileNetV2, may demonstrate greater efficacy and 

accomplish optimal accuracy and loss metrics, especially for 

simpler tasks and smaller datasets.  

The analysis of the four confusion matrices in Figure 13-16 

reveals that the MobileNetV2 architectural model boasts the 

most significant number of accurately corrected images (True 

Positive). Among all the class prediction metrics, including 

accuracy, precision, recall, and F1-score, the MobileNetV2 

architecture attains the highest overall accuracy. We use the 

malignant class’s accuracy and recall metrics as model 

performance indicators. In the context of equal or similar class 

sizes, accuracy is selected as a metric to evaluate the overall 

correctness of a model's predictions. Each class consists of 300 

samples. The recall metric assesses the model's accuracy in 

predicting the positive (malignant) class, a critical factor in 

reducing false negatives. Accurate prediction of the malignant 

class is crucial in diagnosing benign, malignant, and non-

tumor skin tumors. Misclassifying a malignant tumor as 

benign or non-tumor could hinder the patient from receiving 

timely treatment for a dangerous pathology such as skin cancer. 

 

Table 5. Accuracy and loss of test data 

 
 CNNs MobileNetV2 VGG16 VGG19 

Accuracy 62.2% 93.9% 88.9% 90.0% 

Loss 0.9 0.2 0.2 0.2 

 

Regarding Table 5, the MobileNetV2 architecture achieves 

the highest test accuracy and the lowest test loss. It makes the 

MobileNetV2 model the most effective method for classifying 

skin images into benign, malignant, and non-tumorous skin. 

Afterwards, the MobileNetV2 model is utilized to predict skin 

images from outside the dataset. The MobileNetV2 model 

incorporates an inverted residual structure equipped with 

linear bottlenecks. This architecture facilitates the 

maintenance of a lightweight model while retaining the 

capability to represent intricate data patterns. Inverting the 

residuals guarantees that the feature maps in intermediate 

layers have reduced dimensionality, hence minimizing the 

required computing operations. 

The model’s effectiveness enables its implementation on 

more affordable electronic devices, potentially increasing the 

accessibility of sophisticated skin lesion diagnosis tools to 

healthcare providers and patients with limited resources. 

 

Table 6. Probability prediction using MobileNetV2 

 
Image Benign Malignant Non-Tumor Decision 

 

90.3% 9.4% 0.3% Correct (Benign) 

 

4.6% 95.3% 0.1% Correct (Malignant) 

 

0.5% 0.0% 99.5% Correct (Non-Tumor) 
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The subsequent phase utilizes the optimized model and 

architecture to predict skin disease images from external 

datasets. Table 6 illustrates that the model effectively 

categorizes each skin illness, attaining an average prediction 

probability exceeding 90%. This exceptional performance 

highlights the efficacy and accuracy of the MobileNetV2 

model in evaluating intricate image data, establishing it as a 

dependable instrument for skin disease identification and 

diagnosis. 

 

 

4. CONCLUSION 

 

The CNNs strategy manually determined the layers during 

the feature extraction phase, while transfer learning methods 

utilized pre-existing layers. The classification layers consisted 

of flattened or global average pooling layers and fully 

connected layers customized based on the dataset’s classes. 

The training involved a dataset containing images of benign, 

malignant, and non-tumor skin lesions, which underwent 

processing through feature extraction and classification layers 

to categorize the skin images accurately. The MobileNetV2 

architecture demonstrated the highest accuracy, establishing it 

as the most efficient approach for predicting skin lesion 

classifications in this investigation. 

Moreover, these findings can categorize skin types into 

benign, malignant, and non-tumorous tumors. These are then 

compiled into a website for convenient access and utility for 

many individuals. 

In summary, it is crucial to tackle these constraints in future 

studies. Highlighting that although the present study offers 

valuable insights into the utilization of MobileNetV2 for skin 

lesion identification, it is essential to address these obstacles 

to enhance the clinical usefulness of the model and guarantee 

its successful implementation in various healthcare settings. 
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