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On a global scale, the dust accumulation and soiling of solar photovoltaic (PV) systems, are 

the factors that after irradiation, have the most serious impact on system performance. In 

arid regions, soiling can severely affect large utility-scale PV plants, requiring major 

cleaning and mitigation efforts. This mitigation leads to increased operating and capital 

expenditures, thereby reducing overall revenues. This research paper introduces a novel 

solution to this issue by integrating the YOLOv8 Deep Neural Network (DNN) with 

advanced image processing techniques for dust and soiling classification to suggest the 

appropriate cleaning intervention strategy. Our proposed system explores the synergy of 

artificial intelligence algorithms and embedded electronic platforms to present an 

innovative system designed for high-performance, autonomous, and real-time dust and 

soiling classification and enhances the accuracy and efficiency of solar panel status 

inspection. Our approach was implemented on the NVIDIA Jetson Nano platform, which 

demonstrates its powerful performance capabilities, low power consumption, and efficient 

processing time. Through our evaluation of these embedded systems, we contribute to 

identifying optimal hardware for our application and provide valuable insights for 

researchers implementing AI-based solutions in solar energy. With an accuracy rate 

exceeding 90%, our system effectively detects dirt and dust in various scenarios. 
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1. INTRODUCTION

The monitoring and maintenance of photovoltaic panels 

have become crucial, presenting challenges that require 

innovative inspection and diagnostic systems to enhance their 

electrical output, efficiency, dependability, and stability. 

Therefore, researchers in the solar photovoltaic systems field 

are focused on improving their performance, enabling them to 

generate more electricity efficiently and in an environmentally 

friendly way. The study of dust and soiling impact on the 

power productivity of photovoltaic (PV) modules or systems 

is crucial for maximizing the efficiency of PV generators. 

Several studies by Hamid et al. [1], Semaoui et al. [2], and 

Quansah and Adaramola [3] highlight the significance of 

addressing dust and soiling in PV systems in arid regions of 

Africa and compare the energy efficiency and output 

performance of photovoltaic modules under varying 

environmental and operational conditions in Zeedan et al. [4], 

Mustafa et al. [5] and Salimi et al. [6] provide a study of the 

impact of dust soiling on solar panel performance in dusty 

regions of the Middle East. Table 1 presents the performance 

degradation percentages due to dust soiling in Africa and the 

Middle East. 

Another experimental study [7] examined the impact of dust 

on azimuth tracking solar PV systems in the desert regions of 

Sharjah, United Arab Emirates. This demonstrates that dust 

accumulation during daily exposure periods is the main factor 

reducing the productivity of solar energy technologies. In a 

review of failures of photovoltaic modules, Köntges et al. [8] 

found that soiling negatively influences power production. It 

reduces the transmittance of incident radiation through the 

cover glass of PV modules, thereby decreasing the amount of 

solar radiation available for conversion into electricity. 

Those studies have consistently demonstrated that the 

accumulation of dust particles on PV panels significantly 

reduces their performance and underscores the critical need to 

address dust and soiling in solar systems to ensure maximum 

energy efficiency. Various cleaning techniques and 

technologies are used for the maximum operating efficiency 

of PV panels. Electrostatic cleaning was proposed by 

Kawamoto and Shibata [9] for airborne dust particles using 

wire electrodes and single-phase high-voltage to create an 

electrostatic force. Kawamoto and Guo [10] enhanced their 

electrostatic cleaning technique three years later using a two-

phase, high-voltage and low-frequency approach. The results 

of their experiments indicated that this improved electrostatic 

cleaning method achieved a cleaning rate of more than 60% 

for very fine dust particles. Simiyu [11] optimizes the cleaning 
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process by determining the ideal number of modules to be 

cleaned and the frequency of cleaning events per year using 

machine cleaning for PV panels. Al-badra et al. [12] tested a 

complex self-cleaning system in Egypt, combining a 

mechanical vibrator with an antistatic hydrophilic nano-

coating. This system effectively removed dust particles, 

resulting in a 12.94% reduction in electrical efficiency 

compared to non-cleaned panels. 

 

Table 1. The percentage of photovoltaic performance 

reduction due to dust accumulation 

 

Country Performance Degradation 
Exposure 

Time 

Egypt [1] 
53% of the conversion efficiency of the 

PV unit 𝜂𝑝𝑣 
75 days 

Algeria 

[2] 
8.79% of the Isc per day 1 month 

Ghana [3] 
8%-13.8% of the Performance Ratio 

/month 
14 months 

Qatar [4] 43% of the cumulative produced power 6 months 

Jordan [5] 8.8% of the produced power/ day 21 days 

Iran [6] 8%-12% of produced power/ month 45 days 

 

In the last several years, there has been substantial growth 

in the adoption of photovoltaic technologies and development 

in utilizing techniques of deep learning, especially 

Convolutional Neural Networks (CNNs) and artificial 

intelligence (AI), for evaluating the state of photovoltaic (PV) 

systems. These advanced technologies offer innovative 

solutions for monitoring, assessing, and optimizing the 

performance of PV installations and significantly improve the 

efficiency, reliability, and maintenance of PV systems. 

One of the early works about the applicability of this new 

evaluation method has been proposed by Ul Mehmood et al. 

[13], which introduces an efficient and cost-effective solution 

for measuring the soiling ratio on PV panels by combining 

Internet of Things (IoT), cloud-based infrastructure, low-cost 

sensors, and ANN models. The system adopts an IoT 

framework, enabling connectivity and data collection from 

distributed sensors. The Low-cost sensors are used to gather 

data related to soiling deposits on the PV panels. These sensors 

help minimize the hardware requirements for a soiling 

monitoring station. The cloud-based centralized approach 

allows for remote monitoring of soiling deposits on PV panels, 

eliminating the need for physical presence at the installation 

site. The results of the soiling ratio measurements are 

transmitted from the cloud server to a graphical user interface 

(GUI). This GUI allows users to access and visualize the 

soiling data, making monitoring the status of PV panels 

remotely accessible. Another study by Cavieres et al. [14] 

proposed an approach based on Convolutional Neural 

Networks (CNN) to estimate the power loss of PV modules 

affected by soiling, dust and dirt accumulation, and partial 

shading. The methodology uses visible spectrum RGB images 

of multiple solar panels and environmental data to individually 

predict the performance of each module. This methodology 

offers a comprehensive approach to assessing the performance 

of PV modules by considering the specific effects of partial 

shading and soiling on each module within a solar installation. 

By leveraging CNNs and image analysis techniques, the 

algorithm can accurately estimate power loss for each module 

displayed in the image. Tan et al. [15] present a solution in 

their study by building an image acquisition system designed 

to assess the dust accumulation status on photovoltaic panels. 

The proposed methodology is based on a novel approach that 

uses Denoising Convolutional Neural Networks (DnCNN) for 

image analysis and evaluation. The system captures images of 

PV panels to assess the extent of dust accumulation in real-

time. The study compares different combinations of DnCNN 

with popular deep-learning models like AlexNet, ResNet, and 

VGG-16. The results suggest that a serial connection of the 

ResNet-50 model and the DnCNN enables real-time 

monitoring tasks and quantitative assessment of the state of 

dust accumulation to be carried out with greater accuracy and 

better performance in time. 

Li et al. [16] perform a systematic study on the application 

of Artificial Neural Networks (ANN) for photovoltaic fault 

detection and diagnosis. Three types of Neural Networks for 

PV Fault Detection and Diagnosis were discussed: Sallow 

Neural Networks, Deep Neural Networks, and hybrid models, 

which combine ANNs with other machine learning methods. 

The review paper provides a clear framework for discussing 

the use of ANNs in PV FDD and the associated challenges and 

prospects in the field. The paper summarizes the effectiveness 

of ANNs in PV fault detection and diagnosis and highlights 

the common architectural choices for shallow and deep ANNs. 

This study provides a clear direction for future research 

interested in applying machine learning techniques to improve 

the reliability and maintenance of PV systems. 

Several studies [17-19] have focused on exploring the use 

of Deep Learning Networks and embedded systems for 

detection tasks using YOLO algorithms. This research paper 

presents an innovative real-time approach that integrates 

YOLOv8 deep learning-based object detection techniques 

with image processing methods. Our approach allows the 

YOLOv8 to perform instant identification and classification of 

various types of detected soiling on the surfaces of PV panels. 

This process involves training the YOLOv8 network on a large 

dataset with multiple images, including a wide array of soiling 

types, enabling the system to recognize and classify different 

types of soiling accurately. Image processing techniques using 

OpenCV are used to extract the covered dust area.  

The paper is organized into the following sections: System 

methodology, the core of our paper, details our novel approach. 

It introduces the status evaluation method based on the 

YOLOv8 algorithm and image processing approaches for 

soiling and dust detection. We also discuss the training dataset, 

which forms the foundation of our system's capability to detect 

and classify different types of soiling accurately. Section 3 

presents an experimental case study where we apply our novel 

system to real-world scenarios. We also analyze the results 

obtained through the system's implementation. This part of the 

paper demonstrates the practicality and effectiveness of our 

approach in real-world situations. The final section of the 

paper draws conclusions based on our research results. We 

outline potential directions for future research to develop and 

conceive an intelligent inspection system for real-time soiling 

recognition and autonomous cleaning of solar modules. 

 

 

2. METHODOLOGY AND MATERIALS 

 

The proposed system uses two distinct methods to identify 

soiling and detect dust layers on the surface of solar panels. 

One method relies on the deep learning algorithm YOLOv8, 

while the other is based on image processing techniques. The 

YOLOv8 algorithm is a state-of-the-art object detection 

algorithm that excels in real-time applications. YOLOv8 is 
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trained to recognize and localize instances of soiling and dust 

on photovoltaic panels, providing a powerful tool for 

automated detection. Simultaneously, the system leverages 

image-processing techniques to enhance its capability to 

identify and analyze dust areas. Image processing involves 

manipulating the visual data captured by the HD camera to 

extract meaningful information. Various image-processing 

algorithms may be employed to enhance contrast, reduce noise, 

and highlight specific features associated with soiling or dust 

deposition. This complementary approach ensures a 

comprehensive and robust system for real-time monitoring of 

the solar panel's cleanliness. 

 

2.1 Object detection using YOLO detection network  

 

Object detection has gained popularity in computer vision 

due to its wide range of applications. It is a fundamental aspect 

of computer vision in various real-world scenarios such as 

security systems, autonomous driving, video monitoring, 

remote sensing target detection, robotics, etc. The primary 

objective of the object detection target is to identify and 

classify visual objects in images or videos. These objects are 

classified into specific object classes and highlighted by 

drawing bounding boxes [20]. Deep learning-based object 

detection methods can be classified into two categories: Two- 

One-Stage detectors and two Stage detectors. In the context of 

this research paper, the object detection methods employed are 

based on the YOLOv8 algorithm proposed in a previous 

research work [21].  

YOLO (You Look Only Once) is a one-stage detector 

widely used algorithm famous for object detection robustness. 

Redmon et al. [22] introduced the first YOLO version in 2015. 

Then, the YOLO framework has gone through a series of 

advancements and updates, with each version introducing 

improved performance and capabilities in object detection. 

YOLO predicts the bounding box coordinates and class 

probabilities of objects in an image in a single pass. The main 

steps used by the YOLO algorithm to detect objects in an 

image are shown in Figure 1. 

 

 
 

Figure 1. The main idea of the YOLO network for object 

detection [22] 

 

In the first step, the algorithm splits the input image into an 

S × S grid, predicts B bounding boxes and their confidence 

scores for each grid cell, and discards any bounding boxes with 

confidence scores below a specified threshold. In the final step, 

YOLO's regression algorithm estimates the bounding boxes 

for the entire image simultaneously. Ultimately, Non-

maximum suppression (NMS) is applied to eliminate 

overlapping bounding boxes and obtain the final detection.   

The YOLO network has seen a series of significant 

improvements from its original version, YOLOv1, to the latest 

iteration, YOLOv8. Each version of YOLO aimed to improve 

accuracy, speed, and the ability to handle various object scales 

and types. Table 2 describes the main improvements made 

from the initial YOLOv1 and beyond [23]: 

 

Table 2. The main YOLO framework's improvement 

 

YOLO 

Framework’s 
Main Improvement 

YOLOv1 
Detection relies on grid division. 

Confidence loss is a primary focus. 

YOLOv2 

Introduced anchor boxes determined through K-

means clustering. 

Adopted a two-stage training process. 

Transitioned to a full convolutional network 

architecture. 

YOLOv3 
Implemented multi-scale detection by 

integrating Feature Pyramid Networks (FPN). 

YOLOv4 

Incorporated Spatial Pyramid Pooling (SPP). 

Used the MISH activation function. 

Introduced data augmentation techniques like 

Mosaic and Mixup. 

Introduced the GIOU (Generalized Intersection 

over Union) loss function. 

YOLOv5 

Offered flexible control over model size. 

Employed the Hardswish activation function. 

Further improved data augmentation strategies. 

YOLOv6 

Opts for the anchor-free methods, unlike the 

previous version, which used anchor-based 

methods. 

Uses the EfficientRep backbone consisting of 

CSPStackRep blocks, RepConv, RepBlock 

Used the Efficient Decoupled Head. 

Two loss functions are required: Varifocal Loss 

(VFL) for classification and Distribution Focal 

Loss (DFL) for box regression. 

YOLOv7 

We propose several architectural reforms and a 

series of enhancements, collectively known as a 

bag-of-freebies, to improve model performance. 

These reforms include the implementation of E-

ELAN (Extended Efficient Layer Aggregation 

Network) and the adoption of model scaling 

specifically tailored for concatenation-based 

models. The bag of freebies utilized in this 

approach encompasses planned re-

parameterized convolution, which optimizes the 

convolutional operations, and a dual approach 

to loss calculation, employing coarse 

adjustments for auxiliary loss and fine-tuning 

for the primary lead loss. 

YOLOv8 

C3 Module Replacement: Replace the C3 

module with the C2f module. 

Convolutional Kernel Adjustment: In the 

backbone, the first 6x6 Conv layer is replaced 

with a 3x3 Convolutional layer. 

Convolution Deletion: Two Convolutional 

layers (No.10 and No.14 in the YOLOv5 

configuration) are removed from YOLOv8. 

Bottleneck Convolution Change: The first 1x1 

Convolutional layer in the Bottleneck is 

replaced with a 3x3 Convolutional layer. 

Decoupled Head and Objectness Branch 

Deletion: YOLOv8 adopts a decoupled head, 

separating certain network components and 

eliminating the objectness branch. 

 

2.2 YOLOv8 model structure  

 

In this paper, we present a novel approach using the latest 
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iteration of the YOLOv8 framework for soiling detection and 

classification on PV panels. Our methodology involves a 

comparative analysis with the previously explored YOLOv5 

model outlined in our prior study [21]. The YOLO series of 

algorithms has gained wide popularity due to its exceptional 

accuracy while maintaining a tiny model size. Ultralytics 

introduced the latest version of the YOLO algorithm in 

January 2023, the same company that introduced the YOLOv5 

framework. The experiments prove that the YOLOv8 model 

outperforms the YOLOv5 in accuracy and speed [22]. Figure 

2 compares YOLOv8, YOLOv5, YOLOv6, and YOLOv7, all 

trained on a 640-image resolution. All variants of YOLOv8 

exhibit superior throughput with a comparable number of 

parameters, highlighting their hardware efficiency and 

architectural advancements. Ultralytics introduces both 

YOLOv8 and YOLOv5, providing remarkable real-time 

performance. According to the initial benchmarking data 

provided by Ultralytics. It is suggested that YOLOv8 will 

focus on deploying constrained edge devices at a high 

inference rate [23, 24]. 
 

 
 

Figure 2. YOLOv8 compared with others YOLO models 

 

The YOLOv8 algorithm is designed to be easy to use, faster, 

and more accurate than its predecessors, making it an excellent 

choice for a variety of tasks, including object detection 

instance segmentation, image classification, and tracking [24]. 

YOLOv8 shares an architectural backbone similar to 

YOLOv5. Still, it introduces a significant improvement in the 

CSP Layer called C2f in YOLOv8 architecture, which 

combines advanced characteristics with contextual data to 

increase object detection accuracy. To independently manage 

objectness, classification, and regression tasks, improving the 

overall accuracy of the model and allowing each branch to 

focus on its designated task, YOLOv8 adopts an anchor-free 

model equipped with a decoupled head, unlike the previous 

model of YOLOv5. The objectness score's activation function 

is used as the sigmoid function in the output layer of YOLOv8. 

This score represents the probability that a given bounding box 

includes an object of interest. For the class probabilities, 

YOLOv8 used the softmax function to represent the objects’ 

probabilities belonging to each possible class [25]. Figure 3 

shows the architecture of YOLOv8 made by GitHub users [26]. 

The main changes compared to YOLOv5 are as follows [22, 

27, 28]: 

▪ The module C3 is replaced by C2f module. 

▪ In the Backbone’s initial, the first 6×6 Conv is 

replaced with 3×3 Conv.  

▪ Both Convs No.10 and No.14 in the YOLOv5 

configuration are deleted. 

▪ In the Bottleneck, the initial 1×1 Conv is replaced 

with 3×3 Conv. 

▪ The Objectness branch is removed using the 

decoupled head.  

 

 
 

Figure 3. YOLOv8 model structure proposed by Ultralytics 

in January 2023 [26] 

 

YOLOv8 can be executed through the (CLI) command line 

interface or installed as a PIP package. Furthermore, it 

includes various integrations for labeling, training, and 

deployment. When assessed on the MS COCO dataset test-dev 

2017, YOLOv8x demonstrated an AP of 53.9% with an image 

size of 640 pixels, outperforming YOLOv5, which achieved 

50.7% on the same input size. Notably, YOLOv8x exhibited a 

speed of 280 FPS on an NVIDIA A100 with TensorRT, 

showcasing its efficiency in real-time processing. 

 

2.3 Image processing-based dust detection  

 

Several studies propose a computer vision approach to 

classify solar panels automatically as clean or dust-covered, 

without regard to changes in lighting conditions and texture 

differences [29].  Our approach presents an image processing-

based method for detecting dust accumulation on solar panels, 

utilizing the OpenCV library [30]. The approach employs 

advanced image processing techniques, leveraging features 

such as edge detection and color analysis, to ensure reliable 
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identification of dust accumulation. This method can be 

seamlessly integrated into automated inspection and 

maintenance systems, contributing to the efficient monitoring 

and cleaning of solar installations.  

 

 
 

Figure 4. The block diagram of image processing techniques 

applied to the dusty panel 

 

After image acquisition, a series of image processing 

techniques were applied to extract the dusty region of the PV 

panel image. Figure 4 presents an illustrative block diagram 

detailing the main image-processing methods for dust layer 

detection. Different techniques are involved in preprocessing: 

thresholding, binarization, edge detection, and morphological 

transformations to improve the image quality and get accurate 

dust layer extraction from the input image. In the first step, the 

RGB matrix of the input image was converted to HSV (Hue, 

Saturation, and Value) space by using the cv.rgb2hsv () 

function. Then, to identify the pixels within a desired range of 

values (pixels with dust) from the obtained HSV image, the 

cv2.inrange () function was used to perform basic thresholding 

in the second step, this function takes three parameters to 

extract the dust layer we are interested in. To remove a false 

detection along the image border, cv2.GaussianBlur () 

function was used. 

Gaussian filtering has been intensively studied in image 

processing and computer vision to reduce noise and preserve 

edges [31]. Finally, the canny edge detection method based on 

OpenCV was used for dust edge detection. First, erosion 

followed by dilatation was performed to preserve the shape 

and size of the dust area in the image [32]. To calculate the 

percentage of the dust-covered regions corresponding to the 

number of non-zero pixels in the binary image Eq. (1), we used 

the function cv2.countNonZero(). Total pixels are the number 

of white pixels (whose value is 255) and black pixels (whose 

value is 0) inside the binary image Eq. (2). The height and 

width of the image are calculated using imgthre. shape () 

function.  

By combining these pre-processing techniques, the overall 

aim is to improve the quality of the input image and make it 

more suitable for the subsequent analysis stages, eventually 

leading to more accurate dust layer extraction. Each technique 

plays a specific role in treating different aspects of the image, 

collectively contributing to the efficiency of the entire pre-

processing process.     

Based on the image processing techniques, we achieved 

satisfactory results by segmenting the regions of interest and 

isolating dust particles from the background of the input image. 

A decision is made considering the level of dust identified on 

the PV panels and the type nature of soiling. This decision 

involves initiating the cleaning process for the soiled panels or 

capturing the next PV panel image for the new processing 

process in case of a clean panel. This decision is relayed to the 

autonomous cleaning system to provide a choice of cleaning 

operations; more details in future work. Different types of 

cleaning methods and techniques are proposed and inspired by 

cleaning methods summarized in Younis and Onsa [33] paper 

to remove or mitigate the soiling and dust from PV surfaces 

depending on the type and classification of the soiling.  

 

𝐷𝑢𝑠𝑡 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 (%)
= 𝑁𝑜𝑛𝑍𝑒𝑟𝑜𝑝𝑖𝑥𝑒𝑙𝑠 𝑇𝑜𝑡𝑎𝑙𝑝𝑖𝑥𝑒𝑙𝑠⁄  

(1) 

 

𝑇𝑜𝑡𝑎𝑙𝑝𝑖𝑥𝑒𝑙𝑠 = 𝐻𝑒𝑖𝑔ℎ𝑡 ∗ 𝑊𝑖𝑑𝑡ℎ (2) 

 

2.4 The proposed system architecture 

 

This section describes the proposed system architecture 

used in this paper for soiling and dust identification and 

detection. The proposed system consists of two main 

components: The software combines the YOLOv8 algorithm 

and computer vision techniques, efficiently detecting and 

analyzing soiling and dust on PV panels. The system's 

hardware components include an HD camera used for 

capturing images of the PV panels and the Nvidia Jetson Nano, 

which serves as the central processing unit to perform the core 

processing tasks, enabling rapid and real-time analysis of the 

captured images. Figure 5 shows the architecture of the 

proposed system for real-time soiling and dust detection. 

 

 
 

Figure 5. The architecture of the proposed system for soiling 

and dust detection on solar panels 

 

In the first stage, an HD camera captures the PV panel 

image after scanning the QR code related to the PV panel and 

detecting its borders. After image acquisition, a PV panel state 

evaluation method based on a YOLOv8 Algorithm, then image 

processing techniques are performed for soiling and dust 

identification to make an optimal decision depending on the 

types of the detected soiling and the percentage of the dust 

layer. The YOLO algorithm consists of several steps, from the 

input image to the final output. Figure 6 shows the architecture 

of the proposed YOLO-CNN Algorithm for soiling detection 
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tasks. The input image containing the objects to be detected (a) 

is preprocessed for the neural network algorithm through the 

preprocessing step (b). Common preprocessing steps include 

resizing the image to a fixed size and normalizing values to a 

specific range. The first algorithm step divides the input image 

into an S×S grid. The preprocessed image is passed through a 

Convolutional Neural Network (CNN) architecture as its 

backbone (c). The CNN is responsible for extracting features 

from the image. The CNN architecture typically consists of 

multiple convolutional layers followed by fully connected 

pooling layers, normalization, and activation functions [27]. 

These layers are designed to capture hierarchical features, 

including edges, textures, and object parts.  

This design enables the network to predict three main 

components for each grid cell. Bounding Box Predictions, 

including the coordinates (x, y, w, h) of the bounding box's 

center. Class Predictions: for each bounding box, the network 

predicts the conditional class probabilities for all possible 

classes and Confidence Scores, each bounding box also has an 

associated confidence score, which represents how confident 

the network is that this bounding box contains an object. After 

obtaining predictions from the CNN, post-processing steps (d) 

are applied to refine and filter the predictions. Only the 

bounding box with the greatest Intersection Over Union (IOU) 

correlation to the ground truth is selected by the Non-

Maximum Suppression (NMS) algorithm. The final output (e) 

of the YOLO algorithm is a set of bounding boxes, each 

associated with the class label and with the highest conditional 

probability. A confidence score that indicates how likely the 

predicted box contains an object. These bounding boxes 

represent the detected soiling in the input image. 

 

 
 

Figure 6. The architecture of the YOLO-CNN algorithm for 

Soiling detection tasks 

 

The application of the YOLOv8-based object detection 

framework yielded unsatisfactory results for dust detection. 

The primary reason for this discrepancy is the heterogeneous 

distribution of dust on various surfaces. The YOLOv8 

algorithm is optimized for object detection tasks, assuming a 

relatively uniform distribution of objects within the image, 

which is not true for dust layer detection. 

To overcome this issue, various image-processing 

techniques provided by OpenCV for dust layer detection were 

proposed in this paper. 

 

2.5 Prototype system for testing 

 

A prototype has been developed to assess and validate a 

method for scanning QR codes and capturing images related 

to solar panels. Figure 7 illustrates a mechanical arm with a 

CSI camera programmed to move systematically for QR code 

scanning and image capture for each corresponding solar panel. 

A stepper motor controlled by a microcontroller facilitates the 

arm’s movement. The Raspberry Pi 4 board has been used for 

image acquisition and transfer. The stepper motor ensures 

precision in positioning the camera. The microcontroller plays 

a central role in controlling the movements of the stepper 

motor, ensuring precise synchronization during QR code 

scanning and image capture. 

The main purpose of this prototype is to validate the 

reliability of the proposed QR code scanning and image-

capturing method, potentially leading to future developments 

and improvements based on testing outcomes.  

 

 
 

Figure 7. The prototype for the experimental QR scan test 

 

2.6 YOLOv8 training dataset 

 

The main objective of the proposed system is to accurately 

classify various types of soiling and quantify the dust coverage 

on the PV panel surface. By training the YOLOv8 algorithms, 

the system aims to achieve the ability to not only detect the 

presence of soiling and dust but also classify them into 

different categories based on their types. This classification 

enables a more detailed analysis and understanding of the 

specific types of soiling affecting the PV panels. Training the 

YOLOv8 algorithms involves providing a labelled dataset that 

includes images of PV panels with different types of soiling 

and dust coverage.  

The proposed YOLOv8 pipeline for soiling detection 

involves two stages for final soiling recognition, as shown in 

Figure 8. In the initial data collection phase, the focus is on 

collecting a vast data set, including videos and images 

covering several types of soiling that affect the efficiency and 

performance of solar PVs (Bird dropping, Tree branches, tree-

dropping leaves, etc.). Rigorous attention must be given to 

dataset curation, which includes eliminating duplicates and 

applying appropriate labels denoting the name of each soiling. 

These labels can be generated through automated labeling 

tools or manual annotation. In the second data preparation 

stage, the dataset containing soiling types of images and 

videos collected in the previous step is prepared for training 

and testing our soiling detection system. This step involves 

two phases: Data labeling involves labeling the images and 

videos by surrounding bounding boxes for each type of soiling. 

It can be accomplished manually and expedited through 

labeling software. Roboflow software annotated and classified 

images with multiclass annotation [34]. Roboflow provides 

1692



 

tools and services for managing and annotating datasets for 

machine learning [35]. 

During the data splitting step, labelled data are partitioned 

into training and testing sets. This division is a crucial strategy 

in the machine learning workflow for several reasons. The 

testing set, separate from the training data, serves to evaluate 

the model's generalization ability. It comprises examples that 

the model hasn't encountered during training, providing a 

reliable measure of its performance on new and unseen data. 

The ultimate goal is to ensure that the model can effectively 

apply its learned knowledge to real-world scenarios. With this 

balanced approach, we can rigorously train and evaluate our 

YOLOv8-based model, enhancing its reliability and 

effectiveness in detecting a wider range of dirt types. 

 

 
 

Figure 8. Data Preprocessing steps for soiling detection 

 

In this study, we constructed a training model by curating 

and annotating a comprehensive database comprising over 

3000 images, each sized at (1088×1920) pixels. These images 

were captured using a high-resolution camera and 

encompassed various types of soiling. 

To ensure effective model training, we partitioned the 

dataset into 80% for training and retained the remaining 20% 

for test validation purposes. The database was meticulously 

annotated using an image-labeling tool for object detection, 

thus creating a suitable dataset for training the model. 

The annotations were formatted in YOLO format, and both 

the training model and annotated images were uploaded to the 

Google Drive platform for accessibility and sharing. For 

training, we utilized Google Colab, an Integrated 

Development Environment (IDE) known for its support of 

machine learning and deep learning tasks. Google Colab 

provides access to Graphics Processing Units (GPUs) and 

Tensor Processing Units (TPUs), crucial for accelerating 

model training. Additionally, it comes pre-installed with 

popular libraries such as PyTorch, TensorFlow, Keras, and 

OpenCV, commonly used in deep learning research. This 

setup facilitated efficient model development and 

experimentation. The photovoltaic system used for the image 

collection of the training dataset is a standalone of four panels 

made of a poly-crystalline silicon model. Figure 9 depicts the 

PV system installed on the roof of the physics department 

building at Ibn Tofail University. 

 

 
 

Figure 9. Field experiment of PV panel images for soiling 

and dust accumulation detection 

 

2.7 Model performance comparison 

 

To evaluate the performance of our model based on the 

enhanced YOLOv8 version, we conducted comparative 

experiments with two widely used object detection models. 

These models include the previous version YOLOv5 (Ref) as 

well as the one-stage anchor-based algorithm, MobileNetV2-

SSD. The experiments were conducted under identical 

experimental conditions and on similar datasets. We selected 

several PV panel images taken by an onboard camera for 

soiling detection and recognition. 

 

 
 

Figure 10. Comparative experiment results for MobileNetV2 SSD (a), (b) and YOLOv5 (c) 
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In the experiment, our YOLOv8 model outperformed the 

other models in terms of detection speed and accuracy. Our 

model exhibited higher detection accuracy than the others, 

with no false detections and no missed detections. In contrast, 

the SSD model encountered issues with false detections. While 

the YOLOv5 model successfully detected almost all dirt, it 

also had minimal missed detection and reduced false detection 

rates. The detection results of the different models in the 

experiment can be observed in Figure 10. Our model produced 

more accurate bounding boxes and effectively identified all 

targets in the images captured. 

Our model YOLOv8 achieved a Map@50 accuracy of 90.9% 

and an F1 score of 0.88, significantly outperforming other 

object detection models. These results show the improved 

performance of our model when compared to YOLOv8 and 

other object detection models, demonstrating its ability to 

substantially improve dirt detection in various scenarios. 

Additionally, our model exhibits a significant reduction in 

parameter overhead and computation time compared to the 

original YOLOv8, making it more efficient and practical for 

use in Real-world applications. 

 

2.8 Processing system 

 

The YOLOv8 and image processing algorithms are 

implemented in Jetson Nano with a GPU 128 Cuda Cores 

Cortex-A57 64-bit. Implementing YOLOv8 and image 

processing algorithms on Jetson Nano with a GPU provides 

sufficient computational power and memory to operate these 

algorithms. Table 3 shows the technical specifications of the 

processing systems that were used for implementation. 

The significance of selecting Jetson Nano as the hardware 

platform for implementing YOLOv8 and image processing 

algorithms for real-time and low-power application scenarios 

can be further understood through various factors. Jetson 

Nano's GPU with 128 CUDA cores provides significant 

parallel processing capabilities, crucial for accelerating deep 

learning tasks like object detection with YOLOv8, enabling 

real-time processing of high-definition images. Additionally, 

its low-power design makes it suitable for energy-efficient 

operations in resource-constrained environments. NVIDIA's 

optimized deep learning frameworks like TensorFlow, 

PyTorch, and TensorRT take advantage of Jetson Nano's GPU, 

maximizing performance while minimizing power 

consumption. Its compact form factor allows seamless 

integration into space-limited environments, making it ideal 

for onboard vehicles or small monitoring devices. Moreover, 

Jetson Nano's cost-effectiveness compared to higher-end 

platforms, coupled with its vibrant developer community and 

rich ecosystem of software tools, documentation, and tutorials, 

ensures simplified development and troubleshooting, making 

it a compelling choice for real-time and low-power 

applications requiring sophisticated image processing and 

deep learning algorithms like YOLOv8. 

The NVIDIA Jetson Nano device used as the main 

processing unit in the system is a low-power embedded system 

specifically designed for running deep learning models and 

performing real-time detection tasks. It provides sufficient 

computational power to process the images captured by the 

HD camera and run the YOLOv8 Deep Learning Network and 

computer vision algorithms for soiling and dust detection [17, 

18]. However, it is important to note that the system's 

performance may vary depending on the complexity of the 

algorithms and the size of the images being processed. Even 

with Jetson Nano's capabilities, two critical parameters must 

be considered for building a high-performance power system: 

energy consumption and processing time. 

 

Table 3. Technical specifications of NVIDIA Jetson Nano 

used for implementing 

 
NVIDIA® Jetson Nano™ Processing Systems Features 

 

CPU 
64-bit Quad-core 

ARM A57 @ 1.43GHz 

GPU 

128- CUDA cores 

NVIDIA Maxwell @ 

921MHz 

Memory 

4GB 64-bit LPDDR4 

@ 1600MHz | 25.6 

GB/s 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Performance analysis of YOLOv8 on custom dataset 

 

The selection of appropriate evaluation metrics is crucial for 

measuring a model’s performance relative to the problem 

under investigation. These metrics, influenced by the dataset 

characteristics and domain, have been carefully chosen to 

provide a comprehensive view of the model's strengths and 

limitations.  

Precision denoting the positive predictive values. The 

Recall, also known as sensitivity, signifies the ratio of true 

positives in the predictions. Eq. (3) and Eq. (4) shows the 

formulas used to calculate these performance metrics [36].  

 

Precision=
TP

TP+FP
; (3) 

 

Recall=
TP

TP+FN 
; (4) 

 

where, TP=true positives, TN=true negatives, FP=false 

positives and FN=false negatives.  

 

 
 

Figure 11. (a) Precision curve (P-Curve); (b) Recall curve 

(R-Curve) of our trained model 
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Figure 12. The loss function and metrics (300 epochs) of YOLOv8 model 

 

 
 

Figure 13. YOLOv8 soiling detection results 
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Figure 14. Examples of dust image detection for two PV panels, PV1 and PV2: (a) input image, (b) HSV image, (c) Thresholded 

image for a range of dust colors, (d) Grayscale image, (e) Dust edge boundary image (f)(g) Eroding and Dilating image (h) % 

covered dust area 

 

 
 

Figure 15. The percentage calculation result of dust accumulation and dust cover % diagram of three PV panels 

 

Figure 11 presents the performance achieved by YOLOv8 

when trained on our custom dataset. The P-curve and R-curve 

independently portray the evolution of precision and recall, 

across varying confidence thresholds. 

Our model, trained to identify tree leaves in photovoltaic 

(PV) images, performs remarkably well, as shown by an 

analysis of its precision-recall curve (P-Curve).  

Precision, representing the accuracy of tree leaves identified, 

is exceptionally high, minimizing false positives and 

guaranteeing reliable classification of foliage regions.  

The training presented in Figure 12 appears promising, with 

the training and validation losses decreasing steadily over time. 

The box loss, which measures the localization error of the 

bounding boxes, shows a clear downward trend for both 

training and validation data, reaching around 4.0 for training 

and 5.0 for validation at epoch 150. Similarly, the 

classification loss, which measures the error in predicting 

object classes, exhibits a consistent decline, stabilizing around 

3.0 for training and 4.0 for validation. These trends suggest 

that the model is effectively learning to localize and classify 

objects in the data. 
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3.2 YOLOv8 performance and dust extraction results 

 

3.2.1 Soiling detection with YOLOv8 algorithm 

To assess the proposed method results for soiling detection 

using a YOLOv8 framework. Soiling was manually simulated 

by placing falling tree leaves on different photovoltaic panels. 

Figure 13 displays images of successful detection results 

performed by YOLOv8 networks of five experimental PV 

panels. Each detected soiling on the PV panel is surrounded by 

a Bounding Box.  

The results demonstrated that the YOLOv8 algorithm 

successfully identified over ten classes of tree leaves on the 

photovoltaic panel images.  

The accuracy of the YOLO algorithm for soiling detection 

demonstrated its efficiency, achieving a global rate exceeding 

90%. That means that in 90% of the examined cases, the 

algorithm accurately detected soiling on the photovoltaic 

panels. Expanding the capabilities of our model to detect a 

wider range of soiling types that could potentially decrease the 

PV installation performance, we aim to improve our training 

dataset by incorporating more diverse examples of soiling 

scenarios. By collecting and annotating additional data that 

includes different forms of soiling, such as dust, bird 

droppings, and other environmental contaminants, we aim to 

expose the model to a broader spectrum of challenges. 

 

3.2.2 Dust layer detection  

Figure 14 shows the successful application of image 

processing techniques to extract dust accumulation from the 

experimental PV panels covered with dust. Using the 

OpenCV-Python library, a series of image-processing 

techniques are employed to extract the dust from a 

preprocessed image. 

Both Eq. (1) and Eq. (2) are used to calculate the percentage 

of the panel area covered by dust, and the resulting calculation 

is presented in Figure 15. The analysis reveals that 

approximately Twenty-five percent of the solar panel surface 

is affected by dust, causing a reduction in energy production. 

Based on the calculated percentage of dust coverage, it is 

possible to estimate the impact on panel efficiency and yield. 

Figure 14 illustrates that dust covers more than 20% of the 

panel surface, negatively affecting the electrical performance 

and resulting in a significant decrease in voltage and current 

output compared to clean panels. The proposed system 

automates the quantification of dust on PV panels and 

facilitates rapid decision-making to perform intelligent 

maintenance to achieve optimal power production. 

The new proposed embedded system provides a decision 

based on the obtained results to make informed decisions and 

program a cleaning process according to the specific types of 

detected soiling. Future work will focus on exploring the 

implementation of the proposed system for autonomous 

Photovoltaic cleaning robots. The robot employs various 

algorithms to analyze the type of soiling and extract relevant 

information, such as the severity of the soiling, the distribution 

of the soiling on the surface, and any other pertinent features 

to select and perform the suitable cleaning method.  

 

3.3 Implementation results 

 

To choose a compatible system for processing to implement 

our approach, there are two main parameters to consider the 

system consumption energy and processing average time. 

Figure 16, shows the implementation of the proposed 

algorithm in the NVidia Jetson Nano platform, which has 

adequate performance for implementing our method. The 

Jetson Nano system shows relatively low energy consumption 

compared to other processing systems. 

This lower energy requirement makes it an interesting 

option for building an optimized power system with enhanced 

energy efficiency. Additionally, the Jetson Nano system offers 

a low average processing time, indicating that it can efficiently 

process the required algorithms and image processing tasks 

within a reasonable timeframe. This aspect is crucial for 

maintaining system response and ensuring real-time 

performance. Table 4 shows the results and technical 

specifications of the Jetson processing systems. 

 

 
 

Figure 16. NVidia Jetson Nano processing system 

 

Table 4. Results of the used processing system 

 
Processing System Jetson Nano 

Energy Consumption ≈ 5W 

Average Processing Time / 1Frame 3.74 ms 

Price 250$ 

Frame Per Second FPS 32 

 

 

4. CONCLUSION 

 

The popularity of Deep Learning Networks and computer 

vision is evident across various application domains, owing to 

their superior accuracy compared to traditional algorithms. 

Their adaptability has led to wide-spread adoption in a variety 

of fields.  

This paper proposes a real-time embedded system for 

soiling recognition and dust detection in photovoltaic modules. 

We proposed a YOLOv8 framework to detect soiling on 

photovoltaic PV panels and perform operations on visible 

images and image processing techniques using the computer 

vision library OpenCV to extract the dust layer on the PV 

panel for the state PV panel evaluation. The results obtained 

in this work are favorable and can be used for further research 

to develop and conceive a robust Real-time system for 

photovoltaic module inspection. Furthermore, it can 

significantly improve the accuracy and efficiency of real-time 

PV panel inspection conditions. The YOLOv8 model was 

evaluated on more than 20 solar panels, showing promising 

accuracy with an overall detection rate of 85% for soiling. 

In future research, many improvement ideas can be 

discussed. Increasing the image training dataset was expanded 

to incorporate additional types of soiling and defects, aiming 
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to enhance the detection and classification system's accuracy 

and efficiency. To identify a promising platform with high 

performance for embedded machine-learning systems. A 

comparison of the processing system used based on Jetson 

Nano to similar platforms such as Raspberry Pi 4, FPGA 

(Field-Programmable Gate Array), and VPU (Vision 

Processing Unit) is suggested. This comparison will help to 

evaluate the advantages and limitations of each platform. It 

can make an optimal decision on which platform will be the 

best suited for our embedded machine-learning requirements 

in terms of speed, power consumption, and average processing 

time. 
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