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 Medium-Voltage (MV) electrical switchgear is some of the essential equipment for 

ensuring the stability of electrical networks. However, detecting mechanical faults in these 

systems, especially in light of current operations and safety concerns, is a complex task. 

This paper presents a useful method that uses a one-dimensional convolution neural 

network (1D-CNN) to find both mechanical and non-mechanical faults in MV electrical 

switchgear with a high level of accuracy. The identification of mechanical faults in MV 

electrical switchgear requires accuracy and speed to avoid aggravation of the faults and 

the occurrence of risks. The proposed 1D-CNN model proved to work very well in 

identifying spatial features. Thus, by combining time domain and frequency domain 

analysis, it not only refines the classifier but also increases the fault detection probability 

in real-world situations. Even during real-time signal pre-processing and model validation, 

our model was able to predict the incurred faults for the scenarios in the time and frequency 

domains with 100% accuracy. The study provides an original approach that increases the 

efficiency of fault identification and the reliability of MV electrical switchgear at the same 

time. Introducing our 1D-CNN model, we advance the field of fault detection by 

minimizing downtime and maximizing maintenance effectiveness, in both time and 

frequency domain analyses. 
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1. INTRODUCTION 

 

Since it is essential for the protection and control of various 

types of electrical equipment, MV electrical switchgear can be 

considered one of the key elements in power systems [1, 2]. 

However, when electrical and mechanical problems occur, it 

becomes difficult for MV electrical switchgear to function 

normally. This can lead to insulation damage and, eventually, 

electrical switchgear failure [3-5]. All of these factors 

highlight the importance of sophisticated approaches to fault 

detection and handling, which would help address the 

problems quickly [6]. Faults prevalent in electrical switchgear 

necessitate the consideration of electrical faults that involve 

arcing, corona discharge, and surface tracking [7-10]. Arcing 

is when an electric current passes through air, separating the 

contacts and forming an electric arc that is very hot and 

capable of causing damage to the insulation [11]. Corona 

discharge can be defined as the ionization of air surrounding 

high-voltage conductors, which causes power waste and 

electromagnetic emissions [12].  

Surface tracking, on the other hand, occurs when 

conduction paths form on insulating surfaces, paving the way 

for electrical discharges that compromise the functionality of 

the affected equipment [13]. Furthermore, mechanical faults 

within electrical switchgear encompass a broad range of issues 

related to the mechanical components of the electrical 

switchgear system [14]. It is clear that these faults may 

originate due to wear and tear, misalignment, and physical 

damage to vital electrical parts, including circuit breakers, 

disconnect switches, and bus bars [15]. 

Such mechanical faults not only cause a decrease in overall 

efficiency but also become sources of dangerous risks that can 

turn into catastrophic consequences, including the abrupt 

failure of electrical switchgear [16]. Moreover, within the deep 

learning (DL) framework, the 1D-CNN is a unique type of 

neural network that handles sequential data with only one 

dimension, such as time series signals [17, 18]. Conventional 

2D CNNs excel at extracting spatial features from images, 

while 1D CNNs specialize in identifying local temporal modes 

within sequences. Their ability to extract features in a 

hierarchical manner across different layers makes them highly 

suitable for tasks involving time series. When it comes to 

finding mechanical faults in MV electrical switchgear, a 1D-

CNN can tell the difference between the fault-related signals 

and their temporal patterns and features [19, 20]. This, in turn, 

helps to categorize various types of faults based on their 

features. 
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2. LITERATURE REVIEW 

 

Modern methods have improved the identification of 

mechanical faults in MV electrical switchgear over the past 

few years. Earlier approaches used for fault detection 

incorporated rule-based expert systems along with the basic 

signal processing methodologies [16, 21]. However, these 

methods appeared to be impractical for the complex fault 

patterns that occur in electrical switchgear systems, 

particularly when considering the variations in working 

conditions. The researchers have put a lot of effort into 

identifying mechanical faults in electrical switchgear. A 

hugely effective research study by Liu et al. [22] have 

proposed a new approach to integrating an autoencoder neural 

network (AENN) with a support vector machine (SVM) for 

the identification of mechanical faults in circuit breakers. 

Reflection analysis applications focus on enhancing fault 

detection and addressing important maintenance concerns. 

These results show that the suggested AENN-SVM method 

improves the classification outcome. AENN is good at pulling 

out useful features from sensor data, and SVM improves the 

classification outcome. This integration yields excellent 

results in identifying a number of mechanical fault types for 

all the cases. 

Another relevant study by Chen and Wan [23] described an 

enhanced method for fault diagnosis in a high-voltage circuit 

breaker. They use Multi-Segment Permutation Entropy 

(MSPE) and a density-weighted one-class extreme learning 

machine (DW-OCELM) to improve the speed and 

performance of finding faults. The MSPE-DW-OCELM 

approach is valuable in diagnosing mechanical faults because 

it is able to extract complicated patterns from sensor data and 

improve classification results for normal and faulty situations. 

As a result, comparative analysis proves the effectiveness of 

MSPE-DW-OCELM compared to other approaches, making it 

indispensable for high-voltage circuit breaker maintenance. 

The benefits of this technique are obvious in terms of fault 

perspectives, which help to improve the system's functioning 

and stability. 

Furthermore, Ma and Wang [24] developed a new idea for 

precise mechanical malfunction detection for gas-insulated 

switchgear (GIS) disconnectors. They combined the 

Synchrosqueezing Wavelet Transform (SWT) with a stacked 

autoencoder (SAE) to enhance fault detection performance, 

resolving issues with signal decomposition and data feature 

representation. The results clearly demonstrate the high 

effectiveness of the proposed SWT-SAE method in fault 

diagnosis of rotating machinery, as it accurately dissects 

vibration signals through the synchronous wavelet transform 

and enhances fault pattern learning through the stacked SAE 

model. Another study by Li et al. [25] proposed an intelligent 

method for evaluating the GIS mechanical performance with 

the help of the VGG16 network. Building upon the DL 

methods, their research increases the level of precision and 

efficiency of the GIS mechanical ailment diagnosis. 

Consequently, the proposed VGG16-based method well 

processes the mechanical performance information and 

enables the evaluation of the GIS equipment. Due to its strong 

capability to learn, VGG16 helps increase the maintenance and 

equipment reliability. Nevertheless, the VGG16 model tends 

to have high computational requirements and the problem of 

overfitting that may affect real time operations and proper 

generalization of the model in actual industrial applications. 

Liu et al. [26] designed a new mechanical fault diagnosis 

model that incorporated 1D-CNN, Gated Recurrent Unit 

(GRU) layer and knowledge graph and an attention 

mechanism. By extracting features and having attention 

mechanisms, this has been found to have almost perfect 

accuracy of up to 99% improving the fault diagnosis accuracy. 

However, the paper raises questions about adaptability and 

practicality since it requires large amounts of labeled data and 

has a highly layered and intricate structure, which inhibits the 

model’s ability to run efficiently in the real world, in terms of 

computational complexity, training time, and hardware 

demands. 

On the other hand, Long et al. [27] proposed an exceptional 

fault diagnosis method that enriched one-dimensional data 

using CNNs. This research utilizes DL to enhance the facets 

of the diagnosis of mechanical failures, especially when the 

faults are complicated and there are few samples for training. 

Thus, they employed a stacked AE, which the 

Backpropagation Neural Network (BPNN) had improved, and 

achieved excellent results, with training accuracy at 98.89% 

and test accuracy at 97.25%. Nevertheless, similar to most DL 

algorithms, it greatly relies on the availability of sufficient 

labeled data, which may turn into a problem in a real-world 

industrial environment. 

Hong and Suh [28] looked at how to use the SCRLSTM 

model to find problems in industrial machinery. This model 

combines stacked two-dimensional and one-dimensional 

CNNs with residual long-short-term memory (LSTM) and 

supervised LSTM. It works well at finding abnormal points 

and extracting spatial features from time-series vibration data 

in a variety of settings. However, one of its flaws is that it 

relies on supervised learning and needs a lot of training labeled 

data. This means that it might not work well in situations 

where labeled data is hard to come by. Certifying its 

performance in different spheres of industry with varied 

interactions and types of equipment remains effective. 

Furthermore, the incorporation of several DL components 

suggests that the scale of large-scale installations will impact 

the performance of the proposed systems. 

In contrast, this research work is concerned with the use of 

a 1D-CNN model for diagnosing as well as detecting 

mechanical faults in electrical switchgear. Particularly, the 

1D-CNN architecture handles one-dimensional sequential 

data and vibration signals from the switchgear components. 

Taking full advantage of the fact that 1D-CNN can extract 

features in the hierarchical layers, this work successfully 

applies 1D-CNN to identify patterns relating to mechanical 

faults with high accuracy and efficiency. This reduces the time 

spent on feature extraction compared with the traditional 

approach, whose time-consuming aspect mostly involves 

feature engineering. 

This approach addresses the inherent problems in traditional 

fault diagnosis because it uses DL to self-learn and 

automatically classify fault patterns from raw vibration data. 

1D-CNN's ability to learn features and differentiate signals 

related to various types of faults can be advantageous in real-

time monitoring of electrical switchgear and other preventive 

maintenance policies. Furthermore, our proposed method 

enhances the reliability and safety of electrical distribution 

networks by incorporating less labeled dataset input and 

enhancing the computational aspect. 

Such integration is also beneficial in working on the 

identification of mechanical faults and studying the dynamics 

of these faults and their frequency characteristics. Therefore, 

the model expands the understanding of fault behaviors into 
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additional dimensions, enabling more informed decisions in 

maintenance and operational plans. As a result, the suggested 

1D-CNN model is a big step forward in finding mechanical 

faults in MV electrical switchgear. It is made better by 

combining the two useful techniques of time domain analysis 

and frequency domain analysis. Based on this, the paper aims 

to diagnose and identify mechanical faults in electrical 

switchgear using a one-dimensional convolutional neural 

network with time and frequency domain techniques. The 

research endeavors to achieve the following objectives and 

contributions: 

1. Development of an Enhanced Model: The main idea of 

this paper is to design and train a new 1D-CNN model that 

uses the advantages of convolutional neural networks. 

Therefore, the proposed model, which targets enhancing 

the fault detection accuracy, concentrates on the feature 

extraction aspect of 1D-CNNs at a local level. This 

contribution can be narrowed down to the creation of a 

distinct model that proves to be efficient in fault detection 

with the help of neural network architectures. 

2. Integration of Time and Frequency Domain Analyses: 

Another important aim is to incorporate the time and 

frequency domain features into the 1D-CNN. This 

integration allows for the parsing of temporal patterns 

existing in signals collected in a particular period of time 

while at the same time detecting faults of certain 

frequency. Through the integration of the two knowledge 

domains, it is believed that the proposed model will obtain 

a more accurate and robust perception towards the fault 

signatures, and thus improve the fault detection 

performance. To this contribution, it also expands in the 

area of integrating various analytical domains as a way of 

enhancing fault diagnosis 

3. Advancement of Fault Detection: The general goal of the 

research is considered to be the improvement of the 

prospects for detecting mechanical faults in switchgear 

systems with the use of the introduced 1D-CNN model. 

As a result of decreasing the time when the machinery is 

not available for work, and avoiding various crucial 

breakdowns, the application of the model is expected to 

increase operational reliability. The main input is made in 

terms of the actual implementation of the established 

model where actual real-world situations have the 

potentiality of enhancing the serving reliability of the 

power distribution networks. 

However, it is crucial that our study presents a robust 

approach to mechanical fault diagnosis of switchgear systems 

using the proposed 1D-CNN model, while also highlighting 

some of its limitations. First, such a model’s intuition is highly 

dependent on the volume and type of training data. 

Inefficiency is identified as occurring when inadequate or low-

quality data is utilized in the application of the current set.  

Furthermore, even though the test dataset exhibits 

highaccuracy, the issue of overfitting and consequent 

generalization to other datasets or different operational 

environments persists. The complexity of the DL model may 

also be another drawback when it comes to real-time 

applications, especially in factories where holding time is very 

important. Based on these limitations, the following points 

could be considered as ways for future research in this field to 

be directed: For more efficient model training and less 

sensitivity to data scarcity, new methods of data augmentation 

should be created. Exploring transfer learning could help boost 

generalization in a variety of tasks and datasets.  

We would implement a number of explainable Artificial 

intelligence (AI) techniques to get an idea of what kind of 

decision-making is going on, thus increasing the 

interpretability of the model.To improve the real time 

operation of the model, it might be beneficial to reduce the 

complexity of the network or use hybrid models. Moreover, 

the paper suggests integrating multi-domain information based 

on the fault mode for diagnosis, despite the current array of 

fault types being quite diverse. This approach could potentially 

expand further. To overcome these limitations and follow 

these research directions, we will endeavor to expand the field 

of mechanical fault diagnosis and improve the dependability 

of switchgear systems. 

In summary, this paper outlines an integrated approach to 

enhancing the identification of mechanical faults with a focus 

on a 1D-CNN model in both time and frequency domains. As 

a result, the overall goal is to improve the fault detection rate 

while simultaneously increasing the operational reliability of 

power distribution systems. The contributions extend to the 

model's formulation, utilization, and implications for 

improving fault identification techniques. 

 

 

3. METHODOLOGY 

 

 
 

Figure 1. Diagram illustrating the overall research approach 
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The research proposed in the present work can be divided 

into the following sequential steps, which mainly deal with the 

detection of mechanical faults in MV electrical switchgear. 

The research encompasses both time-domain and frequency-

domain analysis. The first component involves creating a 

comprehensive database that includes data such as mechanical 

faults, arcing, corona, and tracking, in addition to normal 

operation data. To solve it, a 1D-CNN model is employed to 

work on the ultrasonic data acquired during faults and 

presented in audio form. The mechanical fault classification 

system described until now and enabled by using the 1D-CNN 

model is summarized in the schematic representation of Figure 

1. The process of undertaking the research means that 

distribution data in its raw form was collected from the power 

utility company (PUC) concerning seven states in the 

Peninsular Malaysia namely Kedah, Kuala Lumpur, Melaka, 

Selangor, Perak, Negeri Sembilan, and Johor. The subsequent 

data processing activities were performed in MATLAB. The 

selection of the 1D-CNN model stemmed from its suitability 

as a DL technique. 

We used MATLAB for the entire data import and 

preprocessing process, and Google Colab for the model 

creation. The Airborne Ultrasonic Testing (AUT) equipment 

uniquely records raw data in sound formats such as mp3, 

MPEG, or wav. It is clear from the AUT equipment, as shown 

in Figure 2, that the equipment is central to detecting Partial 

Discharge (PD) which is a diagnostic of inadequate electrical 

insulation between conductors. The following sections 

explicate the procedures described in the section titled Figure 

1, which explains the extensive approach used in this study. 

 

 
 

Figure 2. Airborne ultrasonic test equipment visualization 

[29] 

 

3.1 Dataset 

 

The dataset employed in the current study is a compilation 

of electrical switchgear data by data obtained from prior 

studies [8, 9, 30]. It contains detailed records of the ultrasonic 

signals of arcing, corona, tracking, mechanical faults, and 

normal cases in terms of time and frequency. This way, this 

dataset can contribute to fault identification and rectification 

because it includes various types of faults and different 

operation conditions. As a result, the primary emphasis was on 

data collection and pre-processing to develop a reliable fault 

detection system for MV electrical switchgear using a 1D-

CNN model. The goal of this paper was to employ the 1D-

CNN model methodology to accurately identify faults within 

electrical switchgear systems.  

Actual operating data were harvested that included normal 

conditions and different classes of faults, including arcing, 

corona, tracking, and mechanical faults. It also makes the data 

diverse and allows the model to easily tell one type of fault 

from another, thus improving the model’s detection ability. 

Table 1 displays an extensive assortment of datasets that 

includes both mechanical and non-mechanical scenarios, 

covering both the time and frequency domains. 
 

Table 1. Provides an overview of the datasets, encompassing 

both mechanical and non-mechanical faults 
 

Faults 
Samples in Time 

Domain 

Samples in Frequency 

Domain 

Arcing 54 × 20,001 53 × 10,001 

Corona 41 × 20,001 39 × 10,001 

Tracking 313 × 20,001 40 × 10,001 

Mechanical 17 × 20,001 16 × 10,001 

Normal 13 × 20,001 12 × 10,001 

Size of 

Dataset 

17.5 Mega-Byte 

(MB) 
11.3 Mega-Byte (MB) 

 

3.2 Data pre-processing 
 

This step involved cleaning the data to set the stage for 

subsequent processes. Initially, feature extraction was 

performed using the "Mel Spectrogram" technique. We 

combined mechanical fault data with non-mechanical cases 

such as arcing, corona, tracking, and normal circumstances, 

and subsequently divided the dataset into three sections. We 

use this process to refine the data integrity before interacting 

with the 1D-CNN model. This preprocessing procedure 

provided a suitable platform for training the proposed 1D-

CNN model. The developed model demonstrated exceptional 

classification accuracy in forecasting mechanical faults in MV 

electrical switchgear. 
 

3.3. Extract features by using "Mel Spectrogram" 
 

In this stage, we employ the Mel Spectrogram to extract 

features from the ultrasound signals of the switchgear systems 

under different fault conditions [31, 32]. This technique 

converts the raw time-domain signals into a 2D matrix where 

one axis is the timeline, and the other is the frequency line. 

Like how humans hear, we use filters in the Mel Spectrogram 

to focus on certain frequencies. This lets us find different 

temporal features that are often linked to machine failures. In 

the time and frequency domains, Figure 3 depicts the Mel 

Spectrogram view of the mechanical faults. This 

transformation process tracks changes over time in the 

frequency band and thus extracts fault related features that 

might be hidden in raw signals. The work generates the Mel 

Spectrogram, a rich input to the 1D-CNN model, which 

enhances fault type differentiation based on their frequency 

characteristics. The spectrogram explains various fault 

scenarios by transforming the time-domain ultrasound signals 

into frequency-domain representations. This transformation 

shows the fault-specific spectral features for each fault that 

help our model in the differentiation of various fault types. 

Adding the Mel spectra to both time domain analysis and 

frequency domain analysis improves our fault-finding method 

by providing a complete picture of the temporal and spectral 

features. The merging of Mel Spectrogram as a feature 

extraction technique improves the stability and efficiency of 

the 1D-CNN model, thus improving the detection of 

mechanical faults in switchgear system. 
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Figure 3. Represent the Mel Spectrogram for mechanical 

faults in both time and frequency domains 

 

3.4 Concatenate the mechanical fault data with the non-

mechanical fault data 

 

We then proceeded to integrate the mechanical fault data 

with the non-mechanical fault data, which encompassed arcing, 

corona, tracking, and normal cases. It was easier to evaluate a 

lot of different operational conditions and faults because of 

this integration, which led to the creation of a lot of training 

data. By taking into account non-mechanical faults, the model 

acquires a diverse range of behaviours that aid in 

distinguishing between mechanical and non-mechanical faults. 

This step is critical because it enables the 1D-CNN model to 

accurately capture the details of both mechanical and non-

mechanical fault features. 

The process of concatenation involved the following steps: 

- Data Preparation: Switchgear fault data comprising 

mechanical faults was obtained from diverse 

subcomponents, mainly vibrations and operational signals 

of mechanical faults such as misalignment, wear, or 

physical damage. Therefore, the mechanical data included 

signals that characterized faults, such as mechanical 

shocks and vibrations, as well as some non-mechanical 

fault data of an electrical nature, such as arcing, corona 

discharge, surface tracking, and normal operation signals. 

- Combining Data: In order to do this, we merged the two 

datasets of fault type mechanical and non-mechanical 

after they had been preprepared. Still, the data points were 

retained with their labels (mechanical fault, arcing, corona, 

normal, etc.). This step increased the range of faults that 

are modeled in the training data by at least an order of 

magnitude, giving a tool a better chance at learning from 

new conditions. 

- Significance in Model Performance: One benefit of such 

integration is the model's ability to distinguish between 

mechanical and non-mechanical faults. Since non-

mechanical fault data are incorporated into the model, the 

mechanical faults can be detected as well as distinguished 

from the other types of faults. This diversity in the training 

data is beneficial because it allows the 1D-CNN model to 

study temporal and spatial relationships that define 

mechanical faults from non-mechanical ones. As a result, 

the model is less likely to learn to identify one type of fault 

and more likely to generalize to different operational 

scenarios. 

- Enhancement in Fault Detection: Including non-

mechanical faults enhances the model's comprehension of 

the overall fault environment, enabling the recognition 

and implementation of both mechanical and non-

mechanical fault features. Applying this in the real field, 

where both types of faults are likely to occur, enhances 

the model's performance. In addition, by giving normal 

operating data out to the model, the model learns to 

distinguish particular norms or a faulty condition, thus 

minimizing false alarms. 

Overall, the integration of mechanical and non-mechanical 

fault data is beneficial for improving fault diagnosis because 

the 1D-CNN model has the ability to identify various types of 

faults. 

 

3.5 Dataset classification 

 

After merging the dataset, the next step involves 

normalizing the data and scaling the input data to standard 

formats. Min-max scaling was applied to rescale all input 

features to a [0, 1] range ensuring consistency in data 

representation and preventing features with larger scales from 

skewing model predictions. This standardization also enables 

the 1D-CNN model to learn and recognize data patterns better, 

as well as generalize from these patterns to give a very 

accurate forecast. This is necessary to arrive at a training, 

validation, and test split of 70:15:15%, respectively. For this 

research, we considered 70% for training data, 15% for 

validation data, and 15% for testing data. This distribution is 

widely recognized in machine learning (ML) as well as DL 

platforms, as it furnishes an equitable treatment in model 

building, optimization, and assessment. 

- Training Set (70%): The training group consists of data, 

which accounts for 70%, which allows the 1D-

Convolutional Neural Network (1D-CNN) to learn from a 

wide range of mechanical fault data. This larger training 

dataset increases the model’s capacity to detect other finer 

details and relationships to spur better performance and 

future generalization. 

- Validation Set (15%): The percent of the validation set is 

15%, and it is applied during training as a subset for 

adjusting the model’s parameters and decision-making in 

architecture. Using another validation set, we are able to 

estimate the error on unseen data while tuning the 

hyperparameters and avoid overfitting. This set plays a 

very important role in the model by acting as a checkpoint 

of generalization. 

- Testing Set (15%): Last but not least, the 15 % data is 

reserved for the testing set, which is employed only at the 

end phase of the construction of the model. This way, the 

assessment takes place on an entirely separate and 
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independent data set so as to give the model a true 

indicator of what to expect when implemented in real-life 

scenarios. 

Altogether, the 70:15:15 ratio is justified for our 

investigation for the reason that it offers ample information for 

the training processes while at the same time offering strong 

validation and the test set sizes. This configuration enables 

learning and model tuning and performance evaluation, 

thereby enhancing the reliability and accuracy of the fault 

diagnosis model. 

Furthermore, to address class imbalance, we used 

oversampling techniques to equalize the ratio of frequent and 

rare faults during training data collection. This enhanced the 

capability of the model to diagnose several fault categories 

efficiently. 

 

3.6 Training and optimization 

 

The 1D-CNN model is trained on a new training set that is 

made up of both mechanical and non- mechanical fault data. 

During training, the said model seeks to reduce the categorical 

cross-entropy loss in relation to the probability predictions and 

real fault labels. Optimization uses the Adam algorithm and 

set the learning rate of 0. 0001. The training is carried out using 

60 epochs with a batch size of 16; then, the parameters are 

updated by backpropagation. Adam’s adaptive learning rate 

mechanism is better in the convergence than the traditional 

forms of stochastic gradient descent (SGD). This approach 

utilizes the feature that the given dataset is large enough which 

enables the model to learn about the faults in the switchgear 

systems depending on the various scenarios. 

 

3.7 One dimensional convolutional neural network model  

 

In our quest for accurate fault detection and differentiation 

between mechanical and non-mechanical faults within 

switchgear, we propose a novel approach: the 1D-CNN model 

to distinguish between mechanical and non-mechanical faults 

in switchgear. This model utilizes Mel Spectrograms, 

averaging spectrum diagrams that effectively capture the time 

and frequency domain characteristics of electrical signals. 

Therefore, by utilizing these spectrograms, the proposed 

model should make fault classification and differentiation 

tasks more precise and reliable. 

During this research, we paid special attention to the 

preparation of the dataset, which included both mechanical 

and non-mechanical faults. This process entailed a sequence 

of careful and elaborate processes aimed at achieving a proper 

separation of these two main types of faults. Some of the 

preparatory procedures led to the creation of a dataset for the 

fault detection model's training. 

The first layer in the proposed model is the Input Layer that 

takes in preprocessed Mel Spectrograms which have been 

generated from electrical signals. These spectrograms are 

computed using the short-time Fourier transform (STFT) on 

raw time domain signals and they detect and display the 

frequency spectrum of different signals. This transformation 

allows the model to give a compact representation of the signal 

and its spectrum content over different time periods which are 

inherent in the signals due to their frequency content. The core 

of our approach lies in the 1D-CNN module, which serves as 

a critical component for spatial feature extraction from the Mel 

Spectrograms. This module is made up of a sequence of one-

dimensional convolutional layers each containing learnable 

filters. These filters are specifically tailored to help the module 

in capturing local patterns in the Mel Spectrograms and to let 

the module study the spatial components of the signal. 

Mathematically Eqs. (1)-(4), the operations within the 1D-

CNN module can be represented as follows: 

 

𝑋𝑖 = 𝐶𝑜𝑛𝑣1𝐷(𝐻𝑖−1, 𝑊𝑖) + 𝑏𝑖  (1) 

 

where, 𝐻𝑖−1 is the input feature map of the (𝑖 − 1) − 𝑡ℎ layer, 

𝑊𝑖 is the weight tensor of the 𝑖 − 𝑡ℎ and 𝑏𝑖  is the bias vector. 

The output of the (𝑖 − 1) − 𝑡ℎ  convolutional layer after 

applying ReLU activation is given as: 

 

𝐴𝑖 = 𝑅𝑒𝐿𝑈(𝑋𝑖) (2) 

 

Subsequently, the Maxpooling layer downsamples the 

feature maps to obtain 𝑌𝑖: 

 

𝑌𝑖 = 𝑀𝑎𝑥𝑝𝑜𝑜𝑙(𝐴𝑖) (3) 

 

Finally, the downsampled spatial features 𝑌𝑖  are passed 

through the activation function to obtain 𝐻𝑖: 

 

𝐻𝑖 = 𝑅𝑒𝐿𝑈(𝑌𝑖) (4) 

 

For time and frequency dominance, a 1D-CNN model is 

made with Google Colab. The first layer is of the Conv1D type, 

has 32 filters, a size of 3, "same" padding, and a ReLU 

activation function. This is based on the proposed architecture. 

This is followed by a dropout layer that operates at a rate of 

0.2. The benefits that we are going to get from the proposed 

model include a dropout rate of 0.2 to keep the model from 

overfitting and the 1DMaxPooling necessary for the effective 

extraction of features. Consequently, more layers, Conv1D 

with 64 filters and the same configurations as earlier layers, 

are added in sequence, among which Dropout and 

MaxPooling1D are included again. The flattening layer then 

flattens the output before it is passed to a dense layer with 32 

neurons and ReLU activation. We use the SoftMax activation 

function with 2 nodes for binary classification in the output 

layer, along with a categorical cross-entropy loss function and 

an 'Adam' optimizer for high accuracy. 

The frequency domain model changes the structure with the 

time domain but similarly begins with a Conv1D layer 

containing 16 filters for the frequency analysis. To deal with 

overfitting, Dropout and the MaxPooling1D layers are used to 

extract more relevant features from the model. A stack of other 

layers is added: the next Conv1D with 32 filters, Dropout, and 

one more MaxPooling1D. To form the bill, the flattening layer 

is used to produce the feature map into a 1D vector, which is 

fed to the dense layer with 32 neurons and activated with 

ReLU. The output layer in the CNN uses a SoftMax activation 

function with 2 neurons for binary classification; the loss 

function, optimizer, and evaluation metric are the same as in 

the time domain model.A representation of the architecture of 

the 1D-CNN model in both the time and frequency domains is 

shown in Figure 4. This figure graphically presents how 

information is processed in the method and the components 

that are crucial for accurate fault detection using the proposed 

technique. 

 

3.8 Evaluation and performance metrics 

 

Metrics of performance includes accuracy, precision, recall 
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and F1-Score in evaluating the discovered 1D-CNN effective 

on distinguishing fault type within switchgear. Since the Mel 

Spectrogram features are incorporated in the architecture, 

temporal and spectral properties of electrical signals are well 

harnessed, leading to accurate fault diagnosis. 1D-CNN helps 

the model in the spatial feature extraction which facilitates the 

classification of mechanical and non-mechanical faults. Thus, 

this methodology checked against a wide range of testing data 

including arcing, corona, tracking, mechanical faults and 

normal case proves the usefulness of the created model in 

practice.  

 

 
 

Figure 4. The representation of the 1D-CNN model in both 

the time and frequency domains 

 

More importantly, the accuracy above the 90% reveals its 

applicability in the diagnosis of switchgear faulty conditions 

in real power systems, thereby improving the dependability 

and safety of the power systems. This stage is concerned with 

the training, optimization, and assessment of the 1D-CNN 

model together with their accuracies in the detection and 

classification of faults in switchgear systems. 

 

 

4. RESULTS AND DISCUSSION 

 

We conducted several tests to evaluate the efficiency of the 

formulated algorithm in diagnosing potential mechanical 

faults in MV electrical switchgear using sound signals 

generated during the equipment's operation. All these 

experiments were conducted in the time and frequency 

domains. The outcomes of the proposed algorithm in the 

training, validation, and test phases are shown and analyzed. 

For the time domain analysis and experiments in the 1D-CNN 

model, we used a total of 438 samples for training, validation, 

and testing in the case time domain and 160 samples in the 

frequency domain, respectively. 

 The feature number is 20.001 in the time domain and 

10.001 in the case frequency domain. The mechanical 

classifier assigns a positive or negative classification to each 

case in the test data set. This classification leads to four 

possible outcomes: It therefore defines four parameters, 

namely the true positive, the true negative, the false positive, 

and the false negative. We calculate fault detection or 

classification accuracy by dividing the total number of correct 

classifications (TP + TN) by the total number of instances in 

the dataset (P + N), using the following equation: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
× 100% 

=
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
× 100% 

(5) 

 

The error rate (ERR) is calculated as the number of all 

incorrect classifications divided by the total number of the 

dataset by using the equation as follows: 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
× 100% 

=
𝐹𝑃 + 𝐹𝑁

𝑃 + 𝑁
× 100% 

(6) 

 

Table 2 shows the output matrix for the training, validation, 

and testing phases in time domain analysis. The training phase 

utilized a total of 306 data sets. Among these, the system 

correctly detected 10 instances of mechanical defects and 296 

instances of non-mechanical defects. determine the overall 

correctness of the calculation to be 100% accuracy, with an 

error rate of 0%. For the validation phase, we used a total of 

66 data sets. We have successfully discovered 63 non-

mechanical defects and 3 mechanical defects. Overall, the 

accuracy was 100%, and the error rate was 0%.   

For the testing phase, we also used a total of 66 data sets. 

The program accurately detected 4 instances of mechanical 

defects and correctly classified all 62 cases as non-mechanical. 

The testing demonstrates a perfect accuracy of 100% with no 

errors, resulting in a 0% error rate. 

 

Table 2. Time domain classification confusion matrix: 

mechanical and non-mechanical faults 

 
1D-CNN Model 

Training Phase 

  Mechanical Non- Mechanical 

Actual Mechanical 10 0 

Actual Non-Mechanical 0 296 

Validation Phase 

 Mechanical Non- Mechanical 

Actual Mechanical 3 0 

Actual Non-Mechanical 0 63 

Testing Phase 

 Mechanical Non- Mechanical 

Actual Mechanical 4 0 

Actual Non-Mechanical 0 62 

 

Table 3. Frequency domain classification confusion matrix: 

mechanical and non-mechanical faults 

 
1D-CNN Model 

Training Phase 

  Mechanical Non- Mechanical 

Actual Mechanical 10 0 

Actual Non-Mechanical 0 102 

Validation Phase 

 Mechanical Non- Mechanical 

Actual Mechanical 3 0 

Actual Non-Mechanical 0 21 

Testing Phase 

 Mechanical Non- Mechanical 

Actual Mechanical 3 0 

Actual Non-Mechanical 0 21 

 

In case the frequency domain analysis. Table 3 shows the 

output matrix for the training, validation, and testing phases in 

the time domain. The training phase utilized a total of 112 

datasets. Among these, the system accurately detected 10 

instances of mechanical defects and 102 instances of non-

mechanical defects. We determined the overall correctness of 

the calculation to be 100% accuracy, with an error rate of 0%. 

For the validation phase, we used a total of 24 datasets. We 

have successfully discovered 21 non-mechanical defects and 3 

mechanical defects. Overall, the accuracy was 100%, and the 

error rate was 0%. For the testing phase, we also used a total 

of 24 datasets. The program accurately detected 3 instances of 
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mechanical defects and correctly classified all 21 cases as non-

mechanical. The testing demonstrates a perfect accuracy of 

100% with no errors, resulting in a 0% error rate. 

In addition, the evaluation results, including accuracy, 

precision, recall, and F1 score of the 1D-CNN classification 

model, are listed in Table 4 for mechanical and non-

mechanical cases. The above assessments measure the 

effectiveness of a model in diagnosing faults in switchgear. 

However, the figure demonstrates that the performance 

constants indicate that this model is capable of accurately 

categorizing errors. 

 

Table 4. The evaluation of metrics and performance for the 

1D-CNN model testing outcomes 

 
Time Domain 

Case Mechanical Findings (0) 

Accuracy Sensitivity Dependability F1-Measure 

100 100 100 100 

Case Non-Mechanical Findings (1) 

Accuracy Sensitivity Dependability F1-Masure 

100 100 100 100 

Frequency Domain 

Case Mechanical Findings (0) 

Accuracy Sensitivity Dependability F1-Measure 

100 100 100 100 

Case Non-Mechanical Findings (1) 

Accuracy Sensitivity Dependability F1-Measure 

100 100 100 100 

 

Furthermore, Figure 5 illustrates the accuracy and loss 

curve of the 1D-CNN model during the training and validation 

phases. The loss curve shows the learning and understanding 

phases that occur, whereas the accuracy curve shows the 

model's ability to detect errors. Plotting both curves provides 

a comprehensive view of the model's evolution. 

 

 
(a) Time domain 

 
(b) Frequency domain 

 

Figure 5. Curves of accuracy and loss for the 1D-CNN 

model of mechanical and non-mechanical defects 

 

The implications of our findings for real-world applications 

are substantial. Improved diagnostic accuracy can aid in the 

early detection of mechanical failures, leading to a reduction 

in repair time and maintenance expenses in traditional 

industrial settings. Our proposed model can be incorporated 

into current maintenance structures to allow operators to 

perform effective predictive maintenance instead of traditional 

break-fix activities.  

 

Furthermore, by distinguishing different types of faults, 

management teams can order their interventions based on the 

type and severity of the identified fault. This has the benefit of 

effectiveness in resource use but also an increase in the 

reliability and safety of switchgear operations. Last but not 

least, our model's ability to provide enhanced and real-time 

constant monitoring assurances of the equipment's health 

provides crucial guidance for the design of subsequent models. 

The work also shows areas for future investigation, including 

noise resilience tests and the incorporation of IoT devices to 

continuously monitor and test the proposed model. 
 

4.1 Comparison with state-of-the-art methods 
 

In order to assess the performance of our proposed 1D-CNN 

model, we compared its results with several state-of-the-art 

techniques previously used for mechanical fault diagnosis in 

switchgear systems. These include methods such as the AENN 

combined with SVM [22], the MSPE and DW-OCELM [23], 

the SWT with a SAE [24], the VGG16 network for mechanical 

performance evaluation [25], the 1D-CNN with GRU and 

attention mechanism [26], the stacked autoencoder improved 

by BPNN [27], and the SCRLSTM model combining CNNs 

with Residual LSTM [28]. 
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While these models have demonstrated notable 

performance in detecting mechanical faults, our approach 

offers several improvements: 

- Simplified Architecture: Compared with other models, 

our proposed 1D-CNN has a simpler architecture, less 

computational cost, and fewer training times, which is 

indeed realistic for industrial applications. 

- Data Efficiency: Most of the existing approaches, 

including those based on combining autoencoders or 

SVM, are trained on large, labeled databases. On the other 

hand, our model performs well with high accuracy at a 

limited number of iterations, solving an issue that is very 

rampant in real-life applications. 

- Fault Diversity Recognition: Combining mechanical and 

non-mechanical fault data also improves the identification 

ability of the model to differentiate between diverse types 

of faults, providing more reliability across different 

functioning scenarios. 

- Generalization and Accuracy: The implementations of 

data normalization, scaling, and splitting the datasets 

provide good results with less overfitting in a controlled 

environment and with real-world data. 

Such improvements make our 1D-CNN model as promising 

and useful for practical diagnosis of mechanical faults in 

switchgear systems as compared with conventional 

approaches in terms of diagnosing efficiency and 

distinguishing the diverse faults. 

 

 

5. CONCLUSION 

 

Diagnosis of mechanical faults is critical for serviceability 

of MV electrical switchgear in handling electric power. This 

paper proposes a 1D-CNN for the detection and diagnosis of 

both mechanical and non-mechanical faults in the time and 

frequency domains. By examining such faults carefully, the 

model herein demonstrated 100% accuracy in terms of 

revealing all the tested fault conditions. This advancement 

greatly increases the ability to identify faults in MV electrical 

switchgear and improves the ability to represent problems, 

giving the electrical industry a proven technique to protect 

infrastructure and guarantee steady power delivery. 

Furthermore, the proposed approach improves operational 

productivity by reducing procedural time and making more 

informed maintenance decisions.  

To enhance the performance of the proposed model, we 

should gather more datasets. Additionally, to expand the use 

of DL for component analysis in power distribution networks, 

future studies should explore the potential of utilizing a variety 

of datasets and DL models, as well as investigating the 

effectiveness of various forms of ensemble learning. 

Furthermore, the real-time integration of fault detection and 

maintenance techniques will be useful for the system's long-

term, effective operation. Engaging the members of the 

relevant industry in field testing of the proposed model will 

confirm real-world applications. In conclusion, this research 

provides a starting point for the evolution of mechanical fault 

diagnosis in MV electrical switchgear systems with the goal of 

improving electrical assets. 
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